1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
|
//===--- ArraySemantic.cpp - Wrapper around array semantic calls. ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
/// Determine which kind of array semantics function this is.
ArrayCallKind swift::getArraySemanticsKind(SILFunction *f) {
ArrayCallKind Kind = ArrayCallKind::kNone;
for (auto &Attrs : f->getSemanticsAttrs()) {
auto Tmp =
llvm::StringSwitch<ArrayCallKind>(Attrs)
.Case("array.props.isNativeTypeChecked",
ArrayCallKind::kArrayPropsIsNativeTypeChecked)
.Case("array.init", ArrayCallKind::kArrayInit)
.Case("array.init.empty", ArrayCallKind::kArrayInitEmpty)
.Case("array.uninitialized", ArrayCallKind::kArrayUninitialized)
.Case("array.uninitialized_intrinsic", ArrayCallKind::kArrayUninitializedIntrinsic)
.Case("array.finalize_intrinsic", ArrayCallKind::kArrayFinalizeIntrinsic)
.Case("array.check_subscript", ArrayCallKind::kCheckSubscript)
.Case("array.check_index", ArrayCallKind::kCheckIndex)
.Case("array.get_count", ArrayCallKind::kGetCount)
.Case("array.get_capacity", ArrayCallKind::kGetCapacity)
.Case("array.get_element", ArrayCallKind::kGetElement)
.Case("array.make_mutable", ArrayCallKind::kMakeMutable)
.Case("array.end_mutation", ArrayCallKind::kEndMutation)
.Case("array.get_element_address",
ArrayCallKind::kGetElementAddress)
.Case("array.mutate_unknown", ArrayCallKind::kMutateUnknown)
.Case("array.reserve_capacity_for_append",
ArrayCallKind::kReserveCapacityForAppend)
.Case("array.withUnsafeMutableBufferPointer",
ArrayCallKind::kWithUnsafeMutableBufferPointer)
.Case("array.append_contentsOf", ArrayCallKind::kAppendContentsOf)
.Case("array.append_element", ArrayCallKind::kAppendElement)
.Case("array.copy_into_vector", ArrayCallKind::kCopyIntoVector)
.Default(ArrayCallKind::kNone);
if (Tmp != ArrayCallKind::kNone) {
assert(Kind == ArrayCallKind::kNone && "Multiple array semantic "
"strings?!");
Kind = Tmp;
}
}
return Kind;
}
static ParameterConvention
getSelfParameterConvention(ApplyInst *SemanticsCall) {
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
return FnTy->getSelfParameter().getConvention();
}
/// Make sure that all parameters are passed with a reference count
/// neutral parameter convention except for self.
bool swift::ArraySemanticsCall::isValidSignature() {
assert(SemanticsCall && getKind() != ArrayCallKind::kNone &&
"Need an array semantic call");
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
auto &Mod = F->getModule();
// Check whether we have a valid signature for semantic calls that we hoist.
switch (getKind()) {
// All other calls can be consider valid.
default: break;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked: {
// @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 1)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckIndex: {
// Int, @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 2 ||
!SemanticsCall->getArgument(0)->getType().isTrivial(*F))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckSubscript: {
// Int, Bool, Self
unsigned numArgs = SemanticsCall->getNumArguments();
if (numArgs != 2 && numArgs != 3)
return false;
if (!SemanticsCall->getArgument(0)->getType().isTrivial(*F))
return false;
if (numArgs == 3 && !SemanticsCall->getArgument(1)->getType().isTrivial(*F))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kMakeMutable: {
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
case ArrayCallKind::kArrayUninitialized: {
// Make sure that if we are a _adoptStorage call that our storage is
// uniquely referenced by us.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType()) {
auto *AllocBufferAI = dyn_cast<ApplyInst>(Arg0);
if (!AllocBufferAI)
return false;
auto *AllocFn = AllocBufferAI->getReferencedFunctionOrNull();
if (!AllocFn || AllocFn->getName() != "swift_bufferAllocate" ||
!hasOneNonDebugUse(AllocBufferAI))
return false;
}
return true;
}
case ArrayCallKind::kWithUnsafeMutableBufferPointer: {
SILFunctionConventions origConv(SemanticsCall->getOrigCalleeType(), Mod);
if (origConv.getNumIndirectSILResults() != 1
|| SemanticsCall->getNumArguments() != 3)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
}
return true;
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(SILValue V,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
if (auto AI = dyn_cast<ApplyInst>(V))
initialize(AI, semanticName, matchPartialName);
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(SILInstruction *I,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
if (auto AI = dyn_cast<ApplyInst>(I))
initialize(AI, semanticName, matchPartialName);
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(ApplyInst *AI,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
initialize(AI, semanticName, matchPartialName);
}
void ArraySemanticsCall::initialize(ApplyInst *AI, StringRef semanticName,
bool matchPartialName) {
auto *fn = AI->getReferencedFunctionOrNull();
if (!fn)
return;
if (!(matchPartialName
? fn->hasSemanticsAttrThatStartsWith(semanticName)
: fn->hasSemanticsAttr(semanticName)))
return;
SemanticsCall = AI;
// Need a 'self' argument otherwise this is not a semantic call that
// we recognize.
if (getKind() < ArrayCallKind::kArrayInit && !hasSelf())
SemanticsCall = nullptr;
// A arguments must be passed reference count neutral except for self.
if (SemanticsCall && !isValidSignature())
SemanticsCall = nullptr;
}
/// Determine which kind of array semantics call this is.
ArrayCallKind swift::ArraySemanticsCall::getKind() const {
if (!SemanticsCall)
return ArrayCallKind::kNone;
auto F = cast<FunctionRefInst>(SemanticsCall->getCallee())
->getReferencedFunction();
return getArraySemanticsKind(F);
}
bool swift::ArraySemanticsCall::hasSelf() const {
assert(SemanticsCall && "Must have a semantics call");
// Array.init and Array.uninitialized return 'self' @owned.
return SemanticsCall->getOrigCalleeType()->hasSelfParam();
}
SILValue swift::ArraySemanticsCall::getSelf() const {
return SemanticsCall->getSelfArgument();
}
Operand &swift::ArraySemanticsCall::getSelfOperand() const {
return SemanticsCall->getSelfArgumentOperand();
}
bool swift::ArraySemanticsCall::hasGuaranteedSelf() const {
if (!hasSelf())
return false;
return getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Guaranteed;
}
bool swift::ArraySemanticsCall::hasGetElementDirectResult() const {
assert(getKind() == ArrayCallKind::kGetElement &&
"must be an array.get_element call");
bool DirectResult =
(SemanticsCall->getOrigCalleeConv().getNumIndirectSILResults() == 0);
assert((DirectResult && SemanticsCall->getNumArguments() == 4 ||
!DirectResult && SemanticsCall->getNumArguments() == 5) &&
"wrong number of array.get_element call arguments");
return DirectResult;
}
SILValue swift::ArraySemanticsCall::getTypeCheckedArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 1 : 2);
}
SILValue swift::ArraySemanticsCall::getSubscriptCheckArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 2 : 3);
}
SILValue swift::ArraySemanticsCall::getIndex() const {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
assert(getKind() == ArrayCallKind::kCheckSubscript ||
getKind() == ArrayCallKind::kCheckIndex ||
getKind() == ArrayCallKind::kGetElement ||
getKind() == ArrayCallKind::kGetElementAddress);
if (getKind() == ArrayCallKind::kGetElement)
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 0 : 1);
return SemanticsCall->getArgument(0);
}
std::optional<int64_t> swift::ArraySemanticsCall::getConstantIndex() const {
auto *IndexStruct = dyn_cast<StructInst>(getIndex());
if (!IndexStruct)
return std::nullopt;
auto StructOpds = IndexStruct->getElements();
if (StructOpds.size() != 1)
return std::nullopt;
auto *Literal = dyn_cast<IntegerLiteralInst>(StructOpds[0]);
if (!Literal)
return std::nullopt;
auto Val = Literal->getValue();
if (Val.getNumWords()>1)
return std::nullopt;
return Val.getSExtValue();
}
static bool canHoistArrayArgument(ApplyInst *SemanticsCall, SILValue Arr,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
// We only know how to hoist inout, owned or guaranteed parameters.
auto Convention = getSelfParameterConvention(SemanticsCall);
if (Convention != ParameterConvention::Indirect_Inout &&
Convention != ParameterConvention::Direct_Owned &&
Convention != ParameterConvention::Direct_Guaranteed)
return false;
ValueBase *SelfVal = Arr;
auto *SelfBB = SelfVal->getParentBlock();
if (DT->dominates(SelfBB, InsertBefore->getParent()))
return true;
if (auto *Copy = dyn_cast<CopyValueInst>(SelfVal)) {
// look through one level
SelfVal = Copy->getOperand();
}
if (auto LI = dyn_cast<LoadInst>(SelfVal)) {
// Are we loading a value from an address in a struct defined at a point
// dominating the hoist point.
auto Val = LI->getOperand();
bool DoesNotDominate;
StructElementAddrInst *SEI;
while ((DoesNotDominate = !DT->dominates(Val->getParentBlock(),
InsertBefore->getParent())) &&
(SEI = dyn_cast<StructElementAddrInst>(Val)))
Val = SEI->getOperand();
return !DoesNotDominate;
}
return false;
}
bool swift::ArraySemanticsCall::canHoist(SILInstruction *InsertBefore,
DominanceInfo *DT) const {
auto Kind = getKind();
switch (Kind) {
default:
break;
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetElementAddress:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
case ArrayCallKind::kGetElement:
// Not implemented yet.
return false;
case ArrayCallKind::kCheckSubscript:
if (SILValue IsNativeArg = getArrayPropertyIsNativeTypeChecked()) {
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
if (!SI)
return false;
if (!isa<IntegerLiteralInst>(SI->getOperand(0)))
return false;
} else if (!IsNative.canHoist(InsertBefore, DT))
// Otherwise, we must be able to hoist the function call.
return false;
}
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
case ArrayCallKind::kMakeMutable:
case ArrayCallKind::kEndMutation:
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
} // End switch.
return false;
}
/// Copy the array self value to the insert point.
static SILValue copySelfValue(SILValue ArrayStructValue,
SILInstruction *InsertBefore, DominanceInfo *DT) {
auto *func = InsertBefore->getFunction();
if (DT->dominates(ArrayStructValue->getParentBlock(),
InsertBefore->getParent())) {
assert(!func->hasOwnership() ||
ArrayStructValue->getOwnershipKind() == OwnershipKind::Owned ||
ArrayStructValue->getOwnershipKind() == OwnershipKind::Guaranteed);
return ArrayStructValue;
}
assert(!func->hasOwnership() ||
ArrayStructValue->getOwnershipKind() == OwnershipKind::Owned);
SILValue Val;
if (auto *Load = dyn_cast<LoadInst>(ArrayStructValue)) {
Val = Load->getOperand();
} else {
auto *Copy = cast<CopyValueInst>(ArrayStructValue);
Val = cast<LoadInst>(Copy->getOperand())->getOperand();
}
auto *InsertPt = InsertBefore;
while (!DT->dominates(Val->getParentBlock(), InsertBefore->getParent())) {
auto *Inst = cast<StructElementAddrInst>(Val);
Inst->moveBefore(InsertPt);
Val = Inst->getOperand();
InsertPt = Inst;
}
if (!ArrayStructValue->getFunction()->hasOwnership()) {
return cast<LoadInst>(ArrayStructValue)->clone(InsertBefore);
}
if (auto *Load = dyn_cast<LoadInst>(ArrayStructValue)) {
return Load->clone(InsertBefore);
}
auto *Copy = cast<CopyValueInst>(ArrayStructValue);
auto Addr = cast<LoadInst>(Copy->getOperand())->getOperand();
return SILBuilderWithScope(InsertPt).createLoad(InsertPt->getLoc(), Addr,
LoadOwnershipQualifier::Copy);
}
static ApplyInst *hoistOrCopyCall(ApplyInst *AI, SILInstruction *InsertBefore,
bool LeaveOriginal, DominanceInfo *DT) {
if (!LeaveOriginal) {
AI->moveBefore(InsertBefore);
} else {
// Leave the original and 'hoist' a clone.
AI = cast<ApplyInst>(AI->clone(InsertBefore));
}
placeFuncRef(AI, DT);
return AI;
}
/// Hoist or copy the self argument of the semantics call.
/// Return the hoisted self argument.
static SILValue hoistOrCopySelf(ApplyInst *SemanticsCall,
SILInstruction *InsertBefore,
DominanceInfo *DT, bool LeaveOriginal) {
auto SelfConvention = getSelfParameterConvention(SemanticsCall);
assert((SelfConvention == ParameterConvention::Direct_Owned ||
SelfConvention == ParameterConvention::Direct_Guaranteed) &&
"Expect @owned or @guaranteed self");
auto Self = SemanticsCall->getSelfArgument();
bool IsOwnedSelf = SelfConvention == ParameterConvention::Direct_Owned;
auto *Func = SemanticsCall->getFunction();
// Emit matching release for owned self if we are moving the original call.
if (!LeaveOriginal && IsOwnedSelf) {
SILBuilderWithScope Builder(SemanticsCall);
Builder.emitDestroyValueOperation(SemanticsCall->getLoc(), Self);
}
auto NewArrayStructValue = copySelfValue(Self, InsertBefore, DT);
if (!Func->hasOwnership() && IsOwnedSelf) {
// Retain the array.
SILBuilderWithScope Builder(InsertBefore, SemanticsCall);
Builder.createRetainValue(SemanticsCall->getLoc(), NewArrayStructValue,
Builder.getDefaultAtomicity());
}
return NewArrayStructValue;
}
ApplyInst *swift::ArraySemanticsCall::hoistOrCopy(SILInstruction *InsertBefore,
DominanceInfo *DT,
bool LeaveOriginal) {
assert(canHoist(InsertBefore, DT) &&
"Must be able to hoist the semantics call");
auto Kind = getKind();
switch (Kind) {
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity: {
assert(SemanticsCall->getNumArguments() == 1 &&
"Expect 'self' parameter only");
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
auto *Call =
hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
return Call;
}
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
SILValue NewArrayProps;
if (SILValue IsNativeArg = getArrayPropertyIsNativeTypeChecked()) {
// Copy the array.props argument call.
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
assert(SI && isa<IntegerLiteralInst>(SI->getOperand(0)) &&
"Must have a constant parameter or an array.props.isNative call "
"as argument");
SI->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), SI->getParent())
->begin());
auto *IL = cast<IntegerLiteralInst>(SI->getOperand(0));
IL->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), IL->getParent())
->begin());
} else {
NewArrayProps = IsNative.copyTo(InsertBefore, DT);
}
// Replace all uses of the check subscript call by a use of the empty
// dependence. The check subscript call is no longer associated with
// another operation.
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
if (NewArrayProps) {
// Set the array.props argument.
Call->setArgument(1, NewArrayProps);
}
return Call;
}
case ArrayCallKind::kMakeMutable:
case ArrayCallKind::kEndMutation: {
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
return Call;
}
default:
llvm_unreachable("Don't know how to hoist this instruction");
break;
} // End switch.
}
void swift::ArraySemanticsCall::removeCall() {
if (getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Owned) {
SILBuilderWithScope Builder(SemanticsCall);
Builder.emitDestroyValueOperation(SemanticsCall->getLoc(), getSelf());
}
switch (getKind()) {
default: break;
case ArrayCallKind::kCheckSubscript:
if (!SemanticsCall->getType().isVoid()){
// Remove all uses with the empty tuple ().
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
break;
case ArrayCallKind::kGetElement: {
// Remove the matching isNativeTypeChecked and check_subscript call.
ArraySemanticsCall IsNative(getTypeCheckedArgument(),
"array.props.isNativeTypeChecked");
ArraySemanticsCall SubscriptCheck(getSubscriptCheckArgument(),
"array.check_subscript");
if (SubscriptCheck)
SubscriptCheck.removeCall();
// array.isNativeTypeChecked might be shared among several get_element
// calls. The last user should delete it.
if (IsNative && getSingleNonDebugUser((ApplyInst *)IsNative) ==
SemanticsCall) {
deleteAllDebugUses(IsNative);
(*IsNative).replaceAllUsesWithUndef();
IsNative.removeCall();
}
}
break;
}
SemanticsCall->eraseFromParent();
SemanticsCall = nullptr;
}
SILValue
swift::ArraySemanticsCall::getArrayPropertyIsNativeTypeChecked() const {
switch (getKind()) {
case ArrayCallKind::kCheckSubscript:
if (SemanticsCall->getNumArguments() == 3)
return SemanticsCall->getArgument(1);
return SILValue();
case ArrayCallKind::kGetElement:
return getTypeCheckedArgument();
default:
return SILValue();
}
}
bool swift::ArraySemanticsCall::doesNotChangeArray() const {
switch (getKind()) {
default: return false;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
case ArrayCallKind::kGetElement:
case ArrayCallKind::kEndMutation:
return true;
}
}
bool swift::ArraySemanticsCall::mayHaveBridgedObjectElementType() const {
assert(hasSelf() && "Need self parameter");
auto Ty = getSelf()->getType();
if (auto BGT = Ty.getAs<BoundGenericStructType>()) {
// Check the array element type parameter.
bool isClass = true;
for (auto EltTy : BGT->getGenericArgs()) {
if (EltTy->isBridgeableObjectType())
return true;
isClass = false;
}
return isClass;
}
return true;
}
bool swift::ArraySemanticsCall::canInlineEarly() const {
switch (getKind()) {
default:
return false;
case ArrayCallKind::kAppendContentsOf:
case ArrayCallKind::kReserveCapacityForAppend:
case ArrayCallKind::kAppendElement:
case ArrayCallKind::kArrayUninitializedIntrinsic:
// append(Element) calls other semantics functions. Therefore it's
// important that it's inlined by the early inliner (which is before all
// the array optimizations). Also, this semantics is only used to lookup
// Array.append(Element), so inlining it does not prevent any other
// optimization.
//
// Early inlining array.uninitialized_intrinsic semantic call helps in
// stack promotion.
return true;
}
}
SILValue swift::ArraySemanticsCall::getInitializationCount() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
// Can be either a call to _adoptStorage or _allocateUninitialized.
// A call to _adoptStorage has the buffer as AnyObject as the first
// argument. The count is the second argument.
// A call to _allocateUninitialized has the count as first argument.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType() ||
Arg0->getType().hasReferenceSemantics())
return SemanticsCall->getArgument(1);
else return SemanticsCall->getArgument(0);
}
if (getKind() == ArrayCallKind::kArrayInit &&
SemanticsCall->getNumArguments() == 3)
// Repeated-value array initializer. Arguments are the value to
// repeat, the count, and the value's type.
return SemanticsCall->getArgument(1);
return SILValue();
}
/// Given an array semantic call \c arrayCall, if it is an "array.uninitialized"
/// initializer, which returns a two-element tuple, return the element of the
/// tuple at \c tupleElementIndex. Return a null SILValue if the
/// array call is not an "array.uninitialized" initializer or if the extraction
/// of the result tuple fails.
static SILValue getArrayUninitializedInitResult(ArraySemanticsCall arrayCall,
unsigned tupleElementIndex) {
assert(tupleElementIndex <= 1 && "tupleElementIndex must be 0 or 1");
ArrayCallKind arrayCallKind = arrayCall.getKind();
if (arrayCallKind != ArrayCallKind::kArrayUninitialized &&
arrayCallKind != ArrayCallKind::kArrayUninitializedIntrinsic)
return SILValue();
// In OSSA, the call result will be extracted through a destructure_tuple
// instruction.
ApplyInst *callInst = arrayCall;
if (callInst->getFunction()->hasOwnership()) {
Operand *singleUse = callInst->getSingleUse();
if (!singleUse)
return SILValue();
if (DestructureTupleInst *destructTuple =
dyn_cast<DestructureTupleInst>(singleUse->getUser())) {
return destructTuple->getResult(tupleElementIndex);
}
return SILValue();
}
// In non-OSSA, look for a tuple_extract instruction of the call result with
// the requested tupleElementIndex.
TupleExtractInst *tupleExtractInst = nullptr;
for (auto *op : callInst->getUses()) {
auto *tupleElt = dyn_cast<TupleExtractInst>(op->getUser());
if (!tupleElt)
return SILValue();
if (tupleElt->getFieldIndex() != tupleElementIndex)
continue;
tupleExtractInst = tupleElt;
break;
}
return SILValue(tupleExtractInst);
}
SILValue swift::ArraySemanticsCall::getArrayValue() const {
ArrayCallKind arrayCallKind = getKind();
if (arrayCallKind == ArrayCallKind::kArrayInit
|| arrayCallKind == ArrayCallKind::kArrayInitEmpty) {
return SILValue(SemanticsCall);
}
return getArrayUninitializedInitResult(*this, 0);
}
SILValue swift::ArraySemanticsCall::getArrayElementStoragePointer() const {
return getArrayUninitializedInitResult(*this, 1);
}
bool swift::ArraySemanticsCall::replaceByValue(SILValue V) {
assert(getKind() == ArrayCallKind::kGetElement &&
"Must be a get_element call");
// We only handle loadable types.
if (!V->getType().isLoadable(*SemanticsCall->getFunction()))
return false;
if (!hasGetElementDirectResult())
return false;
// Expect a check_subscript call or the empty dependence.
auto SubscriptCheck = getSubscriptCheckArgument();
ArraySemanticsCall Check(SubscriptCheck, "array.check_subscript");
auto *EmptyDep = dyn_cast<StructInst>(SubscriptCheck);
if (!Check && (!EmptyDep || !EmptyDep->getElements().empty()))
return false;
// In OSSA, the InsertPt is after V's definition and not before SemanticsCall
// Because we are creating copy_value in ossa, and the source may have been
// taken previously. So our insert point for copy_value is immediately after
// V, where we can be sure it is live.
auto InsertPt = V->getFunction()->hasOwnership()
? getInsertAfterPoint(V)
: SemanticsCall->getIterator();
assert(InsertPt.has_value());
SILValue CopiedVal = SILBuilderWithScope(InsertPt.value())
.emitCopyValueOperation(SemanticsCall->getLoc(), V);
SemanticsCall->replaceAllUsesWith(CopiedVal);
removeCall();
return true;
}
bool swift::ArraySemanticsCall::replaceByAppendingValues(
SILFunction *AppendFn, SILFunction *ReserveFn,
const SmallVectorImpl<SILValue> &Vals, SubstitutionMap Subs) {
assert(getKind() == ArrayCallKind::kAppendContentsOf &&
"Must be an append_contentsOf call");
assert(AppendFn && "Must provide an append SILFunction");
auto *F = SemanticsCall->getFunction();
// We only handle loadable types.
if (any_of(Vals, [F](SILValue V) -> bool {
return !V->getType().isLoadable(*F);
}))
return false;
CanSILFunctionType AppendFnTy = AppendFn->getLoweredFunctionType();
SILValue ArrRef = SemanticsCall->getArgument(1);
SILBuilderWithScope Builder(SemanticsCall);
auto Loc = SemanticsCall->getLoc();
auto *FnRef = Builder.createFunctionRefFor(Loc, AppendFn);
if (Vals.size() > 1) {
// Create a call to reserveCapacityForAppend() to reserve space for multiple
// elements.
FunctionRefBaseInst *ReserveFnRef =
Builder.createFunctionRefFor(Loc, ReserveFn);
SILFunctionType *ReserveFnTy =
ReserveFnRef->getType().castTo<SILFunctionType>();
assert(ReserveFnTy->getNumParameters() == 2);
StructType *IntType =
ReserveFnTy->getParameters()[0]
.getArgumentType(F->getModule(), ReserveFnTy,
Builder.getTypeExpansionContext())
->castTo<StructType>();
StructDecl *IntDecl = IntType->getDecl();
VarDecl *field = IntDecl->getStoredProperties()[0];
SILType BuiltinIntTy =SILType::getPrimitiveObjectType(
field->getInterfaceType()->getCanonicalType());
IntegerLiteralInst *CapacityLiteral =
Builder.createIntegerLiteral(Loc, BuiltinIntTy, Vals.size());
StructInst *Capacity = Builder.createStruct(Loc,
SILType::getPrimitiveObjectType(CanType(IntType)), {CapacityLiteral});
Builder.createApply(Loc, ReserveFnRef, Subs, {Capacity, ArrRef});
}
for (SILValue V : Vals) {
auto SubTy = V->getType();
auto &ValLowering = Builder.getTypeLowering(SubTy);
// In OSSA, the InsertPt is after V's definition and not before
// SemanticsCall. Because we are creating copy_value in ossa, and the source
// may have been taken previously. So our insert point for copy_value is
// immediately after V, where we can be sure it is live.
auto InsertPt = F->hasOwnership() ? getInsertAfterPoint(V)
: SemanticsCall->getIterator();
assert(InsertPt.has_value());
SILValue CopiedVal = SILBuilderWithScope(InsertPt.value())
.emitCopyValueOperation(V.getLoc(), V);
auto *AllocStackInst = Builder.createAllocStack(Loc, SubTy);
ValLowering.emitStoreOfCopy(Builder, Loc, CopiedVal, AllocStackInst,
IsInitialization_t::IsInitialization);
SILValue Args[] = {AllocStackInst, ArrRef};
Builder.createApply(Loc, FnRef, Subs, Args);
Builder.createDeallocStack(Loc, AllocStackInst);
if (!isConsumedParameter(AppendFnTy->getParameters()[0].getConvention())) {
ValLowering.emitDestroyValue(Builder, Loc, CopiedVal);
}
}
CanSILFunctionType AppendContentsOfFnTy =
SemanticsCall->getReferencedFunctionOrNull()->getLoweredFunctionType();
if (AppendContentsOfFnTy->getParameters()[0].getConvention() ==
ParameterConvention::Direct_Owned) {
SILValue SrcArray = SemanticsCall->getArgument(0);
Builder.emitDestroyValueOperation(SemanticsCall->getLoc(), SrcArray);
}
removeCall();
return true;
}
bool swift::ArraySemanticsCall::mapInitializationStores(
llvm::DenseMap<uint64_t, StoreInst *> &ElementValueMap) {
if (getKind() != ArrayCallKind::kArrayUninitialized &&
getKind() != ArrayCallKind::kArrayUninitializedIntrinsic)
return false;
SILValue ElementBuffer = getArrayElementStoragePointer();
if (!ElementBuffer)
return false;
// Match initialization stores into ElementBuffer. E.g.
// %82 = struct_extract %element_buffer : $UnsafeMutablePointer<Int>
// %83 = mark_dependence %82 : $Builtin.RawPointer on ArrayVal
// %84 = pointer_to_address %83 : $Builtin.RawPointer to strict $*Int
// store %85 to %84 : $*Int
// %87 = integer_literal $Builtin.Word, 1
// %88 = index_addr %84 : $*Int, %87 : $Builtin.Word
// store %some_value to %88 : $*Int
// If this an ArrayUninitializedIntrinsic then the ElementBuffer is a
// builtin.RawPointer. Otherwise, it is an UnsafeMutablePointer, which would
// be struct-extracted to obtain a builtin.RawPointer. In this case
// mark_dependence can be an operand of the struct_extract or its user.
SILValue UnsafeMutablePointerExtract;
if (getKind() == ArrayCallKind::kArrayUninitializedIntrinsic) {
UnsafeMutablePointerExtract = dyn_cast_or_null<MarkDependenceInst>(
getSingleNonDebugUser(ElementBuffer));
} else {
auto user = getSingleNonDebugUser(ElementBuffer);
// Match mark_dependence (struct_extract or
// struct_extract (mark_dependence
if (auto *MDI = dyn_cast_or_null<MarkDependenceInst>(user)) {
UnsafeMutablePointerExtract =
dyn_cast_or_null<StructExtractInst>(getSingleNonDebugUser(MDI));
} else {
if (auto *SEI = dyn_cast_or_null<StructExtractInst>(user)) {
UnsafeMutablePointerExtract =
dyn_cast_or_null<MarkDependenceInst>(getSingleNonDebugUser(SEI));
}
}
}
if (!UnsafeMutablePointerExtract)
return false;
auto *PointerToAddress = dyn_cast_or_null<PointerToAddressInst>(
getSingleNonDebugUser(UnsafeMutablePointerExtract));
if (!PointerToAddress)
return false;
// Match the stores. We can have either a store directly to the address or
// to an index_addr projection.
for (auto *Op : PointerToAddress->getUses()) {
auto *Inst = Op->getUser();
// Store to the base.
auto *SI = dyn_cast<StoreInst>(Inst);
if (SI && SI->getDest() == PointerToAddress) {
// We have already seen an entry for this index bail.
if (ElementValueMap.count(0))
return false;
ElementValueMap[0] = SI;
continue;
} else if (SI)
return false;
// Store to an index_addr projection.
auto *IndexAddr = dyn_cast<IndexAddrInst>(Inst);
if (!IndexAddr)
return false;
SI = dyn_cast_or_null<StoreInst>(getSingleNonDebugUser(IndexAddr));
if (!SI || SI->getDest() != IndexAddr)
return false;
auto *Index = dyn_cast<IntegerLiteralInst>(IndexAddr->getIndex());
if (!Index)
return false;
auto IndexVal = Index->getValue();
// Let's not blow up our map.
if (IndexVal.getActiveBits() > 16)
return false;
// Already saw an entry.
if (ElementValueMap.count(IndexVal.getZExtValue()))
return false;
ElementValueMap[IndexVal.getZExtValue()] = SI;
}
return !ElementValueMap.empty();
}
|