1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
//===--- RefCountState.h - Represents a Reference Count ---------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SILOPTIMIZER_PASSMANAGER_ARC_REFCOUNTSTATE_H
#define SWIFT_SILOPTIMIZER_PASSMANAGER_ARC_REFCOUNTSTATE_H
#include "RCStateTransition.h"
#include "swift/Basic/BlotMapVector.h"
#include "swift/Basic/ImmutablePointerSet.h"
#include "swift/Basic/type_traits.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/EpilogueARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include <algorithm>
namespace swift {
class AliasAnalysis;
} // end namespace swift
//===----------------------------------------------------------------------===//
// Ref Count State
//===----------------------------------------------------------------------===//
namespace swift {
/// A struct that abstracts over reference counts manipulated by strong_retain,
/// retain_value, strong_release,
class RefCountState {
protected:
/// Return the SILValue that represents the RCRoot that we are
/// tracking.
SILValue RCRoot;
/// The last state transition that this RefCountState went through. None if we
/// have not see any transition on this ref count yet.
RCStateTransition Transition;
/// Was the pointer we are tracking known incremented when we visited the
/// current increment we are tracking? In that case we know that it is safe
/// to move the inner retain over instructions that may decrement ref counts
/// since the outer retain will keep the reference counted value alive.
bool KnownSafe = false;
public:
RefCountState() = default;
~RefCountState() = default;
RefCountState(const RefCountState &) = default;
RefCountState &operator=(const RefCountState &) = default;
RefCountState(RefCountState &&) = default;
RefCountState &operator=(RefCountState &&) = default;
/// Initializes/reinitialized the state for I. If we reinitialize we return
/// true.
bool initWithMutatorInst(ImmutablePointerSet<SILInstruction *> *I,
RCIdentityFunctionInfo *RCFI) {
assert(I->size() == 1);
// Are we already tracking a ref count modification?
bool Nested = isTrackingRefCount();
Transition = RCStateTransition(I);
assert(Transition.isMutator() && "Expected I to be a mutator!\n");
// Initialize KnownSafe to a conservative false value.
KnownSafe = false;
// Initialize value.
RCRoot = RCFI->getRCIdentityRoot((*I->begin())->getOperand(0));
return Nested;
}
/// Uninitialize the current state.
void clear() {
KnownSafe = false;
}
/// Is this ref count initialized and tracking a ref count ptr.
bool isTrackingRefCount() const { return Transition.isValid(); }
/// Are we tracking an instruction currently? This returns false when given an
/// uninitialized ReferenceCountState.
bool isTrackingRefCountInst() const {
return Transition.isValid() && Transition.isMutator();
}
/// Are we tracking a source of ref counts? This currently means that we are
/// tracking an argument that is @owned. In the future this will include
/// return values of functions that are @owned.
bool isTrackingRefCountSource() const {
return Transition.isValid() && Transition.isEndPoint();
}
/// Return the increment we are tracking.
RCStateTransition::mutator_range getInstructions() const {
return Transition.getMutators();
}
/// Returns true if I is in the instructions we are tracking.
bool containsInstruction(SILInstruction *I) const {
return Transition.isValid() && Transition.containsMutator(I);
}
/// Return the value with reference semantics that is the operand of our
/// increment.
SILValue getRCRoot() const {
assert(RCRoot && "Value should never be null here");
return RCRoot;
}
/// Returns true if we have a valid value that we are tracking.
bool hasRCRoot() const {
return (bool)RCRoot;
}
/// This retain is known safe if the operand we are tracking was already known
/// incremented previously. This occurs when you have nested increments.
bool isKnownSafe() const { return KnownSafe; }
/// Set KnownSafe to true if \p NewValue is true. If \p NewValue is false,
/// this is a no-op.
void updateKnownSafe(bool NewValue) {
KnownSafe |= NewValue;
}
void clearKnownSafe() { KnownSafe = false; }
};
//===----------------------------------------------------------------------===//
// Bottom Up Ref Count State
//===----------------------------------------------------------------------===//
class BottomUpRefCountState : public RefCountState {
public:
/// Sequence of states that a value with reference semantics can go through
/// when visiting decrements bottom up. The reason why I have this separate
/// from TopDownSubstruct is I think it gives more clarity to the algorithm by
/// giving it typed form.
enum class LatticeState {
None, ///< The pointer has no information associated with it.
Decremented, ///< The pointer will be decremented.
MightBeUsed, ///< The pointer will be used and then at this point
/// be decremented
MightBeDecremented, ///< The pointer might be decremented again implying
/// that we cannot, without being known safe remove
/// this decrement.
};
private:
using SuperTy = RefCountState;
/// Current place in the sequence of the value.
LatticeState LatState = LatticeState::None;
/// True if we have seen a NonARCUser of this instruction. This means bottom
/// up assuming we have this property as a meet over all paths property, we
/// know that all releases we see are known safe.
bool FoundNonARCUser = false;
public:
BottomUpRefCountState() = default;
~BottomUpRefCountState() = default;
BottomUpRefCountState(const BottomUpRefCountState &) = default;
BottomUpRefCountState &operator=(const BottomUpRefCountState &) = default;
BottomUpRefCountState(BottomUpRefCountState &&) = default;
BottomUpRefCountState &operator=(BottomUpRefCountState &&) = default;
/// Getter for LatticeState
LatticeState getLatticeState() const {return LatState;}
/// Return true if the release can be moved to the retain.
bool isCodeMotionSafe() const {
return LatState != LatticeState::MightBeDecremented;
}
/// Initializes/reinitialized the state for I. If we reinitialize we return
/// true.
bool initWithMutatorInst(ImmutablePointerSet<SILInstruction *> *I,
RCIdentityFunctionInfo *RCFI);
/// Update this reference count's state given the instruction \p I.
void
updateForSameLoopInst(SILInstruction *I,
AliasAnalysis *AA);
/// Remove "KnownSafe" on the BottomUpRefCountState, if we find a retain
/// instruction with another RCIdentity can pair with the previously visited
/// retain instruction.
void checkAndResetKnownSafety(
SILInstruction *I, SILValue VisitedRC,
std::function<bool(SILInstruction *)> checkIfRefCountInstIsMatched,
RCIdentityFunctionInfo *RCIA, AliasAnalysis *AA);
/// Update this reference count's state given the instruction \p I.
//
/// The main difference in between this routine and update for same loop inst
/// is that if we see any decrements on a value, we treat it as being
/// guaranteed used. We treat any uses as regular uses.
/// This function is conservative enough that the flow sensitive nature of
/// loop summarized instructions does not matter.
void updateForDifferentLoopInst(
SILInstruction *I,
AliasAnalysis *AA);
/// Attempt to merge \p Other into this ref count state. Return true if we
/// succeed and false otherwise.
bool merge(const BottomUpRefCountState &Other);
/// Returns true if the passed in ref count inst matches the ref count inst
/// we are tracking. This handles generically retains/release.
bool isRefCountInstMatchedToTrackedInstruction(SILInstruction *RefCountInst);
/// Uninitialize the current state.
void clear();
void dump();
private:
/// Return true if we *might* remove this instruction.
///
/// This is a conservative query given the information we know, so as we
/// perform the dataflow it may change value.
bool mightRemoveMutators();
/// Can we guarantee that the given reference counted value has been modified?
bool isRefCountStateModified() const;
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is decremented.
bool valueCanBeDecrementedGivenLatticeState() const;
/// If advance the state's sequence appropriately for a decrement. If we do
/// advance return true. Otherwise return false.
bool handleDecrement();
/// Check if PotentialDecrement can decrement the reference count associated
/// with the value we are tracking. If so advance the state's sequence
/// appropriately and return true. Otherwise return false.
bool handlePotentialDecrement(SILInstruction *Decrement, AliasAnalysis *AA);
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is used.
bool valueCanBeUsedGivenLatticeState() const;
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool handleUser();
/// Check if PotentialUser could be a use of the reference counted value that
/// requires user to be alive. If so advance the state's sequence
/// appropriately and return true. Otherwise return false.
bool
handlePotentialUser(SILInstruction *PotentialUser,
AliasAnalysis *AA);
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is used.
bool valueCanBeGuaranteedUsedGivenLatticeState() const;
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool handleGuaranteedUser();
/// Check if PotentialGuaranteedUser can use the reference count associated
/// with the value we are tracking. If so advance the state's sequence
/// appropriately and return true. Otherwise return false.
bool handlePotentialGuaranteedUser(
SILInstruction *User,
AliasAnalysis *AA);
/// We have a matching ref count inst. Return true if we advance the sequence
/// and false otherwise.
bool handleRefCountInstMatch();
};
//===----------------------------------------------------------------------===//
// Top Down Ref Count State
//===----------------------------------------------------------------------===//
class TopDownRefCountState : public RefCountState {
public:
/// Sequence of states that a value with reference semantics can go through
/// when visiting decrements bottom up. The reason why I have this separate
/// from BottomUpRefCountState is I think it gives more clarity to the
/// algorithm by giving it typed form.
enum class LatticeState {
None, ///< The pointer has no information associated with it.
Incremented, ///< The pointer has been incremented.
MightBeDecremented, ///< The pointer has been incremented and might be
/// decremented. be decremented again implying
MightBeUsed, ///< The pointer has been incremented,
};
private:
using SuperTy = RefCountState;
/// Current place in the sequence of the value.
LatticeState LatState = LatticeState::None;
public:
TopDownRefCountState() = default;
~TopDownRefCountState() = default;
TopDownRefCountState(const TopDownRefCountState &) = default;
TopDownRefCountState &operator=(const TopDownRefCountState &) = default;
TopDownRefCountState(TopDownRefCountState &&) = default;
TopDownRefCountState &operator=(TopDownRefCountState &&) = default;
/// Getter for LatticeState
LatticeState getLatticeState() const {return LatState;}
/// Return true if the retain can be moved to the release.
bool isCodeMotionSafe() const {
return LatState != LatticeState::MightBeUsed;
}
/// Initializes/reinitialized the state for I. If we reinitialize we return
/// true.
bool initWithMutatorInst(ImmutablePointerSet<SILInstruction *> *I,
RCIdentityFunctionInfo *RCFI);
/// Initialize the state given the consumed argument Arg.
void initWithArg(SILFunctionArgument *Arg);
/// Initialize this RefCountState with an instruction which introduces a new
/// ref count at +1.
void initWithEntranceInst(ImmutablePointerSet<SILInstruction *> *I,
SILValue RCIdentity);
/// Uninitialize the current state.
void clear();
/// Update this reference count's state given the instruction \p I.
void
updateForSameLoopInst(SILInstruction *I,
AliasAnalysis *AA);
/// Remove "KnownSafe" on the TopDownRefCountState, if we find a retain
/// instruction with another RCIdentity can pair with the previously visited
/// retain instruction.
void checkAndResetKnownSafety(
SILInstruction *I, SILValue VisitedRC,
std::function<bool(SILInstruction *)> checkIfRefCountInstIsMatched,
RCIdentityFunctionInfo *RCIA, AliasAnalysis *AA);
/// Update this reference count's state given the instruction \p I.
///
/// The main difference in between this routine and update for same loop inst
/// is that if we see any decrements on a value, we treat it as being
/// guaranteed used. We treat any uses as regular uses.
/// This function is conservative enough that the flow sensitive nature of
/// loop summarized instructions does not matter.
void updateForDifferentLoopInst(
SILInstruction *I,
AliasAnalysis *AA);
/// Returns true if the passed in ref count inst matches the ref count inst
/// we are tracking. This handles generically retains/release.
bool isRefCountInstMatchedToTrackedInstruction(SILInstruction *RefCountInst);
/// Attempt to merge \p Other into this ref count state. Return true if we
/// succeed and false otherwise.
bool merge(const TopDownRefCountState &Other);
void dump();
private:
/// Can we guarantee that the given reference counted value has been modified?
bool isRefCountStateModified() const;
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is decremented.
bool valueCanBeDecrementedGivenLatticeState() const;
/// If advance the state's sequence appropriately for a decrement. If we do
/// advance return true. Otherwise return false.
bool handleDecrement();
/// Check if PotentialDecrement can decrement the reference count associated
/// with the value we are tracking. If so advance the state's sequence
/// appropriately and return true. Otherwise return false.
bool handlePotentialDecrement(
SILInstruction *PotentialDecrement,
AliasAnalysis *AA);
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is used.
bool valueCanBeUsedGivenLatticeState() const;
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool handleUser();
/// Check if PotentialUser could be a use of the reference counted value that
/// requires user to be alive. If so advance the state's sequence
/// appropriately and return true. Otherwise return false.
bool handlePotentialUser(SILInstruction *PotentialUser, AliasAnalysis *AA);
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is used.
bool valueCanBeGuaranteedUsedGivenLatticeState() const;
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool handleGuaranteedUser();
/// Check if PotentialGuaranteedUser can use the reference count associated
/// with the value we are tracking. If so advance the state's sequence
/// appropriately and return true. Otherwise return false.
bool handlePotentialGuaranteedUser(
SILInstruction *PotentialGuaranteedUser,
AliasAnalysis *AA);
/// We have a matching ref count inst. Return true if we advance the sequence
/// and false otherwise.
bool handleRefCountInstMatch();
};
// These static asserts are here for performance reasons.
static_assert(IsTriviallyCopyable<BottomUpRefCountState>::value,
"All ref count states must be trivially copyable");
static_assert(IsTriviallyCopyable<TopDownRefCountState>::value,
"All ref count states must be trivially copyable");
} // end swift namespace
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS,
swift::BottomUpRefCountState::LatticeState S);
raw_ostream &operator<<(raw_ostream &OS,
swift::TopDownRefCountState::LatticeState S);
} // end namespace llvm
#endif
|