1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
|
//===--- AliasAnalysis.cpp - SIL Alias Analysis ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-aa"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "swift/SILOptimizer/OptimizerBridging.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// AA Debugging
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace {
enum class AAKind : unsigned {
None=0,
BasicAA=1,
TypedAccessTBAA=2,
All=3,
};
} // end anonymous namespace
static llvm::cl::opt<AAKind>
DebugAAKinds("aa-kind", llvm::cl::desc("Alias Analysis Kinds:"),
llvm::cl::init(AAKind::All),
llvm::cl::values(clEnumValN(AAKind::None,
"none",
"Do not perform any AA"),
clEnumValN(AAKind::BasicAA,
"basic-aa",
"basic-aa"),
clEnumValN(AAKind::TypedAccessTBAA,
"typed-access-tb-aa",
"typed-access-tb-aa"),
clEnumValN(AAKind::All,
"all",
"all")));
static inline bool shouldRunAA() {
return unsigned(AAKind(DebugAAKinds));
}
static inline bool shouldRunTypedAccessTBAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::TypedAccessTBAA);
}
static inline bool shouldRunBasicAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::BasicAA);
}
#endif
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
using AliasResult = AliasAnalysis::AliasResult;
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, AliasResult R) {
switch (R) {
case AliasResult::NoAlias: return OS << "NoAlias";
case AliasResult::MayAlias: return OS << "MayAlias";
case AliasResult::PartialAlias: return OS << "PartialAlias";
case AliasResult::MustAlias: return OS << "MustAlias";
}
llvm_unreachable("Unhandled AliasResult in switch.");
}
//===----------------------------------------------------------------------===//
// Unequal Base Object AA
//===----------------------------------------------------------------------===//
/// Return true if the given SILArgument is an argument to the first BB of a
/// function.
static bool isFunctionArgument(SILValue V) {
return isa<SILFunctionArgument>(V);
}
/// Return true if V is an object that at compile time can be uniquely
/// identified.
static bool isIdentifiableObject(SILValue V) {
if (isa<AllocationInst>(V) || isa<LiteralInst>(V))
return true;
if (isExclusiveArgument(V))
return true;
return false;
}
/// Return true if V1 and V2 are distinct objects that can be uniquely
/// identified at compile time.
static bool areDistinctIdentifiableObjects(SILValue V1, SILValue V2) {
// Do both values refer to the same global variable?
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
return GA1->getReferencedGlobal() != GA2->getReferencedGlobal();
}
}
if (isIdentifiableObject(V1) && isIdentifiableObject(V2))
return V1 != V2;
return false;
}
/// Returns true if both values are equal or yield the address of the same
/// global variable.
static bool isSameValueOrGlobal(SILValue V1, SILValue V2) {
if (V1 == V2)
return true;
// Do both values refer to the same global variable?
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
return GA1->getReferencedGlobal() == GA2->getReferencedGlobal();
}
}
return false;
}
/// Is this a literal which we know cannot refer to a global object?
///
/// FIXME: function_ref?
static bool isLocalLiteral(SILValue V) {
switch (V->getKind()) {
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
return true;
default:
return false;
}
}
/// Is this a value that can be unambiguously identified as being defined at the
/// function level.
static bool isIdentifiedFunctionLocal(SILValue V) {
return isa<AllocationInst>(*V) || isExclusiveArgument(V) || isLocalLiteral(V);
}
/// Returns true if we can prove that the two input SILValues which do not equal
/// cannot alias.
static bool aliasUnequalObjects(SILValue O1, SILValue O2) {
assert(O1 != O2 && "This function should only be called on unequal values.");
// If O1 and O2 do not equal and they are both values that can be statically
// and uniquely identified, they cannot alias.
if (areDistinctIdentifiableObjects(O1, O2)) {
LLVM_DEBUG(llvm::dbgs() << " Found two unequal identified "
"objects.\n");
return true;
}
// Function arguments can't alias with things that are known to be
// unambiguously identified at the function level.
//
// Note that both function arguments must be identified. For example, an @in
// argument may be an interior pointer into a box that is passed separately as
// @owned. We must consider uses on the @in argument as potential uses of the
// @owned object.
if ((isFunctionArgument(O1) && isIdentifiedFunctionLocal(O2)) ||
(isFunctionArgument(O2) && isIdentifiedFunctionLocal(O1))) {
LLVM_DEBUG(llvm::dbgs() << " Found unequal function arg and "
"identified function local!\n");
return true;
}
// We failed to prove that the two objects are different.
return false;
}
//===----------------------------------------------------------------------===//
// Projection Address AA
//===----------------------------------------------------------------------===//
/// Uses a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer. We know that V1 is a GEP, but we don't know anything about
/// V2. O1, O2 are getUnderlyingObject of V1, V2 respectively.
AliasResult AliasAnalysis::aliasAddressProjection(SILValue V1, SILValue V2,
SILValue O1, SILValue O2) {
// If V2 is also a gep instruction with a must-alias or not-aliasing base
// pointer, figure out if the indices of the GEPs tell us anything about the
// derived pointers.
if (!Projection::isAddressProjection(V2)) {
// Ok, V2 is not an address projection. See if V2 after stripping casts
// aliases O1. If so, then we know that V2 must partially alias V1 via a
// must alias relation on O1. This ensures that given an alloc_stack and a
// gep from that alloc_stack, we say that they partially alias.
if (isSameValueOrGlobal(O1, stripCasts(V2)))
return AliasResult::PartialAlias;
return AliasResult::MayAlias;
}
assert(!Projection::isAddressProjection(O1) &&
"underlying object may not be a projection");
assert(!Projection::isAddressProjection(O2) &&
"underlying object may not be a projection");
// Do the base pointers alias?
AliasResult BaseAlias = aliasInner(O1, O2);
// If the underlying objects are not aliased, the projected values are also
// not aliased.
if (BaseAlias == AliasResult::NoAlias)
return AliasResult::NoAlias;
// Let's do alias checking based on projections.
auto V1Path = ProjectionPath::getProjectionPath(O1, V1);
auto V2Path = ProjectionPath::getProjectionPath(O2, V2);
// getUnderlyingPath and findAddressProjectionPathBetweenValues disagree on
// what the base pointer of the two values are. Be conservative and return
// MayAlias.
//
// FIXME: The only way this should happen realistically is if there are
// casts in between two projection instructions. getUnderlyingObject will
// ignore that, while findAddressProjectionPathBetweenValues wont. The two
// solutions are to make address projections variadic (something on the wee
// horizon) or enable Projection to represent a cast as a special sort of
// projection.
if (!V1Path || !V2Path)
return AliasResult::MayAlias;
auto R = V1Path->computeSubSeqRelation(*V2Path);
// If all of the projections are equal (and they have the same base pointer),
// the two GEPs must be the same.
if (BaseAlias == AliasResult::MustAlias &&
R == SubSeqRelation_t::Equal)
return AliasResult::MustAlias;
// The two GEPs do not alias if they are accessing different fields, even if
// we don't know the base pointers. Different fields should not overlap.
//
// TODO: Replace this with a check on the computed subseq relation. See the
// TODO in computeSubSeqRelation.
if (V1Path->hasNonEmptySymmetricDifference(V2Path.value()))
return AliasResult::NoAlias;
// If one of the GEPs is a super path of the other then they partially
// alias.
if (BaseAlias == AliasResult::MustAlias &&
isStrictSubSeqRelation(R))
return AliasResult::PartialAlias;
// We failed to prove anything. Be conservative and return MayAlias.
return AliasResult::MayAlias;
}
//===----------------------------------------------------------------------===//
// TBAA
//===----------------------------------------------------------------------===//
/// Is this an instruction that can act as a type "oracle" allowing typed access
/// TBAA to know what the real types associated with the SILInstruction are.
static bool isTypedAccessOracle(SILInstruction *I) {
switch (I->getKind()) {
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::RefTailAddrInst:
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
case SILInstructionKind::LoadInst:
case SILInstructionKind::StoreInst:
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::AllocBoxInst:
case SILInstructionKind::ProjectBoxInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::DeallocBoxInst:
return true;
default:
return false;
}
}
/// Return true if the given value is an instruction or block argument that is
/// known to produce a nonaliasing address with respect to TBAA rules (i.e. the
/// pointer is not type punned). The only way to produce an aliasing typed
/// address is with pointer_to_address (via UnsafePointer) or
/// unchecked_addr_cast (via Builtin.reinterpretCast). Consequently, if the
/// given value is directly derived from a memory location, it cannot
/// alias. Call arguments also cannot alias because they must follow \@in, @out,
/// @inout, or \@in_guaranteed conventions.
static bool isAccessedAddressTBAASafe(SILValue V) {
if (!V->getType().isAddress())
return false;
SILValue accessedAddress = getTypedAccessAddress(V);
if (isa<SILFunctionArgument>(accessedAddress))
return true;
if (auto *PtrToAddr = dyn_cast<PointerToAddressInst>(accessedAddress))
return PtrToAddr->isStrict();
switch (accessedAddress->getKind()) {
default:
return false;
case ValueKind::AllocStackInst:
case ValueKind::ProjectBoxInst:
case ValueKind::RefElementAddrInst:
case ValueKind::RefTailAddrInst:
return true;
}
}
/// Look at the origin/user ValueBase of V to see if any of them are
/// TypedAccessOracle which enable one to ascertain via undefined behavior the
/// "true" type of the instruction.
static SILType findTypedAccessType(SILValue V) {
assert(V->getType().isAddress());
// First look at the origin of V and see if we have any instruction that is a
// typed oracle.
// TODO: MultiValueInstruction
if (auto *I = dyn_cast<SingleValueInstruction>(V))
if (isTypedAccessOracle(I))
return V->getType();
// Then look at any uses of V that potentially could act as a typed access
// oracle.
for (auto Use : V->getUses())
if (isTypedAccessOracle(Use->getUser()))
return V->getType();
// Otherwise return an empty SILType
return SILType();
}
SILType swift::computeTBAAType(SILValue V) {
if (isAccessedAddressTBAASafe(V))
return findTypedAccessType(V);
// FIXME: add ref_element_addr check here. TBAA says that objects cannot be
// type punned.
return SILType();
}
static bool typedAccessTBAABuiltinTypesMayAlias(SILType LTy, SILType RTy) {
assert(LTy != RTy && "LTy should have already been shown to not equal RTy to "
"call this function.");
// If either of our types are raw pointers, they may alias any builtin.
if (LTy.is<BuiltinRawPointerType>() || RTy.is<BuiltinRawPointerType>())
return true;
// At this point, we have 3 possibilities:
//
// 1. (Pointer, Scalar): A pointer to a pointer can never alias a scalar.
//
// 2. (Pointer, Pointer): If we have two pointers to pointers, since we know
// that the two values do not equal due to previous AA calculations, one must
// be a native object and the other is an unknown object type (i.e. an objc
// object) which cannot alias.
//
// 3. (Scalar, Scalar): If we have two scalar pointers, since we know that the
// types are already not equal, we know that they cannot alias. For those
// unfamiliar even though BuiltinIntegerType/BuiltinFloatType are single
// classes, the AST represents each integer/float of different bit widths as
// different types, so equality of SILTypes allows us to know that they have
// different bit widths.
//
// Thus we can just return false since in none of the aforementioned cases we
// cannot alias, so return false.
return false;
}
/// return True if the types \p LTy and \p RTy may alias.
///
/// Currently this only implements typed access based TBAA. See the TBAA section
/// in the SIL reference manual.
static bool typedAccessTBAAMayAlias(SILType LTy, SILType RTy,
const SILFunction &F) {
#ifndef NDEBUG
if (!shouldRunTypedAccessTBAA())
return true;
#endif
// If the two types are the same they may alias.
if (LTy == RTy)
return true;
// Typed access based TBAA only occurs on pointers. If we reach this point and
// do not have a pointer, be conservative and return that the two types may
// alias.
if (!LTy.isAddress() || !RTy.isAddress())
return true;
// If the types have unbound generic arguments then we don't know
// the possible range of the type. A type such as $Array<Int> may
// alias $Array<T>. Right now we are conservative and we assume
// that $UnsafeMutablePointer<T> and $Int may alias.
if (LTy.hasArchetype() || RTy.hasArchetype())
return true;
// If either type is a protocol type, we don't know the underlying type so
// return may alias.
//
// FIXME: We could be significantly smarter here by using the protocol
// hierarchy.
if (LTy.isAnyExistentialType() || RTy.isAnyExistentialType())
return true;
// If either type is an address only type, bail so we are conservative.
if (LTy.isAddressOnly(F) || RTy.isAddressOnly(F))
return true;
// If both types are builtin types, handle them separately.
if (LTy.is<BuiltinType>() && RTy.is<BuiltinType>())
return typedAccessTBAABuiltinTypesMayAlias(LTy, RTy);
// Otherwise, we know that at least one of our types is not a builtin
// type. If we have a builtin type, canonicalize it on the right.
if (LTy.is<BuiltinType>())
std::swap(LTy, RTy);
// If RTy is a builtin raw pointer type, it can alias anything.
if (RTy.is<BuiltinRawPointerType>())
return true;
ClassDecl *LTyClass = LTy.getClassOrBoundGenericClass();
// The Builtin reference types can alias any class instance.
if (LTyClass) {
if (RTy.is<BuiltinNativeObjectType>() ||
RTy.is<BuiltinBridgeObjectType>()) {
return true;
}
}
auto &Mod = F.getModule();
// If one type is an aggregate and it contains the other type then the record
// reference may alias the aggregate reference.
if (LTy.aggregateContainsRecord(RTy, Mod, F.getTypeExpansionContext()) ||
RTy.aggregateContainsRecord(LTy, Mod, F.getTypeExpansionContext()))
return true;
// FIXME: All the code following could be made significantly more aggressive
// by saying that aggregates of the same type that do not contain each other
// cannot alias.
// Tuples do not alias non-tuples.
bool LTyTT = LTy.is<TupleType>();
bool RTyTT = RTy.is<TupleType>();
if (LTyTT != RTyTT)
return false;
// Structs do not alias non-structs.
StructDecl *LTyStruct = LTy.getStructOrBoundGenericStruct();
StructDecl *RTyStruct = RTy.getStructOrBoundGenericStruct();
if ((LTyStruct != nullptr) != (RTyStruct != nullptr))
return false;
// Enums do not alias non-enums.
EnumDecl *LTyEnum = LTy.getEnumOrBoundGenericEnum();
EnumDecl *RTyEnum = RTy.getEnumOrBoundGenericEnum();
if ((LTyEnum != nullptr) != (RTyEnum != nullptr))
return false;
// Classes do not alias non-classes.
ClassDecl *RTyClass = RTy.getClassOrBoundGenericClass();
if ((LTyClass != nullptr) != (RTyClass != nullptr))
return false;
// Classes with separate class hierarchies do not alias.
if (!LTy.isBindableToSuperclassOf(RTy) && !RTy.isBindableToSuperclassOf(LTy))
return false;
// Otherwise be conservative and return that the two types may alias.
return true;
}
bool AliasAnalysis::typesMayAlias(SILType T1, SILType T2,
const SILFunction &F) {
// Both types need to be valid.
if (!T2 || !T1)
return true;
// Check if we've already computed the TBAA relation.
auto Key = std::make_pair(T1, T2);
auto Res = TypesMayAliasCache.find(Key);
if (Res != TypesMayAliasCache.end()) {
return Res->second;
}
bool MA = typedAccessTBAAMayAlias(T1, T2, F);
TypesMayAliasCache[Key] = MA;
return MA;
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
// Bridging functions.
static BridgedAliasAnalysis::GetMemEffectFn getMemEffectsFunction = nullptr;
static BridgedAliasAnalysis::Escaping2InstFn isObjReleasedFunction = nullptr;
static BridgedAliasAnalysis::Escaping2ValIntFn isAddrVisibleFromObjFunction = nullptr;
static BridgedAliasAnalysis::Escaping2ValFn canReferenceSameFieldFunction = nullptr;
AliasAnalysis::~AliasAnalysis() {
}
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
/// to disambiguate the two values.
AliasResult AliasAnalysis::alias(SILValue V1, SILValue V2,
SILType TBAAType1, SILType TBAAType2) {
AliasCacheKey Key = {V1, V2, TBAAType1.getOpaqueValue(),
TBAAType2.getOpaqueValue()};
// Check if we've already computed this result.
auto It = AliasCache.find(Key);
if (It != AliasCache.end()) {
return It->second;
}
// Calculate the aliasing result and store it in the cache.
auto Result = aliasInner(V1, V2, TBAAType1, TBAAType2);
AliasCache[Key] = Result;
return Result;
}
/// Get the underlying object, looking through init_enum_data_addr and
/// init_existential_addr.
static SILValue stripInitEnumAndExistentialAddr(SILValue v) {
while (isa<InitEnumDataAddrInst>(v) || isa<InitExistentialAddrInst>(v)) {
v = getUnderlyingObject(cast<SingleValueInstruction>(v)->getOperand(0));
}
return v;
}
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
/// to disambiguate the two values.
AliasResult AliasAnalysis::aliasInner(SILValue V1, SILValue V2,
SILType TBAAType1,
SILType TBAAType2) {
#ifndef NDEBUG
// If alias analysis is disabled, always return may alias.
if (!shouldRunAA())
return AliasResult::MayAlias;
#endif
// If the two values equal, quickly return must alias.
if (isSameValueOrGlobal(V1, V2))
return AliasResult::MustAlias;
LLVM_DEBUG(llvm::dbgs() << "ALIAS ANALYSIS:\n V1: " << *V1
<< " V2: " << *V2);
// If this is SILUndef, return may alias.
if (!V1->getFunction())
return AliasResult::MayAlias;
// Pass in both the TBAA types so we can perform typed access TBAA and the
// actual types of V1, V2 so we can perform class based TBAA.
if (!typesMayAlias(TBAAType1, TBAAType2, *V1->getFunction()))
return AliasResult::NoAlias;
#ifndef NDEBUG
if (!shouldRunBasicAA())
return AliasResult::MayAlias;
#endif
// Strip off any casts on V1, V2.
V1 = stripCasts(V1);
V2 = stripCasts(V2);
LLVM_DEBUG(llvm::dbgs() << " After Cast Stripping V1:" << *V1);
LLVM_DEBUG(llvm::dbgs() << " After Cast Stripping V2:" << *V2);
// Ok, we need to actually compute an Alias Analysis result for V1, V2. Begin
// by finding the "base" of V1, V2 by stripping off all casts and GEPs.
SILValue O1 = getUnderlyingObject(V1);
SILValue O2 = getUnderlyingObject(V2);
LLVM_DEBUG(llvm::dbgs() << " Underlying V1:" << *O1);
LLVM_DEBUG(llvm::dbgs() << " Underlying V2:" << *O2);
// If the underlying objects are not equal, see if we can prove that they
// cannot be the same object. If we can, return No Alias.
// For this we even look through init_enum_data_addr and init_existential_addr.
SILValue StrippedO1 = stripInitEnumAndExistentialAddr(O1);
SILValue StrippedO2 = stripInitEnumAndExistentialAddr(O2);
if (StrippedO1 != StrippedO2 && aliasUnequalObjects(StrippedO1, StrippedO2))
return AliasResult::NoAlias;
// Ok, either O1, O2 are the same or we could not prove anything based off of
// their inequality.
// Next: ask escape analysis. This catches cases where we compare e.g. a
// non-escaping pointer with another (maybe escaping) pointer. Escape analysis
// uses the connection graph to check if the pointers may point to the same
// content.
if (!canReferenceSameField(V1, V2)) {
LLVM_DEBUG(llvm::dbgs() << " Found not-aliased objects based on "
"escape analysis\n");
return AliasResult::NoAlias;
}
// Now we climb up use-def chains and attempt to do tricks based off of GEPs.
// First if one instruction is a gep and the other is not, canonicalize our
// inputs so that V1 always is the instruction containing the GEP.
if (!Projection::isAddressProjection(V1) &&
Projection::isAddressProjection(V2)) {
std::swap(V1, V2);
std::swap(O1, O2);
}
// If V1 is an address projection, attempt to use information from the
// aggregate type tree to disambiguate it from V2.
if (Projection::isAddressProjection(V1)) {
AliasResult Result = aliasAddressProjection(V1, V2, O1, O2);
if (Result != AliasResult::MayAlias)
return Result;
}
// We could not prove anything. Be conservative and return that V1, V2 may
// alias.
return AliasResult::MayAlias;
}
bool AliasAnalysis::canApplyDecrementRefCount(FullApplySite FAS, SILValue Ptr) {
// Treat applications of no-return functions as decrementing ref counts. This
// causes the apply to become a sink barrier for ref count increments.
if (FAS.isCalleeNoReturn())
return true;
/// If the pointer cannot escape to the function we are done.
bool result = isObjectReleasedByInst(Ptr, FAS.getInstruction());
return result;
}
bool AliasAnalysis::canBuiltinDecrementRefCount(BuiltinInst *BI, SILValue Ptr) {
return isObjectReleasedByInst(Ptr, BI);
}
namespace {
class AliasAnalysisContainer : public FunctionAnalysisBase<AliasAnalysis> {
SILPassManager *PM = nullptr;
public:
AliasAnalysisContainer() : FunctionAnalysisBase(SILAnalysisKind::Alias) {}
virtual bool shouldInvalidate(SILAnalysis::InvalidationKind K) override {
return K & InvalidationKind::Instructions;
}
virtual void invalidate(SILFunction *f,
SILAnalysis::InvalidationKind k) override {
if (k & InvalidationKind::Effects) {
FunctionAnalysisBase::invalidate();
} else {
FunctionAnalysisBase::invalidate(f, k);
}
}
// Computes loop information for the given function using dominance
// information.
virtual std::unique_ptr<AliasAnalysis>
newFunctionAnalysis(SILFunction *F) override {
assert(PM && "dependent analysis not initialized");
return std::make_unique<AliasAnalysis>(PM);
}
virtual void initialize(SILPassManager *PM) override {
this->PM = PM;
}
};
} // end anonymous namespace
SILAnalysis *swift::createAliasAnalysis(SILModule *M) {
return new AliasAnalysisContainer();
}
//===----------------------------------------------------------------------===//
// Swift Bridging
//===----------------------------------------------------------------------===//
void BridgedAliasAnalysis::registerAnalysis(GetMemEffectFn getMemEffectsFn,
Escaping2InstFn isObjReleasedFn,
Escaping2ValIntFn isAddrVisibleFromObjFn,
Escaping2ValFn canReferenceSameFieldFn) {
getMemEffectsFunction = getMemEffectsFn;
isObjReleasedFunction = isObjReleasedFn;
isAddrVisibleFromObjFunction = isAddrVisibleFromObjFn;
canReferenceSameFieldFunction = canReferenceSameFieldFn;
}
MemoryBehavior AliasAnalysis::getMemoryEffectOnEscapedAddress(
SILValue addr, SILInstruction *toInst) {
if (getMemEffectsFunction) {
return (MemoryBehavior)getMemEffectsFunction({PM->getSwiftPassInvocation()}, {addr},
{toInst->asSILNode()},
getComplexityBudget(addr));
}
return MemoryBehavior::MayHaveSideEffects;
}
bool AliasAnalysis::isObjectReleasedByInst(SILValue obj, SILInstruction *inst) {
if (isObjReleasedFunction) {
return isObjReleasedFunction({PM->getSwiftPassInvocation()}, {obj}, {inst->asSILNode()},
getComplexityBudget(obj)) != 0;
}
return true;
}
bool AliasAnalysis::isAddrVisibleFromObject(SILValue addr, SILValue obj) {
if (isAddrVisibleFromObjFunction) {
return isAddrVisibleFromObjFunction({PM->getSwiftPassInvocation()}, {addr}, {obj},
getComplexityBudget(addr)) != 0;
}
return true;
}
bool AliasAnalysis::canReferenceSameField(SILValue lhs, SILValue rhs) {
if (canReferenceSameFieldFunction) {
return canReferenceSameFieldFunction({PM->getSwiftPassInvocation()}, {lhs}, {rhs}) != 0;
}
return true;
}
// To avoid quadratic complexity for large functions, we limit the amount
// of work what the EscapeUtils are allowed to to.
// This keeps the complexity linear.
//
// This arbitrary limit is good enough for almost all functions. It lets
// the EscapeUtils do several hundred up/down walks which is much more than
// needed in most cases.
int AliasAnalysis::getComplexityBudget(SILValue valueInFunction) {
if (estimatedFunctionSize < 0) {
int numInsts = 0;
SILFunction *f = valueInFunction->getFunction();
for (SILBasicBlock &block : *f) {
numInsts += std::distance(block.begin(), block.end());
}
estimatedFunctionSize = numInsts;
}
return 1000000 / estimatedFunctionSize;
}
|