1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
|
//===--- SimplifyInstruction.cpp - Fold instructions ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// An SSA-peephole analysis. Given a single-value instruction, find an existing
/// equivalent but less costly or more canonical SIL value.
///
/// This analysis must handle 'raw' SIL form. It should be possible to perform
/// the substitution discovered by the analysis without interfering with
/// subsequent diagnostic passes.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-simplify"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
using namespace swift;
using namespace swift::PatternMatch;
namespace swift {
class ASTContext;
} // end namespace swift
namespace {
class InstSimplifier : public SILInstructionVisitor<InstSimplifier, SILValue>{
public:
SILValue visitSILInstruction(SILInstruction *I) { return SILValue(); }
SILValue visitTupleExtractInst(TupleExtractInst *TEI);
SILValue visitStructExtractInst(StructExtractInst *SEI);
SILValue visitEnumInst(EnumInst *EI);
SILValue visitSelectEnumInst(SelectEnumInst *SEI);
SILValue visitUncheckedEnumDataInst(UncheckedEnumDataInst *UEDI);
SILValue visitAddressToPointerInst(AddressToPointerInst *ATPI);
SILValue visitPointerToAddressInst(PointerToAddressInst *PTAI);
SILValue visitRefToRawPointerInst(RefToRawPointerInst *RRPI);
SILValue
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI);
SILValue visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI);
SILValue visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI);
SILValue visitStructInst(StructInst *SI);
SILValue visitTupleInst(TupleInst *SI);
SILValue visitBuiltinInst(BuiltinInst *AI);
SILValue visitUpcastInst(UpcastInst *UI);
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue visitRefTo##Name##Inst(RefTo##Name##Inst *I); \
SILValue visit##Name##ToRefInst(Name##ToRefInst *I);
#include "swift/AST/ReferenceStorage.def"
SILValue visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI);
SILValue
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI);
SILValue visitEndCOWMutationInst(EndCOWMutationInst *ECM);
SILValue visitBeginAccessInst(BeginAccessInst *BAI);
SILValue visitMetatypeInst(MetatypeInst *MTI);
SILValue visitConvertFunctionInst(ConvertFunctionInst *cfi);
SILValue simplifyOverflowBuiltin(BuiltinInst *BI);
};
} // end anonymous namespace
SILValue InstSimplifier::visitStructInst(StructInst *SI) {
// Ignore empty structs.
if (SI->getNumOperands() < 1)
return SILValue();
// Optimize structs that are generated from struct_extract instructions
// from the same struct.
if (auto *Ex0 = dyn_cast<StructExtractInst>(SI->getOperand(0))) {
// Check that the constructed struct and the extracted struct are of the
// same type.
if (SI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = SI->getNumOperands(); i < e; ++i) {
auto *Ex = dyn_cast<StructExtractInst>(SI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldIndex() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleInst(TupleInst *TI) {
// Ignore empty tuples.
if (TI->getNumOperands() < 1)
return SILValue();
// Optimize tuples that are generated from tuple_extract instructions
// from the same tuple.
if (auto *Ex0 = dyn_cast<TupleExtractInst>(TI->getOperand(0))) {
// Check that the constructed tuple and the extracted tuple are of the
// same type.
if (TI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = TI->getNumOperands(); i < e; ++i) {
auto *Ex = dyn_cast<TupleExtractInst>(TI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldIndex() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleExtractInst(TupleExtractInst *tei) {
auto op = lookThroughOwnershipInsts(tei->getOperand());
// tuple_extract(tuple(x, y), 0) -> x
if (auto *tupleInst = dyn_cast<TupleInst>(op))
return tupleInst->getElement(tei->getFieldIndex());
// tuple_extract(apply([add|sub|...]overflow(x,y)), 0) -> x
// tuple_extract(apply(checked_trunc(ext(x))), 0) -> x
if (tei->getFieldIndex() == 0)
if (auto *bi = dyn_cast<BuiltinInst>(tei->getOperand()))
return simplifyOverflowBuiltin(bi);
return SILValue();
}
SILValue InstSimplifier::visitStructExtractInst(StructExtractInst *sei) {
auto op = lookThroughOwnershipInsts(sei->getOperand());
// struct_extract(struct(x, y), x) -> x
if (auto *si = dyn_cast<StructInst>(op))
return si->getFieldValue(sei->getField());
return SILValue();
}
SILValue
InstSimplifier::visitUncheckedEnumDataInst(UncheckedEnumDataInst *uedi) {
if (uedi->getOperand()->getType().isValueTypeWithDeinit())
return SILValue();
// (unchecked_enum_data (enum payload)) -> payload
auto opt = lookThroughOwnershipInsts(uedi->getOperand());
if (auto *ei = dyn_cast<EnumInst>(opt)) {
if (ei->getElement() != uedi->getElement())
return SILValue();
assert(ei->hasOperand() &&
"Should only get data from an enum with payload.");
return lookThroughOwnershipInsts(ei->getOperand());
}
return SILValue();
}
// Simplify:
// %1 = unchecked_enum_data %0 : $Optional<C>, #Optional.Some!enumelt
// %2 = enum $Optional<C>, #Optional.Some!enumelt, %1 : $C
// to %0 since we are building the same enum.
static SILValue simplifyEnumFromUncheckedEnumData(EnumInst *EI) {
assert(EI->hasOperand() && "Expected an enum with an operand!");
auto *UEDI = dyn_cast<UncheckedEnumDataInst>(EI->getOperand());
if (!UEDI || UEDI->getElement() != EI->getElement())
return SILValue();
SILValue EnumOp = UEDI->getOperand();
// Same enum elements don't necessarily imply same enum types.
// Enum types may be different if the enum is generic, e.g.
// E<Int>.Case and E<Double>.Case.
SILType OriginalEnum = EnumOp->getType();
SILType NewEnum = EI->getType();
if (OriginalEnum != NewEnum)
return SILValue();
return EnumOp;
}
SILValue InstSimplifier::visitSelectEnumInst(SelectEnumInst *SEI) {
auto *EI = dyn_cast<EnumInst>(SEI->getEnumOperand());
if (EI && EI->getType() == SEI->getEnumOperand()->getType()) {
// Simplify a select_enum on an enum instruction.
// %27 = enum $Optional<Int>, #Optional.Some!enumelt, %20 : $Int
// %28 = integer_literal $Builtin.Int1, -1
// %29 = integer_literal $Builtin.Int1, 0
// %30 = select_enum %27 : $Optional<Int>, case #Optional.None!enumelt: %28,
// case #Optional.Some!enumelt: %29
// We will return %29.
return SEI->getCaseResult(EI->getElement());
}
return SILValue();
}
SILValue InstSimplifier::visitEnumInst(EnumInst *EI) {
if (EI->hasOperand()) {
auto Result = simplifyEnumFromUncheckedEnumData(EI);
if (Result)
return Result;
// switch_enum %e : $EnumTy, case %casex: bbX,...
// bbX(%arg):
// enum $EnumTy, EnumTy::casex, %arg
// ->
// replace enum $EnumTy, EnumTy::casex, %arg by %e
auto Op = EI->getOperand();
auto *EnumArg = dyn_cast<SILArgument>(Op);
if (!EnumArg)
return SILValue();
SILBasicBlock *EnumBlock = EI->getParent();
if (EnumArg->getParent() != EnumBlock)
return SILValue();
auto *Pred = EnumBlock->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator());
if (!SEI)
return SILValue();
auto Case = SEI->getUniqueCaseForDestination(EI->getParent());
if (Case && Case.getPtrOrNull() == EI->getElement() &&
SEI->getOperand()->getType() == EI->getType()) {
return SEI->getOperand();
}
return SILValue();
}
// Simplify enum insts to the value from a switch_enum when possible, e.g.
// for
// switch_enum %0 : $Bool, case #Bool.true!enumelt: bb1
// bb1:
// %1 = enum $Bool, #Bool.true!enumelt
//
// we'll return %0
auto *BB = EI->getParent();
auto *Pred = BB->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
if (auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator())) {
if (EI->getType() != SEI->getOperand()->getType())
return SILValue();
if (EI->getElement() == SEI->getUniqueCaseForDestination(BB).getPtrOrNull())
return SEI->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitAddressToPointerInst(AddressToPointerInst *ATPI) {
// (address_to_pointer (pointer_to_address x [strict])) -> x
// The 'strict' flag is only relevant for instructions that access memory;
// the moment the address is cast back to a pointer, it no longer matters.
if (auto *PTAI = dyn_cast<PointerToAddressInst>(ATPI->getOperand()))
if (PTAI->getType() == ATPI->getOperand()->getType())
return PTAI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitPointerToAddressInst(PointerToAddressInst *PTAI) {
// If this address is not strict, then it cannot be replaced by an address
// that may be strict.
if (auto *ATPI = dyn_cast<AddressToPointerInst>(PTAI->getOperand()))
if (ATPI->getOperand()->getType() == PTAI->getType() && PTAI->isStrict())
return ATPI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitRefToRawPointerInst(RefToRawPointerInst *RefToRaw) {
// Perform the following simplification:
//
// (ref_to_raw_pointer (raw_pointer_to_ref x)) -> x
//
// *NOTE* We don't need to check types here.
if (auto *RawToRef = dyn_cast<RawPointerToRefInst>(&*RefToRaw->getOperand()))
return RawToRef->getOperand();
return SILValue();
}
/// If the only use of a cast is a destroy, just destroy the cast operand.
static SILValue simplifyDeadCast(SingleValueInstruction *Cast) {
if (!Cast->hasUsesOfAnyResult())
return SILValue();
for (Operand *op : Cast->getUses()) {
switch (op->getUser()->getKind()) {
case SILInstructionKind::DestroyValueInst:
break;
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::StrongRetainInst:
// ref-casts can cast from an Optional<Classtype>. But strong_retain/
// strong_release don't accept an optional.
if (!Cast->getOperand(0)->getType().isReferenceCounted(Cast->getModule()))
return SILValue();
break;
default:
return SILValue();
}
}
return Cast->getOperand(0);
}
SILValue
InstSimplifier::
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI) {
// (UCCI downcast (upcast x #type1 to #type2) #type2 to #type1) -> x
if (auto *upcast = dyn_cast<UpcastInst>(UCCI->getOperand()))
if (UCCI->getType() == upcast->getOperand()->getType())
return upcast->getOperand();
return simplifyDeadCast(UCCI);
}
SILValue
InstSimplifier::
visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI) {
// (unchecked-ref-cast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *ROPI = dyn_cast<UncheckedRefCastInst>(&*OPRI->getOperand()))
if (ROPI->getOperand()->getType() == OPRI->getType())
return ROPI->getOperand();
// (unchecked-ref-cast Y->X (upcast x X->Y)) -> x
if (auto *UI = dyn_cast<UpcastInst>(OPRI->getOperand()))
if (UI->getOperand()->getType() == OPRI->getType())
return UI->getOperand();
// (unchecked-ref-cast Y->X (open_existential_ref x X->Y)) -> x
if (auto *OER = dyn_cast<OpenExistentialRefInst>(OPRI->getOperand()))
if (OER->getOperand()->getType() == OPRI->getType())
return OER->getOperand();
// (unchecked-ref-cast X->X x) -> x
if (OPRI->getOperand()->getType() == OPRI->getType())
return OPRI->getOperand();
// (destroy_value (unchecked_ref_cast x)) -> destroy_value x
return simplifyDeadCast(OPRI);
}
SILValue
InstSimplifier::
visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI) {
// (unchecked-addr-cast Y->X (unchecked-addr-cast x X->Y)) -> x
if (auto *OtherUACI = dyn_cast<UncheckedAddrCastInst>(&*UACI->getOperand()))
if (OtherUACI->getOperand()->getType() == UACI->getType())
return OtherUACI->getOperand();
// (unchecked-addr-cast X->X x) -> x
if (UACI->getOperand()->getType() == UACI->getType())
return UACI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitUpcastInst(UpcastInst *UI) {
// (upcast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *URCI = dyn_cast<UncheckedRefCastInst>(UI->getOperand()))
if (URCI->getOperand()->getType() == UI->getType())
return URCI->getOperand();
// (destroy_value (upcast x)) -> destroy_value x
return simplifyDeadCast(UI);
}
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue \
InstSimplifier::visitRefTo##Name##Inst(RefTo##Name##Inst *RUI) { \
if (auto *URI = dyn_cast<Name##ToRefInst>(RUI->getOperand())) \
if (URI->getOperand()->getType() == RUI->getType()) \
return URI->getOperand(); \
return SILValue(); \
} \
SILValue \
InstSimplifier::visit##Name##ToRefInst(Name##ToRefInst *URI) { \
if (auto *RUI = dyn_cast<RefTo##Name##Inst>(URI->getOperand())) \
if (RUI->getOperand()->getType() == URI->getType()) \
return RUI->getOperand(); \
return SILValue(); \
}
#include "swift/AST/ReferenceStorage.def"
SILValue
InstSimplifier::
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI) {
// (unchecked_trivial_bit_cast X->X x) -> x
if (UTBCI->getOperand()->getType() == UTBCI->getType())
return UTBCI->getOperand();
// (unchecked_trivial_bit_cast Y->X (unchecked_trivial_bit_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedTrivialBitCastInst>(UTBCI->getOperand()))
if (Op->getOperand()->getType() == UTBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitEndCOWMutationInst(EndCOWMutationInst *ECM) {
// (destroy_value (end_cow_mutation x)) -> destroy_value x
return simplifyDeadCast(ECM);
}
SILValue
InstSimplifier::
visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI) {
// (unchecked_bitwise_cast X->X x) -> x
if (UBCI->getOperand()->getType() == UBCI->getType())
return UBCI->getOperand();
// A round-trip cast implies X and Y have the same size:
// (unchecked_bitwise_cast Y->X (unchecked_bitwise_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedBitwiseCastInst>(UBCI->getOperand()))
if (Op->getOperand()->getType() == UBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitBeginAccessInst(BeginAccessInst *BAI) {
// Remove "dead" begin_access.
if (llvm::all_of(BAI->getUses(), [](Operand *operand) -> bool {
return isIncidentalUse(operand->getUser());
})) {
return BAI->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitConvertFunctionInst(ConvertFunctionInst *cfi) {
// Eliminate round trip convert_function. Non round-trip is performed in
// SILCombine.
//
// (convert_function Y->X (convert_function x X->Y)) -> x
SILValue convertedValue = lookThroughOwnershipInsts(cfi->getOperand());
if (auto *subCFI = dyn_cast<ConvertFunctionInst>(convertedValue))
if (subCFI->getOperand()->getType() == cfi->getType())
return lookThroughOwnershipInsts(subCFI->getOperand());
return SILValue();
}
SILValue InstSimplifier::visitMetatypeInst(MetatypeInst *MI) {
auto metaType = MI->getType().castTo<MetatypeType>();
auto instanceType = metaType.getInstanceType();
// Tuple, Struct, and Enum MetatypeTypes have a single value.
// If this metatype is already passed as an argument reuse it to enable
// downstream CSE/SILCombine optimizations.
// Note: redundant metatype instructions are already handled by CSE.
if (isa<TupleType>(instanceType)
|| instanceType.getStructOrBoundGenericStruct()
|| instanceType.getEnumOrBoundGenericEnum()) {
for (SILArgument *argument : MI->getFunction()->getArguments()) {
if (argument->getType().getASTType() == metaType &&
argument->getType().isObject())
return argument;
}
}
return SILValue();
}
static SILValue simplifyBuiltin(BuiltinInst *BI) {
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::IntToPtr:
if (auto *OpBI = dyn_cast<BuiltinInst>(BI->getOperand(0))) {
if (OpBI->getBuiltinInfo().ID == BuiltinValueKind::PtrToInt) {
return OpBI->getOperand(0);
}
}
return SILValue();
default:
break;
}
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
switch (Intrinsic.ID) {
default:
// TODO: Handle some of the llvm intrinsics here.
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::expect:
// If we have an expect optimizer hint with a constant value input,
// there is nothing left to expect so propagate the input, i.e.,
//
// apply(expect, constant, _) -> constant.
if (auto *Literal = dyn_cast<IntegerLiteralInst>(BI->getArguments()[0]))
return Literal;
return SILValue();
}
// Otherwise, it should be one of the builtin functions.
OperandValueArrayRef Args = BI->getArguments();
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::ZExtOrBitCast:
case BuiltinValueKind::SExtOrBitCast: {
const SILValue &Op = Args[0];
// [s|z]extOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
}
break;
case BuiltinValueKind::TruncOrBitCast: {
const SILValue &Op = Args[0];
SILValue Result;
// truncOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
// trunc(extOrBitCast(x)) -> x
if (match(Op, m_ExtOrBitCast(m_SILValue(Result)))) {
// Truncated back to the same bits we started with.
if (Result->getType() == BI->getType())
return Result;
}
return SILValue();
}
case BuiltinValueKind::Xor: {
SILValue val1, val2, val3;
// xor (xor (val1, val2), val3) == val1
if (BI->getNumOperands() == 2 &&
(match(BI,
m_BuiltinInst(BuiltinValueKind::Xor,
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1), m_SILValue(val2)),
m_SILValue(val3))) ||
match(BI, m_BuiltinInst(BuiltinValueKind::Xor, m_SILValue(val3),
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1),
m_SILValue(val2)))))) {
if (val2 == val3)
return val1;
if (val1 == val3)
return val2;
if (val1 == val2)
return val3;
}
}
break;
case BuiltinValueKind::Shl:
case BuiltinValueKind::AShr:
case BuiltinValueKind::LShr:
auto *RHS = dyn_cast<IntegerLiteralInst>(Args[1]);
if (RHS && !RHS->getValue()) {
// Shifting a value by 0 bits is equivalent to the value itself.
auto LHS = Args[0];
return LHS;
}
break;
}
return SILValue();
}
/// Simplify an apply of the builtin canBeClass to either 0 or 1
/// when we can statically determine the result.
SILValue InstSimplifier::visitBuiltinInst(BuiltinInst *BI) {
return simplifyBuiltin(BI);
}
/// Simplify arithmetic intrinsics with overflow and known identity
/// constants such as 0 and 1.
/// If this returns a value other than SILValue() then the instruction was
/// simplified to a value which doesn't overflow. The overflow case is handled
/// in SILCombine.
static SILValue simplifyBinaryWithOverflow(BuiltinInst *BI,
llvm::Intrinsic::ID ID) {
OperandValueArrayRef Args = BI->getArguments();
assert(Args.size() >= 2);
const SILValue &Op1 = Args[0];
const SILValue &Op2 = Args[1];
auto *IntOp1 = dyn_cast<IntegerLiteralInst>(Op1);
auto *IntOp2 = dyn_cast<IntegerLiteralInst>(Op2);
// If both ops are not constants, we cannot do anything.
// FIXME: Add cases where we can do something, eg, (x - x) -> 0
if (!IntOp1 && !IntOp2)
return SILValue();
// Calculate the result.
switch (ID) {
default: llvm_unreachable("Invalid case");
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
// 0 + X -> X
if (match(Op1, m_Zero()))
return Op2;
// X + 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
// X - 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
// 0 * X -> 0
if (match(Op1, m_Zero()))
return Op1;
// X * 0 -> 0
if (match(Op2, m_Zero()))
return Op2;
// 1 * X -> X
if (match(Op1, m_One()))
return Op2;
// X * 1 -> X
if (match(Op2, m_One()))
return Op1;
return SILValue();
}
return SILValue();
}
/// Simplify operations that may overflow. All such operations return a tuple.
/// This function simplifies such operations, but returns only the first
/// element of a tuple. It looks strange at the first glance, but this
/// is OK, because this function is invoked only internally when processing
/// tuple_extract instructions. Therefore the result of this function
/// is used for simplifications like tuple_extract(x, 0) -> simplified(x)
SILValue InstSimplifier::simplifyOverflowBuiltin(BuiltinInst *BI) {
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
// If it's an llvm intrinsic, fold the intrinsic.
switch (Intrinsic.ID) {
default:
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
return simplifyBinaryWithOverflow(BI, Intrinsic.ID);
}
// Otherwise, it should be one of the builtin functions.
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::UToSCheckedTrunc:
case BuiltinValueKind::UToUCheckedTrunc:
case BuiltinValueKind::SToUCheckedTrunc:
case BuiltinValueKind::SToSCheckedTrunc: {
SILValue Result;
// CheckedTrunc(Ext(x)) -> x
if (match(BI, m_CheckedTrunc(m_Ext(m_SILValue(Result)))))
if (Result->getType() == BI->getType().getTupleElementType(0))
if (auto signBit = computeSignBit(Result))
if (!signBit.value())
return Result;
}
break;
// Check and simplify binary arithmetic with overflow.
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return simplifyBinaryWithOverflow(BI,
getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID));
}
return SILValue();
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
/// Replace an instruction with a simplified result, including any debug uses,
/// and erase the instruction. If the instruction initiates a scope, do not
/// replace the end of its scope; it will be deleted along with its parent.
///
/// This is a simple transform based on the above analysis.
///
/// We assume that when ownership is enabled that the IR is in valid OSSA form
/// before this is called. It will perform fixups as necessary to preserve OSSA.
///
/// Return an iterator to the next (nondeleted) instruction.
SILBasicBlock::iterator
swift::replaceAllSimplifiedUsesAndErase(SILInstruction *i, SILValue result,
InstModCallbacks &callbacks,
DeadEndBlocks *deadEndBlocks) {
auto *svi = cast<SingleValueInstruction>(i);
assert(svi != result && "Cannot RAUW a value with itself");
if (svi->getFunction()->hasOwnership()) {
OwnershipFixupContext ctx{callbacks, *deadEndBlocks};
OwnershipRAUWHelper helper(ctx, svi, result);
return helper.perform();
}
return replaceAllUsesAndErase(svi, result, callbacks);
}
/// Simplify invocations of builtin operations that may overflow.
/// All such operations return a tuple (result, overflow_flag).
/// This function try to simplify such operations, but returns only a
/// simplified first element of a tuple. The overflow flag is not returned
/// explicitly, because this simplification is only possible if there is
/// no overflow. Therefore the overflow flag is known to have a value of 0 if
/// simplification was successful.
/// In case when a simplification is not possible, a null SILValue is returned.
SILValue swift::simplifyOverflowBuiltinInstruction(BuiltinInst *BI) {
return InstSimplifier().simplifyOverflowBuiltin(BI);
}
/// Try to simplify the specified instruction, performing local
/// analysis of the operands of the instruction, without looking at its uses
/// (e.g. constant folding). If a simpler result can be found, it is
/// returned, otherwise a null SILValue is returned.
///
/// NOTE: We assume that the insertion point associated with the SILValue must
/// dominate \p i.
static SILValue simplifyInstruction(SILInstruction *i) {
return InstSimplifier().visit(i);
}
SILBasicBlock::iterator swift::simplifyAndReplaceAllSimplifiedUsesAndErase(
SILInstruction *i, InstModCallbacks &callbacks,
DeadEndBlocks *deadEndBlocks) {
auto next = std::next(i->getIterator());
auto *svi = dyn_cast<SingleValueInstruction>(i);
if (!svi)
return next;
SILValue result = simplifyInstruction(i);
// If we fail to simplify or the simplified value returned is our passed in
// value, just return std::next since we can't simplify.
if (!result || svi == result)
return next;
if (!svi->getFunction()->hasOwnership())
return replaceAllUsesAndErase(svi, result, callbacks);
// If we weren't passed a dead end blocks, we can't optimize without ownership
// enabled.
if (!deadEndBlocks)
return next;
OwnershipFixupContext ctx{callbacks, *deadEndBlocks};
OwnershipRAUWHelper helper(ctx, svi, result);
// If our RAUW helper is invalid, we do not support RAUWing this case, so
// just return next.
if (!helper.isValid())
return next;
return helper.perform();
}
|