1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
//===--- EpilogueARCAnalysis.cpp ------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Analysis/EpilogueARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SIL/SILInstruction.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Epilogue ARC Utilities
//===----------------------------------------------------------------------===//
void EpilogueARCContext::initializeDataflow() {
for (auto *BB : PO->getPostOrder()) {
// Find the exit blocks.
if (isInterestedFunctionExitingBlock(BB)) {
ExitBlocks.insert(BB);
}
// Allocate state for this block.
IndexToStateMap.emplace_back();
}
// Split the SILArgument into local arguments to each specific basic block.
llvm::SmallVector<SILValue, 4> ToProcess;
llvm::DenseSet<SILValue> Processed;
ToProcess.push_back(Arg);
while (!ToProcess.empty()) {
SILValue CArg = ToProcess.pop_back_val();
if (!CArg)
continue;
if (Processed.contains(CArg))
continue;
Processed.insert(CArg);
if (auto *A = dyn_cast<SILPhiArgument>(CArg)) {
// Find predecessor and break the SILArgument to predecessors.
for (auto *X : A->getParent()->getPredecessorBlocks()) {
// Try to find the predecessor edge-value.
SILValue IA = A->getIncomingPhiValue(X);
auto state = getState(X);
if (state.has_value())
state.value()->LocalArg = IA;
// Maybe the edge value is another SILArgument.
ToProcess.push_back(IA);
}
}
}
}
bool EpilogueARCContext::convergeDataflow() {
// Keep iterating until Changed is false.
bool Changed = false;
do {
Changed = false;
// Iterate until the data flow converges.
for (SILBasicBlock *B : PO->getPostOrder()) {
// Since the basic block is in PO, it is reachable and will always have a
// state
auto *BS = getState(B).value();
// Merge in all the successors.
bool BBSetOut = false;
if (!B->succ_empty()) {
auto Iter = B->succ_begin();
// Since the basic block is reachable, its successors are reachable, and
// will always have a state.
BBSetOut = getState(*Iter).value()->BBSetIn;
Iter = std::next(Iter);
for (auto E = B->succ_end(); Iter != E; ++Iter) {
BBSetOut &= getState(*Iter).value()->BBSetIn;
}
} else if (isExitBlock(B)) {
// We set the BBSetOut for exit blocks.
BBSetOut = true;
}
// If an epilogue ARC instruction or blocking operating has been identified
// then there is no point visiting every instruction in this block.
if (BBSetOut) {
// Iterate over all instructions in the basic block and find the
// interested ARC instruction in the block.
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
// This is a transition from 1 to 0 due to an interested instruction.
if (isInterestedInstruction(&*I)) {
BBSetOut = false;
break;
}
// This is a transition from 1 to 0 due to a blocking instruction.
// at this point, its OK to abort the data flow as we have one path
// which we did not find an epilogue retain before getting blocked.
if (mayBlockEpilogueARC(&*I, RCFI->getRCIdentityRoot(Arg))) {
return false;
}
}
}
// Update BBSetIn.
Changed |= (BS->BBSetIn != BBSetOut);
BS->BBSetIn = BBSetOut;
}
} while (Changed);
return true;
}
bool EpilogueARCContext::computeEpilogueARC() {
// At this point the data flow should have converged. Find the epilogue
// releases.
for (SILBasicBlock *B : PO->getPostOrder()) {
bool BBSetOut = false;
// Merge in all the successors.
if (!B->succ_empty()) {
// Make sure we've either found no ARC instructions in all the successors
// or we've found ARC instructions in all successors.
//
// In case we've found ARC instructions in some and not all successors,
// that means from this point to the end of the function, some paths will
// not have an epilogue ARC instruction, which means the data flow has
// failed.
auto Iter = B->succ_begin();
// Since basic block B is in PO, its successors will be reachable and will
// always have a state
auto Base = getState(*Iter).value()->BBSetIn;
Iter = std::next(Iter);
for (auto E = B->succ_end(); Iter != E; ++Iter) {
if (getState(*Iter).value()->BBSetIn != Base)
return false;
}
BBSetOut = Base;
} else if (isExitBlock(B)) {
// We set the BBSetOut for exit blocks.
BBSetOut = true;
}
// If an epilogue ARC instruction or blocking operating has been identified
// then there is no point visiting every instruction in this block.
if (!BBSetOut) {
continue;
}
// An epilogue ARC instruction has not been identified, maybe its in this block.
//
// Iterate over all instructions in the basic block and find the interested ARC
// instruction in the block.
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
// This is a transition from 1 to 0 due to an interested instruction.
if (isInterestedInstruction(&*I)) {
EpilogueARCInsts.insert(&*I);
break;
}
// This is a transition from 1 to 0 due to a blocking instruction.
if (mayBlockEpilogueARC(&*I, RCFI->getRCIdentityRoot(Arg))) {
break;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
void EpilogueARCAnalysis::initialize(SILPassManager *PM) {
passManager = PM;
PO = PM->getAnalysis<PostOrderAnalysis>();
RC = PM->getAnalysis<RCIdentityAnalysis>();
}
std::unique_ptr<EpilogueARCFunctionInfo>
EpilogueARCAnalysis::newFunctionAnalysis(SILFunction *F) {
return std::make_unique<EpilogueARCFunctionInfo>(F, PO, passManager, RC);
}
SILAnalysis *swift::createEpilogueARCAnalysis(SILModule *M) {
return new EpilogueARCAnalysis(M);
}
|