1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
//===--- ValueTracking.cpp - SIL Value Tracking Analysis ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-value-tracking"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::PatternMatch;
bool swift::isExclusiveArgument(SILValue V) {
auto *Arg = dyn_cast<SILFunctionArgument>(V);
if (!Arg)
return false;
SILArgumentConvention Conv = Arg->getArgumentConvention();
return Conv.isExclusiveIndirectParameter();
}
/// Check if the parameter \V is based on a local object, e.g. it is an
/// allocation instruction or a struct/tuple constructed from the local objects.
/// Returns a found local object. If a local object was not found, returns an
/// empty SILValue.
static bool isLocalObject(SILValue Obj) {
// Check for SILUndef.
if (!Obj->getFunction())
return false;
// Set of values to be checked for their locality.
SmallVector<SILValue, 8> WorkList;
// Set of processed values.
ValueSet Processed(Obj->getFunction());
WorkList.push_back(Obj);
while (!WorkList.empty()) {
auto V = WorkList.pop_back_val();
if (!V || isa<SILUndef>(V))
return false;
if (!Processed.insert(V))
continue;
// It should be a local object.
V = getUnderlyingObject(V);
if (isa<AllocationInst>(V))
continue;
if (isa<StructInst>(V) || isa<TupleInst>(V) || isa<EnumInst>(V)) {
// A compound value is local, if all of its components are local.
for (auto &Op : cast<SingleValueInstruction>(V)->getAllOperands()) {
WorkList.push_back(Op.get());
}
continue;
}
if (auto *Arg = dyn_cast<SILPhiArgument>(V)) {
// A BB argument is local if all of its
// incoming values are local.
SmallVector<SILValue, 4> IncomingValues;
if (Arg->getSingleTerminatorOperands(IncomingValues)) {
for (auto InValue : IncomingValues) {
WorkList.push_back(InValue);
}
continue;
}
}
// Everything else is considered to be non-local.
return false;
}
return true;
}
bool swift::pointsToLocalObject(SILValue V) {
return isLocalObject(getUnderlyingObject(V));
}
/// Check if the value \p Value is known to be zero, non-zero or unknown.
IsZeroKind swift::isZeroValue(SILValue Value) {
// Inspect integer literals.
if (auto *L = dyn_cast<IntegerLiteralInst>(Value)) {
if (!L->getValue())
return IsZeroKind::Zero;
return IsZeroKind::NotZero;
}
// Inspect Structs.
switch (Value->getKind()) {
// Bitcast of zero is zero.
case ValueKind::UncheckedTrivialBitCastInst:
// Extracting from a zero class returns a zero.
case ValueKind::StructExtractInst:
return isZeroValue(cast<SingleValueInstruction>(Value)->getOperand(0));
default:
break;
}
// Inspect casts.
if (auto *BI = dyn_cast<BuiltinInst>(Value)) {
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::IntToPtr:
case BuiltinValueKind::PtrToInt:
case BuiltinValueKind::ZExt:
return isZeroValue(BI->getArguments()[0]);
case BuiltinValueKind::UDiv:
case BuiltinValueKind::SDiv: {
if (IsZeroKind::Zero == isZeroValue(BI->getArguments()[0]))
return IsZeroKind::Zero;
return IsZeroKind::Unknown;
}
case BuiltinValueKind::Mul:
case BuiltinValueKind::SMulOver:
case BuiltinValueKind::UMulOver: {
IsZeroKind LHS = isZeroValue(BI->getArguments()[0]);
IsZeroKind RHS = isZeroValue(BI->getArguments()[1]);
if (LHS == IsZeroKind::Zero || RHS == IsZeroKind::Zero)
return IsZeroKind::Zero;
return IsZeroKind::Unknown;
}
default:
return IsZeroKind::Unknown;
}
}
// Handle results of XXX_with_overflow arithmetic.
if (auto *T = dyn_cast<TupleExtractInst>(Value)) {
// Make sure we are extracting the number value and not
// the overflow flag.
if (T->getFieldIndex() != 0)
return IsZeroKind::Unknown;
auto *BI = dyn_cast<BuiltinInst>(T->getOperand());
if (!BI)
return IsZeroKind::Unknown;
return isZeroValue(BI);
}
//Inspect allocations and pointer literals.
if (isa<StringLiteralInst>(Value) ||
isa<AllocationInst>(Value) ||
isa<GlobalAddrInst>(Value))
return IsZeroKind::NotZero;
return IsZeroKind::Unknown;
}
/// Check if the sign bit of the value \p V is known to be:
/// set (true), not set (false) or unknown (None).
std::optional<bool> swift::computeSignBit(SILValue V) {
SILValue Value = V;
while (true) {
ValueBase *Def = Value;
// Inspect integer literals.
if (auto *L = dyn_cast<IntegerLiteralInst>(Def)) {
if (L->getValue().isNonNegative())
return false;
return true;
}
switch (Def->getKind()) {
// Bitcast of non-negative is non-negative
case ValueKind::UncheckedTrivialBitCastInst:
Value = cast<UncheckedTrivialBitCastInst>(Def)->getOperand();
continue;
default:
break;
}
if (auto *BI = dyn_cast<BuiltinInst>(Def)) {
switch (BI->getBuiltinInfo().ID) {
// Sizeof always returns non-negative results.
case BuiltinValueKind::Sizeof:
return false;
// Strideof always returns non-negative results.
case BuiltinValueKind::Strideof:
return false;
// Alignof always returns non-negative results.
case BuiltinValueKind::Alignof:
return false;
// Both operands to AND must have the top bit set for V to.
case BuiltinValueKind::And: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// We don't know either's sign bit so we can't
// say anything about the result.
if (!Left && !Right) {
return std::nullopt;
}
// Now we know that we were able to determine the sign bit
// for at least one of Left/Right. Canonicalize the determined
// sign bit on the left.
if (Right) {
std::swap(Left, Right);
}
// We know we must have at least one result and it must be on
// the Left. If Right is still not None, then get both values
// and AND them together.
if (Right) {
return Left.value() && Right.value();
}
// Now we know that Right is None and Left has a value. If
// Left's value is true, then we return None as the final
// sign bit depends on the unknown Right value.
if (Left.value()) {
return std::nullopt;
}
// Otherwise, Left must be false and false AND'd with anything
// else yields false.
return false;
}
// At least one operand to OR must have the top bit set.
case BuiltinValueKind::Or: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// We don't know either's sign bit so we can't
// say anything about the result.
if (!Left && !Right) {
return std::nullopt;
}
// Now we know that we were able to determine the sign bit
// for at least one of Left/Right. Canonicalize the determined
// sign bit on the left.
if (Right) {
std::swap(Left, Right);
}
// We know we must have at least one result and it must be on
// the Left. If Right is still not None, then get both values
// and OR them together.
if (Right) {
return Left.value() || Right.value();
}
// Now we know that Right is None and Left has a value. If
// Left's value is false, then we return None as the final
// sign bit depends on the unknown Right value.
if (!Left.value()) {
return std::nullopt;
}
// Otherwise, Left must be true and true OR'd with anything
// else yields true.
return true;
}
// Only one of the operands to XOR must have the top bit set.
case BuiltinValueKind::Xor: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// If either Left or Right is unknown then we can't say
// anything about the sign of the final result since
// XOR does not short-circuit.
if (!Left || !Right) {
return std::nullopt;
}
// Now we know that both Left and Right must have a value.
// For the sign of the final result to be set, only one
// of Left or Right should be true.
return Left.value() != Right.value();
}
case BuiltinValueKind::LShr: {
// If count is provably >= 1, then top bit is not set.
auto *ILShiftCount = dyn_cast<IntegerLiteralInst>(BI->getArguments()[1]);
if (ILShiftCount) {
if (ILShiftCount->getValue().isStrictlyPositive()) {
return false;
}
}
// May be top bit is not set in the value being shifted.
Value = BI->getArguments()[0];
continue;
}
// Sign bit of the operand is promoted.
case BuiltinValueKind::SExt:
Value = BI->getArguments()[0];
continue;
// Source type is always smaller than the target type.
// Therefore the sign bit of a result is always 0.
case BuiltinValueKind::ZExt:
return false;
// Sign bit of the operand is promoted.
case BuiltinValueKind::SExtOrBitCast:
Value = BI->getArguments()[0];
continue;
// TODO: If source type size is smaller than the target type
// the result will be always false.
case BuiltinValueKind::ZExtOrBitCast:
Value = BI->getArguments()[0];
continue;
// Inspect casts.
case BuiltinValueKind::IntToPtr:
case BuiltinValueKind::PtrToInt:
Value = BI->getArguments()[0];
continue;
default:
return std::nullopt;
}
}
return std::nullopt;
}
}
/// Check if a checked trunc instruction can overflow.
/// Returns false if it can be proven that no overflow can happen.
/// Otherwise returns true.
static bool checkTruncOverflow(BuiltinInst *BI) {
SILValue Left, Right;
if (match(BI, m_CheckedTrunc(m_And(m_SILValue(Left),
m_SILValue(Right))))) {
// [US]ToSCheckedTrunc(And(x, mask)) cannot overflow
// if mask has the following properties:
// Only the first (N-1) bits are allowed to be set, where N is the width
// of the trunc result type.
//
// [US]ToUCheckedTrunc(And(x, mask)) cannot overflow
// if mask has the following properties:
// Only the first N bits are allowed to be set, where N is the width
// of the trunc result type.
if (auto BITy = BI->getType().
getTupleElementType(0).
getAs<BuiltinIntegerType>()) {
unsigned Width = BITy->getFixedWidth();
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::SToSCheckedTrunc:
case BuiltinValueKind::UToSCheckedTrunc:
// If it is a trunc to a signed value
// then sign bit should not be set to avoid overflows.
--Width;
break;
default:
break;
}
if (auto *ILLeft = dyn_cast<IntegerLiteralInst>(Left)) {
APInt Value = ILLeft->getValue();
if (Value.isIntN(Width)) {
return false;
}
}
if (auto *ILRight = dyn_cast<IntegerLiteralInst>(Right)) {
APInt Value = ILRight->getValue();
if (Value.isIntN(Width)) {
return false;
}
}
}
}
return true;
}
/// Check if execution of a given Apply instruction can result in overflows.
/// Returns true if an overflow can happen. Otherwise returns false.
bool swift::canOverflow(BuiltinInst *BI) {
if (simplifyOverflowBuiltinInstruction(BI) != SILValue())
return false;
if (!checkTruncOverflow(BI))
return false;
// Conservatively assume that an overflow can happen
return true;
}
|