1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
//===--- MemoryBehavior.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-membehavior"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "llvm/Support/Debug.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Memory Behavior Implementation
//===----------------------------------------------------------------------===//
namespace {
using MemBehavior = MemoryBehavior;
/// Visitor that determines the memory behavior of an instruction relative to a
/// specific SILValue (i.e. can the instruction cause the value to be read,
/// etc.).
///
/// TODO: Clarify what it means to return a MayHaveSideEffects result. Does this
/// mean that the instruction may release objects referenced by value 'V'?
/// Deallocate the an address contained in 'V'? Are any other code motion
/// barriers relevant here?
class MemoryBehaviorVisitor
: public SILInstructionVisitor<MemoryBehaviorVisitor, MemBehavior> {
AliasAnalysis *AA;
/// The value we are attempting to discover memory behavior relative to.
SILValue V;
/// Cache either the address of the access corresponding to memory at 'V', or
/// 'V' itself if it isn't recognized as part of an access. The cached value
/// is always a valid SILValue.
SILValue cachedValueAddress;
std::optional<bool> cachedIsLetValue;
/// The SILType of the value.
std::optional<SILType> TypedAccessTy;
public:
MemoryBehaviorVisitor(AliasAnalysis *AA, SILValue V)
: AA(AA), V(V) {}
SILType getValueTBAAType() {
if (!TypedAccessTy)
TypedAccessTy = computeTBAAType(V);
return *TypedAccessTy;
}
/// If 'V' is an address projection within a formal access, return the
/// canonical address of the formal access if possible without looking past
/// any storage casts. Otherwise, a "best-effort" address
///
/// If 'V' is an address, then the returned value is also an address.
SILValue getValueAddress() {
if (!cachedValueAddress) {
cachedValueAddress =
V->getType().isAddress() ? getTypedAccessAddress(V) : V;
}
return cachedValueAddress;
}
/// Return true if 'V's accessed address is that of a let variables.
bool isLetValue() {
if (!cachedIsLetValue) {
cachedIsLetValue =
V->getType().isAddress() && isLetAddress(getValueAddress());
}
return cachedIsLetValue.value();
}
// Return true is the given address (or pointer) may alias with 'V'.
bool mayAlias(SILValue opAddress) {
if (AA->isNoAlias(opAddress, V, computeTBAAType(opAddress),
getValueTBAAType())) {
LLVM_DEBUG(llvm::dbgs()
<< "No alias: access " << opAddress << " value " << V);
return false;
}
LLVM_DEBUG(llvm::dbgs()
<< "May alias: access " << opAddress << " value " << V);
return true;
}
MemBehavior visitValueBase(ValueBase *V) {
llvm_unreachable("unimplemented");
}
MemBehavior visitSILInstruction(SILInstruction *Inst) {
// If we do not have any more information, just use the general memory
// behavior implementation.
auto Behavior = Inst->getMemoryBehavior();
// If this is a regular read-write access then return the computed memory
// behavior.
if (!isLetValue())
return Behavior;
// If this is a read-only access to 'let variable'. Other side effects, such
// as releases of the object containing a 'let' property are still relevant.
switch (Behavior) {
case MemBehavior::MayReadWrite: return MemBehavior::MayRead;
case MemBehavior::MayWrite: return MemBehavior::None;
default: return Behavior;
}
}
MemBehavior visitBeginAccessInst(BeginAccessInst *beginAccess) {
if (!mayAlias(beginAccess->getSource()))
return MemBehavior::None;
// begin_access does not physically read or write memory. But we model it
// as a memory read and/or write to prevent optimizations to move other
// aliased loads/stores across begin_access into the access scope.
switch (beginAccess->getAccessKind()) {
case SILAccessKind::Deinit:
// For the same reason we treat a ``load [take]`` or a ``destroy_addr``
// as a memory write, we do that for a ``begin_access [deinit]`` as well.
// See MemoryBehavior.
return MemBehavior::MayReadWrite;
case SILAccessKind::Read:
return MemBehavior::MayRead;
case SILAccessKind::Modify:
if (isLetValue()) {
assert(getAccessBase(beginAccess) != getValueAddress()
&& "let modification not allowed");
return MemBehavior::None;
}
return MemBehavior::MayReadWrite;
case SILAccessKind::Init:
return MemBehavior::MayWrite;
}
llvm_unreachable("invalid access kind");
}
MemBehavior visitEndAccessInst(EndAccessInst *endAccess) {
// end_access does not physically read or write memory. But, similar to
// begin_access, we model it as a memory read and/or write to prevent
// optimizations to move other aliased loads/stores across end_access into
// the access scope.
return visitBeginAccessInst(endAccess->getBeginAccess());
}
MemBehavior visitLoadInst(LoadInst *LI);
MemBehavior visitStoreInst(StoreInst *SI);
MemBehavior visitCopyAddrInst(CopyAddrInst *CAI);
MemBehavior visitMarkUnresolvedMoveAddrInst(MarkUnresolvedMoveAddrInst *MAI);
MemBehavior visitApplyInst(ApplyInst *AI);
MemBehavior visitTryApplyInst(TryApplyInst *AI);
MemBehavior visitBeginApplyInst(BeginApplyInst *AI);
MemBehavior visitEndApplyInst(EndApplyInst *EAI);
MemBehavior visitAbortApplyInst(AbortApplyInst *AAI);
MemBehavior visitBuiltinInst(BuiltinInst *BI);
MemBehavior visitStrongReleaseInst(StrongReleaseInst *BI);
MemBehavior visitReleaseValueInst(ReleaseValueInst *BI);
MemBehavior visitDestroyValueInst(DestroyValueInst *DVI);
MemBehavior visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI);
MemBehavior visitDebugValueInst(DebugValueInst *dv);
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
MemBehavior visit##Name##ReleaseInst(Name##ReleaseInst *BI);
#include "swift/AST/ReferenceStorage.def"
// Instructions which are none if our SILValue does not alias one of its
// arguments. If we cannot prove such a thing, return the relevant memory
// behavior.
#define OPERANDALIAS_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
for (Operand & Op : I->getAllOperands()) { \
if (mayAlias(Op.get())) \
return I->getMemoryBehavior(); \
} \
return MemBehavior::None; \
}
OPERANDALIAS_MEMBEHAVIOR_INST(InjectEnumAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(UncheckedTakeEnumDataAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(InitExistentialAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeinitExistentialAddrInst)
OPERANDALIAS_MEMBEHAVIOR_INST(DeallocStackInst)
OPERANDALIAS_MEMBEHAVIOR_INST(FixLifetimeInst)
OPERANDALIAS_MEMBEHAVIOR_INST(ClassifyBridgeObjectInst)
OPERANDALIAS_MEMBEHAVIOR_INST(ValueToBridgeObjectInst)
#undef OPERANDALIAS_MEMBEHAVIOR_INST
// Override simple behaviors where MayHaveSideEffects is too general and
// encompasses other behavior that is not read/write/ref count decrement
// behavior we care about.
#define SIMPLE_MEMBEHAVIOR_INST(Name, Behavior) \
MemBehavior visit##Name(Name *I) { return MemBehavior::Behavior; }
SIMPLE_MEMBEHAVIOR_INST(CondFailInst, None)
#undef SIMPLE_MEMBEHAVIOR_INST
// Incrementing reference counts doesn't have an observable memory effect.
#define REFCOUNTINC_MEMBEHAVIOR_INST(Name) \
MemBehavior visit##Name(Name *I) { \
return MemBehavior::None; \
}
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetainInst)
REFCOUNTINC_MEMBEHAVIOR_INST(RetainValueInst)
REFCOUNTINC_MEMBEHAVIOR_INST(CopyValueInst)
#define UNCHECKED_REF_STORAGE(Name, ...) \
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainValueInst) \
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
REFCOUNTINC_MEMBEHAVIOR_INST(Name##RetainInst) \
REFCOUNTINC_MEMBEHAVIOR_INST(StrongRetain##Name##Inst) \
REFCOUNTINC_MEMBEHAVIOR_INST(StrongCopy##Name##ValueInst)
#include "swift/AST/ReferenceStorage.def"
#undef REFCOUNTINC_MEMBEHAVIOR_INST
};
} // end anonymous namespace
MemBehavior MemoryBehaviorVisitor::visitLoadInst(LoadInst *LI) {
if (!mayAlias(LI->getOperand()))
return MemBehavior::None;
LLVM_DEBUG(llvm::dbgs() << " Could not prove that load inst does not alias "
"pointer. ");
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
LLVM_DEBUG(llvm::dbgs() << "Is a take so return MayReadWrite.\n");
return MemBehavior::MayReadWrite;
}
LLVM_DEBUG(llvm::dbgs() << "Not a take so returning MayRead.\n");
return MemBehavior::MayRead;
}
MemBehavior MemoryBehaviorVisitor::visitStoreInst(StoreInst *SI) {
// No store besides the initialization of a "let"-variable
// can have any effect on the value of this "let" variable.
if (isLetValue() && (getAccessBase(SI->getDest()) != getValueAddress())) {
return MemBehavior::None;
}
// If the store dest cannot alias the pointer in question and we are not
// releasing anything due to an assign, then the specified value cannot be
// modified by the store.
if (!mayAlias(SI->getDest())) {
if (SI->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
// Consider side effects of the destructor
return AA->getMemoryEffectOnEscapedAddress(V, SI);
}
return MemBehavior::None;
}
// Otherwise, a store just writes.
LLVM_DEBUG(llvm::dbgs() << " Could not prove store does not alias inst. "
"Returning default mem behavior.\n");
return SI->getMemoryBehavior();
}
MemBehavior MemoryBehaviorVisitor::visitCopyAddrInst(CopyAddrInst *CAI) {
// If it's an assign to the destination, a destructor might be called on the
// old value. This can have any side effects.
// We could also check if it's a trivial type (which cannot have any side
// effect on destruction), but such copy_addr instructions are optimized to
// load/stores anyway, so it's probably not worth it.
if (!CAI->isInitializationOfDest())
return MemBehavior::MayHaveSideEffects;
bool mayWrite = mayAlias(CAI->getDest());
bool mayRead = mayAlias(CAI->getSrc());
if (mayRead) {
if (mayWrite)
return MemBehavior::MayReadWrite;
// A take is modelled as a write. See MemoryBehavior::MayWrite.
if (CAI->isTakeOfSrc())
return MemBehavior::MayReadWrite;
return MemBehavior::MayRead;
}
if (mayWrite)
return MemBehavior::MayWrite;
return MemBehavior::None;
}
MemBehavior MemoryBehaviorVisitor::visitMarkUnresolvedMoveAddrInst(
MarkUnresolvedMoveAddrInst *MAI) {
bool mayWrite = mayAlias(MAI->getDest());
bool mayRead = mayAlias(MAI->getSrc());
if (mayRead) {
if (mayWrite)
return MemBehavior::MayReadWrite;
// mark_unresolved_move_addr doesn't semantically perform a take of src.
return MemBehavior::MayRead;
}
if (mayWrite)
return MemBehavior::MayWrite;
return MemBehavior::None;
}
MemBehavior MemoryBehaviorVisitor::visitBuiltinInst(BuiltinInst *BI) {
MemBehavior mb = BI->getMemoryBehavior();
if (mb != MemBehavior::None) {
return AA->getMemoryEffectOnEscapedAddress(V, BI);
}
return MemBehavior::None;
}
MemBehavior MemoryBehaviorVisitor::visitTryApplyInst(TryApplyInst *AI) {
return AA->getMemoryEffectOnEscapedAddress(V, AI);
}
MemBehavior MemoryBehaviorVisitor::visitApplyInst(ApplyInst *AI) {
return AA->getMemoryEffectOnEscapedAddress(V, AI);
}
MemBehavior MemoryBehaviorVisitor::visitBeginApplyInst(BeginApplyInst *AI) {
return AA->getMemoryEffectOnEscapedAddress(V, AI);
}
MemBehavior MemoryBehaviorVisitor::visitEndApplyInst(EndApplyInst *EAI) {
return AA->getMemoryEffectOnEscapedAddress(V, EAI->getBeginApply());
}
MemBehavior MemoryBehaviorVisitor::visitAbortApplyInst(AbortApplyInst *AAI) {
return AA->getMemoryEffectOnEscapedAddress(V, AAI->getBeginApply());
}
MemBehavior
MemoryBehaviorVisitor::visitStrongReleaseInst(StrongReleaseInst *SI) {
return AA->getMemoryEffectOnEscapedAddress(V, SI);
}
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
MemBehavior \
MemoryBehaviorVisitor::visit##Name##ReleaseInst(Name##ReleaseInst *SI) { \
return AA->getMemoryEffectOnEscapedAddress(V, SI); \
}
#include "swift/AST/ReferenceStorage.def"
MemBehavior MemoryBehaviorVisitor::visitReleaseValueInst(ReleaseValueInst *SI) {
return AA->getMemoryEffectOnEscapedAddress(V, SI);
}
MemBehavior
MemoryBehaviorVisitor::visitDestroyValueInst(DestroyValueInst *DVI) {
return AA->getMemoryEffectOnEscapedAddress(V, DVI);
}
MemBehavior MemoryBehaviorVisitor::
visitBeginCOWMutationInst(BeginCOWMutationInst *BCMI) {
// begin_cow_mutation is defined to have side effects, because it has
// dependencies with instructions which retain the buffer operand.
// But it never interferes with any memory address.
return MemBehavior::None;
}
MemBehavior MemoryBehaviorVisitor::
visitDebugValueInst(DebugValueInst *dv) {
SILValue op = dv->getOperand();
if (op->getType().isAddress() && mayAlias(op)) {
return MemBehavior::MayRead;
}
return MemBehavior::None;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
MemBehavior
AliasAnalysis::computeMemoryBehavior(SILInstruction *Inst, SILValue V) {
MemBehaviorCacheKey Key = {V, Inst};
// Check if we've already computed this result.
auto It = MemoryBehaviorCache.find(Key);
if (It != MemoryBehaviorCache.end()) {
return It->second;
}
// Calculate the aliasing result and store it in the cache.
auto Result = computeMemoryBehaviorInner(Inst, V);
MemoryBehaviorCache[Key] = Result;
return Result;
}
/// If \p V is an address of an immutable memory, return the begin of the
/// scope where the memory can be considered to be immutable.
///
/// This is either a ``begin_access [read]`` in case V is the result of the
/// begin_access or a projection of it.
/// Or it is the begin of a borrow scope (begin_borrow, load_borrow, a
/// guaranteed function argument) of an immutable copy-on-write buffer.
/// For example:
/// %b = begin_borrow %array_buffer
/// %V = ref_element_addr [immutable] %b : $BufferType, #BufferType.someField
///
static SILValue getBeginScopeInst(SILValue V) {
SILValue accessScope = getAccessScope(V);
if (auto *access = dyn_cast<BeginAccessInst>(accessScope)) {
if (access->getAccessKind() == SILAccessKind::Read &&
access->getEnforcement() != SILAccessEnforcement::Unsafe)
return access;
return SILValue();
}
SILValue accessBase = getAccessBase(V);
SILValue object;
if (auto *elementAddr = dyn_cast<RefElementAddrInst>(accessBase)) {
if (!elementAddr->isImmutable())
return SILValue();
object = elementAddr->getOperand();
} else if (auto *tailAddr = dyn_cast<RefTailAddrInst>(accessBase)) {
if (!tailAddr->isImmutable())
return SILValue();
object = tailAddr->getOperand();
} else {
return SILValue();
}
if (BorrowedValue borrowedObj = getSingleBorrowIntroducingValue(object)) {
return borrowedObj.value;
}
if (!object->getFunction()->hasOwnership()) {
// In non-OSSA, do a quick check if the object is a guaranteed function
// argument.
// Note that in OSSA, getSingleBorrowIntroducingValue will detect a
// guaranteed argument.
SILValue root = findOwnershipReferenceAggregate(object);
if (auto *funcArg = dyn_cast<SILFunctionArgument>(root)) {
if (funcArg->getArgumentConvention().isGuaranteedConvention())
return funcArg;
}
}
return SILValue();
}
/// Collect all instructions which are inside an immutable scope.
///
/// The \p beginScopeInst is either a ``begin_access [read]`` or the begin of a
/// borrow scope (begin_borrow, load_borrow) of an immutable copy-on-write
/// buffer.
void AliasAnalysis::computeImmutableScope(SingleValueInstruction *beginScopeInst) {
BasicBlockSet visitedBlocks(beginScopeInst->getFunction());
llvm::SmallVector<std::pair<SILInstruction *, SILBasicBlock *>, 16> workList;
auto addEndScopeInst = [&](SILInstruction *endScope) {
workList.push_back({endScope, endScope->getParent()});
bool isNew = visitedBlocks.insert(endScope->getParent());
(void)isNew;
assert(isNew);
};
// First step: add all scope-ending instructions to the worklist.
if (auto *beginAccess = dyn_cast<BeginAccessInst>(beginScopeInst)) {
for (EndAccessInst *endAccess : beginAccess->getEndAccesses()) {
addEndScopeInst(endAccess);
}
} else {
visitTransitiveEndBorrows(beginScopeInst, addEndScopeInst);
}
// Second step: walk up the control flow until the beginScopeInst and add
// all (potentially) memory writing instructions to instsInImmutableScopes.
while (!workList.empty()) {
auto instAndBlock = workList.pop_back_val();
SILBasicBlock *block = instAndBlock.second;
// If the worklist entry doesn't have an instruction, start at the end of
// the block.
auto iter = instAndBlock.first ? instAndBlock.first->getIterator()
: block->end();
// Walk up the instruction list - either to the begin of the block or until
// we hit the beginScopeInst.
while (true) {
if (iter == block->begin()) {
assert(block != block->getParent()->getEntryBlock() &&
"didn't find the beginScopeInst when walking up the CFG");
// Add all predecessor blocks to the worklist.
for (SILBasicBlock *pred : block->getPredecessorBlocks()) {
if (visitedBlocks.insert(pred))
workList.push_back({nullptr, pred});
}
break;
}
--iter;
SILInstruction *inst = &*iter;
if (inst == beginScopeInst) {
// When we are at the beginScopeInst we terminate the CFG walk.
break;
}
if (inst->mayWriteToMemory()) {
instsInImmutableScopes.insert({beginScopeInst, inst});
}
}
}
}
/// Returns true if \p inst is in an immutable scope of V.
///
/// That means that even if we don't know anything about inst, we can be sure
/// that inst cannot write to V.
/// An immutable scope is for example a read-only begin_access/end_access scope.
/// Another example is a borrow scope of an immutable copy-on-write buffer.
bool AliasAnalysis::isInImmutableScope(SILInstruction *inst, SILValue V) {
if (!V->getType().isAddress())
return false;
SILValue beginScope = getBeginScopeInst(V);
if (!beginScope)
return false;
if (auto *funcArg = dyn_cast<SILFunctionArgument>(beginScope)) {
// The immutable scope (= an guaranteed argument) spans over the whole
// function. We don't need to do any scope computation in this case.
assert(funcArg->getArgumentConvention().isGuaranteedConvention());
return true;
}
auto *beginScopeInst = dyn_cast<SingleValueInstruction>(beginScope);
if (!beginScopeInst)
return false;
// Recompute the scope if not done yet.
if (immutableScopeComputed.insert(beginScopeInst).second) {
computeImmutableScope(beginScopeInst);
}
return instsInImmutableScopes.contains({beginScopeInst, inst});
}
MemBehavior
AliasAnalysis::computeMemoryBehaviorInner(SILInstruction *Inst, SILValue V) {
LLVM_DEBUG(llvm::dbgs() << "GET MEMORY BEHAVIOR FOR:\n " << *Inst << " "
<< *V);
MemBehavior result = MemoryBehaviorVisitor(this, V).visit(Inst);
// If the "regular" alias analysis thinks that Inst may modify V, check if
// Inst is in an immutable scope of V.
if (result > MemBehavior::MayRead && isInImmutableScope(Inst, V)) {
return (result == MemBehavior::MayWrite) ? MemBehavior::None
: MemBehavior::MayRead;
}
return result;
}
|