1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
//===------- ExistentialTransform.cpp - Transform Existential Args -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Transform existential parameters to generic ones.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-existential-transform"
#include "ExistentialTransform.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/TypeSubstCloner.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/Existential.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "llvm/ADT/SmallVector.h"
using namespace swift;
using llvm::SmallDenseMap;
using llvm::SmallPtrSet;
using llvm::SmallVector;
using llvm::SmallVectorImpl;
/// Create a SILCloner for Existential Specilizer.
namespace {
class ExistentialSpecializerCloner
: public TypeSubstCloner<ExistentialSpecializerCloner,
SILOptFunctionBuilder> {
using SuperTy =
TypeSubstCloner<ExistentialSpecializerCloner, SILOptFunctionBuilder>;
friend class SILInstructionVisitor<ExistentialSpecializerCloner>;
friend class SILCloner<ExistentialSpecializerCloner>;
SILFunction *OrigF;
SmallVector<ArgumentDescriptor, 4> &ArgumentDescList;
SmallDenseMap<int, GenericTypeParamType *> &ArgToGenericTypeMap;
SmallDenseMap<int, ExistentialTransformArgumentDescriptor>
&ExistentialArgDescriptor;
// AllocStack instructions introduced in the new prolog that require cleanup.
SmallVector<AllocStackInst *, 4> AllocStackInsts;
// Temporary values introduced in the new prolog that require cleanup.
SmallVector<SILValue, 4> CleanupValues;
protected:
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
SILClonerWithScopes<ExistentialSpecializerCloner>::postProcess(Orig,
Cloned);
}
void cloneArguments(SmallVectorImpl<SILValue> &entryArgs);
public:
ExistentialSpecializerCloner(
SILFunction *OrigF, SILFunction *NewF, SubstitutionMap Subs,
SmallVector<ArgumentDescriptor, 4> &ArgumentDescList,
SmallDenseMap<int, GenericTypeParamType *> &ArgToGenericTypeMap,
SmallDenseMap<int, ExistentialTransformArgumentDescriptor>
&ExistentialArgDescriptor)
: SuperTy(*NewF, *OrigF, Subs), OrigF(OrigF),
ArgumentDescList(ArgumentDescList),
ArgToGenericTypeMap(ArgToGenericTypeMap),
ExistentialArgDescriptor(ExistentialArgDescriptor) {}
void cloneAndPopulateFunction();
};
} // end anonymous namespace
/// This function will create the generic version.
void ExistentialSpecializerCloner::cloneAndPopulateFunction() {
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(OrigF->getArguments().size());
cloneArguments(entryArgs);
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
auto *NewEntryBB = getBuilder().getFunction().getEntryBlock();
cloneFunctionBody(&Original, NewEntryBB, entryArgs);
// Cleanup allocations created in the new prolog.
SmallVector<SILBasicBlock *, 4> exitingBlocks;
getBuilder().getFunction().findExitingBlocks(exitingBlocks);
for (auto *exitBB : exitingBlocks) {
SILBuilderWithScope Builder(exitBB->getTerminator());
// A return location can't be used for a non-return instruction.
auto loc = RegularLocation::getAutoGeneratedLocation();
for (SILValue cleanupVal : CleanupValues) {
assert(cleanupVal->getOwnershipKind() != OwnershipKind::Guaranteed);
Builder.emitDestroyOperation(loc, cleanupVal);
}
for (auto *ASI : llvm::reverse(AllocStackInsts))
Builder.createDeallocStack(loc, ASI);
}
}
// Create the entry basic block with the function arguments.
void ExistentialSpecializerCloner::cloneArguments(
SmallVectorImpl<SILValue> &entryArgs) {
auto &M = OrigF->getModule();
// Create the new entry block.
SILFunction &NewF = getBuilder().getFunction();
SILBasicBlock *ClonedEntryBB = NewF.createBasicBlock();
/// Builder will have a ScopeClone with a debugscope that is inherited from
/// the F.
ScopeCloner SC(NewF);
auto DebugScope = SC.getOrCreateClonedScope(OrigF->getDebugScope());
// Setup a NewFBuilder for the new entry block, reusing the cloner's
// SILBuilderContext.
SILBuilder NewFBuilder(ClonedEntryBB, getBuilder().getBuilderContext(),
DebugScope);
auto InsertLoc = RegularLocation::getAutoGeneratedLocation();
auto NewFTy = NewF.getLoweredFunctionType();
SmallVector<SILParameterInfo, 4> params;
params.append(NewFTy->getParameters().begin(), NewFTy->getParameters().end());
for (auto &ArgDesc : ArgumentDescList) {
auto iter = ArgToGenericTypeMap.find(ArgDesc.Index);
if (iter == ArgToGenericTypeMap.end()) {
// Clone arguments that are not rewritten.
auto Ty = params[ArgDesc.Index].getArgumentType(
M, NewFTy, NewF.getTypeExpansionContext());
auto LoweredTy = NewF.getLoweredType(NewF.mapTypeIntoContext(Ty));
auto MappedTy =
LoweredTy.getCategoryType(ArgDesc.Arg->getType().getCategory());
auto *NewArg =
ClonedEntryBB->createFunctionArgument(MappedTy, ArgDesc.Decl);
NewArg->copyFlags(ArgDesc.Arg);
entryArgs.push_back(NewArg);
continue;
}
// Create the generic argument.
GenericTypeParamType *GenericParam = iter->second;
SILType GenericSILType =
NewF.getLoweredType(NewF.mapTypeIntoContext(GenericParam));
GenericSILType = GenericSILType.getCategoryType(
ArgDesc.Arg->getType().getCategory());
auto *NewArg = ClonedEntryBB->createFunctionArgument(
GenericSILType, ArgDesc.Decl,
ValueOwnershipKind(NewF, GenericSILType,
ArgDesc.Arg->getArgumentConvention()));
NewArg->copyFlags(ArgDesc.Arg);
// Gather the conformances needed for an existential value based on an
// opened archetype. This adds any conformances inherited from superclass
// constraints.
SILType ExistentialType = ArgDesc.Arg->getType().getObjectType();
CanType OpenedType = NewArg->getType().getASTType();
assert(!OpenedType.isAnyExistentialType());
auto Conformances = M.getSwiftModule()->collectExistentialConformances(
OpenedType,
ExistentialType.getASTType());
auto ExistentialRepr =
ArgDesc.Arg->getType().getPreferredExistentialRepresentation();
auto &EAD = ExistentialArgDescriptor[ArgDesc.Index];
switch (ExistentialRepr) {
case ExistentialRepresentation::Opaque: {
/// Create this sequence for init_existential_addr.:
/// bb0(%0 : $*T):
/// %3 = alloc_stack $P
/// %4 = init_existential_addr %3 : $*P, $T
/// copy_addr [take] %0 to [init] %4 : $*T
/// %7 = open_existential_addr immutable_access %3 : $*P to
/// $*@opened P
auto *ASI =
NewFBuilder.createAllocStack(InsertLoc, ArgDesc.Arg->getType());
AllocStackInsts.push_back(ASI);
auto *EAI = NewFBuilder.createInitExistentialAddr(
InsertLoc, ASI, NewArg->getType().getASTType(), NewArg->getType(),
Conformances);
bool origConsumed = EAD.isConsumed;
// If the existential is not consumed in the function body, then the one
// we introduce here needs cleanup.
if (!origConsumed)
CleanupValues.push_back(ASI);
NewFBuilder.createCopyAddr(InsertLoc, NewArg, EAI,
origConsumed ? IsTake_t::IsTake
: IsTake_t::IsNotTake,
IsInitialization_t::IsInitialization);
entryArgs.push_back(ASI);
break;
}
case ExistentialRepresentation::Class: {
SILValue NewArgValue = NewArg;
bool origConsumed = EAD.isConsumed;
// Load our object if needed and if our original value was not consumed,
// make a copy in ossa. Do not perturb code-gen in non-ossa code though.
if (!NewArg->getType().isObject()) {
auto qual = LoadOwnershipQualifier::Take;
if (NewFBuilder.hasOwnership() && !origConsumed) {
qual = LoadOwnershipQualifier::Copy;
}
NewArgValue =
NewFBuilder.emitLoadValueOperation(InsertLoc, NewArg, qual);
}
/// Simple case: Create an init_existential.
/// %5 = init_existential_ref %0 : $T : $T, $P
SILValue InitRef = NewFBuilder.createInitExistentialRef(
InsertLoc, ArgDesc.Arg->getType().getObjectType(),
NewArg->getType().getASTType(),
NewArgValue, Conformances);
// If we don't have an object and we are in ossa, the store will consume
// the InitRef.
if (!NewArg->getType().isObject()) {
auto alloc = NewFBuilder.createAllocStack(InsertLoc,
InitRef->getType());
NewFBuilder.emitStoreValueOperation(InsertLoc, InitRef, alloc,
StoreOwnershipQualifier::Init);
InitRef = alloc;
AllocStackInsts.push_back(alloc);
}
entryArgs.push_back(InitRef);
break;
}
default: {
llvm_unreachable("Unhandled existential type in ExistentialTransform!");
break;
}
};
}
}
/// Create a new function name for the newly generated protocol constrained
/// generic function.
std::string ExistentialTransform::createExistentialSpecializedFunctionName() {
for (auto const &IdxIt : ExistentialArgDescriptor) {
int Idx = IdxIt.first;
Mangler.setArgumentExistentialToGeneric(Idx);
}
return Mangler.mangle();
}
/// Convert all existential argument types to generic argument type.
void ExistentialTransform::convertExistentialArgTypesToGenericArgTypes(
SmallVectorImpl<GenericTypeParamType *> &genericParams,
SmallVectorImpl<Requirement> &requirements) {
SILModule &M = F->getModule();
auto &Ctx = M.getASTContext();
auto FTy = F->getLoweredFunctionType();
/// If the original function is generic, then maintain the same.
auto OrigGenericSig = FTy->getInvocationGenericSignature();
/// Original list of parameters
SmallVector<SILParameterInfo, 4> params;
params.append(FTy->getParameters().begin(), FTy->getParameters().end());
/// Determine the existing generic parameter depth.
int Depth = 0;
if (OrigGenericSig != nullptr) {
Depth = OrigGenericSig.getGenericParams().back()->getDepth() + 1;
}
/// Index of the Generic Parameter.
int GPIdx = 0;
/// Convert the protocol arguments of F to generic ones.
for (auto const &IdxIt : ExistentialArgDescriptor) {
int Idx = IdxIt.first;
auto ¶m = params[Idx];
auto PType = param.getArgumentType(M, FTy, F->getTypeExpansionContext());
assert(PType.isExistentialType());
CanType constraint = PType;
if (auto existential = PType->getAs<ExistentialType>())
constraint = existential->getConstraintType()->getCanonicalType();
/// Generate new generic parameter.
auto *NewGenericParam =
GenericTypeParamType::get(/*isParameterPack*/ false, Depth, GPIdx++, Ctx);
genericParams.push_back(NewGenericParam);
Requirement NewRequirement(RequirementKind::Conformance, NewGenericParam,
constraint);
requirements.push_back(NewRequirement);
ArgToGenericTypeMap.insert(
std::pair<int, GenericTypeParamType *>(Idx, NewGenericParam));
assert(ArgToGenericTypeMap.find(Idx) != ArgToGenericTypeMap.end());
}
}
/// Create the signature for the newly generated protocol constrained generic
/// function.
CanSILFunctionType
ExistentialTransform::createExistentialSpecializedFunctionType() {
auto FTy = F->getLoweredFunctionType();
SILModule &M = F->getModule();
auto &Ctx = M.getASTContext();
GenericSignature NewGenericSig;
/// If the original function is generic, then maintain the same.
auto OrigGenericSig = FTy->getInvocationGenericSignature();
SmallVector<GenericTypeParamType *, 2> GenericParams;
SmallVector<Requirement, 2> Requirements;
/// Convert existential argument types to generic argument types.
convertExistentialArgTypesToGenericArgTypes(GenericParams, Requirements);
/// Compute the updated generic signature.
NewGenericSig = buildGenericSignature(Ctx, OrigGenericSig,
std::move(GenericParams),
std::move(Requirements),
/*allowInverses=*/true);
/// Original list of parameters
SmallVector<SILParameterInfo, 4> params;
params.append(FTy->getParameters().begin(), FTy->getParameters().end());
/// Create the complete list of parameters.
int Idx = 0;
SmallVector<SILParameterInfo, 8> InterfaceParams;
InterfaceParams.reserve(params.size());
for (auto ¶m : params) {
auto iter = ArgToGenericTypeMap.find(Idx);
if (iter != ArgToGenericTypeMap.end()) {
auto GenericParam = iter->second;
InterfaceParams.push_back(SILParameterInfo(GenericParam->getReducedType(NewGenericSig),
param.getConvention()));
} else {
InterfaceParams.push_back(param);
}
Idx++;
}
// Add error results.
std::optional<SILResultInfo> InterfaceErrorResult;
if (FTy->hasErrorResult()) {
InterfaceErrorResult = FTy->getErrorResult();
}
/// Finally the ExtInfo.
auto ExtInfo = FTy->getExtInfo();
ExtInfo = ExtInfo.withRepresentation(SILFunctionTypeRepresentation::Thin);
/// Return the new signature.
return SILFunctionType::get(
NewGenericSig, ExtInfo, FTy->getCoroutineKind(),
FTy->getCalleeConvention(), InterfaceParams, FTy->getYields(),
FTy->getResults(), InterfaceErrorResult,
SubstitutionMap(), SubstitutionMap(),
Ctx);
}
/// Create the Thunk Body with always_inline attribute.
void ExistentialTransform::populateThunkBody() {
SILModule &M = F->getModule();
F->setThunk(IsSignatureOptimizedThunk);
F->setInlineStrategy(AlwaysInline);
/// Remove original body of F.
for (auto It = F->begin(), End = F->end(); It != End;) {
auto *BB = &*It++;
removeDeadBlock(BB);
}
/// Create a basic block and the function arguments.
auto *ThunkBody = F->createBasicBlock();
for (auto &ArgDesc : ArgumentDescList) {
auto argumentType = ArgDesc.Arg->getType();
auto *NewArg =
ThunkBody->createFunctionArgument(argumentType, ArgDesc.Decl);
NewArg->copyFlags(ArgDesc.Arg);
}
/// Builder to add new instructions in the Thunk.
SILBuilder Builder(ThunkBody);
Builder.setCurrentDebugScope(ThunkBody->getParent()->getDebugScope());
/// Location to insert new instructions.
auto Loc = ThunkBody->getParent()->getLocation();
/// Create the function_ref instruction to the NewF.
auto *FRI = Builder.createFunctionRefFor(Loc, NewF);
auto GenCalleeType = NewF->getLoweredFunctionType();
auto CalleeGenericSig = GenCalleeType->getInvocationGenericSignature();
auto OrigGenCalleeType = F->getLoweredFunctionType();
auto OrigCalleeGenericSig =
OrigGenCalleeType->getInvocationGenericSignature();
/// Determine arguments to Apply.
/// Generate opened existentials for generics.
SmallVector<SILValue, 8> ApplyArgs;
// Maintain a list of arg values to be destroyed. These are consumed by the
// convention and require a copy.
struct Temp {
SILValue DeallocStackEntry;
SILValue DestroyValue;
};
SmallVector<Temp, 8> Temps;
SmallDenseMap<GenericTypeParamType *, Type> GenericToOpenedTypeMap;
for (auto &ArgDesc : ArgumentDescList) {
auto iter = ArgToGenericTypeMap.find(ArgDesc.Index);
auto it = ExistentialArgDescriptor.find(ArgDesc.Index);
if (iter != ArgToGenericTypeMap.end() &&
it != ExistentialArgDescriptor.end()) {
ExistentialTransformArgumentDescriptor &ETAD = it->second;
OpenedArchetypeType *Opened;
auto OrigOperand = ThunkBody->getArgument(ArgDesc.Index);
auto SwiftType = ArgDesc.Arg->getType().getASTType();
auto OpenedType =
SwiftType
->openAnyExistentialType(Opened, F->getGenericSignature())
->getCanonicalType();
auto OpenedSILType = NewF->getLoweredType(OpenedType);
SILValue archetypeValue;
auto ExistentialRepr =
ArgDesc.Arg->getType().getPreferredExistentialRepresentation();
bool OriginallyConsumed = ETAD.isConsumed;
switch (ExistentialRepr) {
case ExistentialRepresentation::Opaque: {
archetypeValue = Builder.createOpenExistentialAddr(
Loc, OrigOperand, OpenedSILType, it->second.AccessType);
SILValue calleeArg = archetypeValue;
if (OriginallyConsumed) {
// open_existential_addr projects a borrowed address into the
// existential box. Since the callee consumes the generic value, we
// must pass in a copy.
auto *ASI =
Builder.createAllocStack(Loc, OpenedSILType);
Builder.createCopyAddr(Loc, archetypeValue, ASI, IsNotTake,
IsInitialization_t::IsInitialization);
Temps.push_back({ASI, OrigOperand});
calleeArg = ASI;
}
ApplyArgs.push_back(calleeArg);
break;
}
case ExistentialRepresentation::Class: {
// If the operand is not object type, we need an explicit load.
SILValue OrigValue = OrigOperand;
if (!OrigOperand->getType().isObject()) {
auto qual = LoadOwnershipQualifier::Take;
if (Builder.hasOwnership() && !OriginallyConsumed) {
qual = LoadOwnershipQualifier::Copy;
}
OrigValue = Builder.emitLoadValueOperation(Loc, OrigValue, qual);
} else {
if (Builder.hasOwnership() && !OriginallyConsumed) {
OrigValue = Builder.emitCopyValueOperation(Loc, OrigValue);
}
}
// OpenExistentialRef forwards ownership, so it does the right thing
// regardless of whether the argument is borrowed or consumed.
archetypeValue =
Builder.createOpenExistentialRef(Loc, OrigValue, OpenedSILType);
// If we don't have an object and we are in ossa, the store will consume
// the open_existential_ref.
if (!OrigOperand->getType().isObject()) {
SILValue ASI = Builder.createAllocStack(Loc, OpenedSILType);
Builder.emitStoreValueOperation(Loc, archetypeValue, ASI,
StoreOwnershipQualifier::Init);
Temps.push_back({ASI, SILValue()});
archetypeValue = ASI;
} else {
// Otherwise in ossa, we need to add open_existential_ref as something
// to be cleaned up. In non-ossa, we do not insert the copies, so we
// do not need to do it then.
//
// TODO: This would be simpler if we had managed value/cleanup scopes.
if (Builder.hasOwnership() && !OriginallyConsumed) {
Temps.push_back({SILValue(), archetypeValue});
}
}
ApplyArgs.push_back(archetypeValue);
break;
}
default: {
llvm_unreachable("Unhandled existential type in ExistentialTransform!");
break;
}
};
GenericToOpenedTypeMap.insert(
std::pair<GenericTypeParamType *, Type>(iter->second, OpenedType));
assert(GenericToOpenedTypeMap.find(iter->second) !=
GenericToOpenedTypeMap.end());
} else {
ApplyArgs.push_back(ThunkBody->getArgument(ArgDesc.Index));
}
}
unsigned int OrigDepth = 0;
if (F->getLoweredFunctionType()->isPolymorphic()) {
OrigDepth = OrigCalleeGenericSig.getGenericParams().back()->getDepth() + 1;
}
SubstitutionMap OrigSubMap = F->getForwardingSubstitutionMap();
/// Create substitutions for Apply instructions.
auto SubMap = SubstitutionMap::get(
CalleeGenericSig,
[&](SubstitutableType *type) -> Type {
if (auto *GP = dyn_cast<GenericTypeParamType>(type)) {
if (GP->getDepth() < OrigDepth) {
return Type(GP).subst(OrigSubMap);
} else {
auto iter = GenericToOpenedTypeMap.find(GP);
assert(iter != GenericToOpenedTypeMap.end());
return iter->second;
}
} else {
return type;
}
},
MakeAbstractConformanceForGenericType());
/// Perform the substitutions.
auto SubstCalleeType = GenCalleeType->substGenericArgs(
M, SubMap, Builder.getTypeExpansionContext());
/// Obtain the Result Type.
SILValue ReturnValue;
auto FunctionTy = NewF->getLoweredFunctionType();
SILFunctionConventions Conv(SubstCalleeType, M);
SILType ResultType = Conv.getSILResultType(Builder.getTypeExpansionContext());
/// If the original function has error results, we need to generate a
/// try_apply to call a function with an error result.
if (FunctionTy->hasErrorResult()) {
SILFunction *Thunk = ThunkBody->getParent();
SILBasicBlock *NormalBlock = Thunk->createBasicBlock();
ReturnValue =
NormalBlock->createPhiArgument(ResultType, OwnershipKind::Owned);
SILBasicBlock *ErrorBlock = Thunk->createBasicBlock();
SILType Error = Conv.getSILType(FunctionTy->getErrorResult(),
Builder.getTypeExpansionContext());
auto *ErrorArg = ErrorBlock->createPhiArgument(Error, OwnershipKind::Owned);
Builder.createTryApply(Loc, FRI, SubMap, ApplyArgs, NormalBlock,
ErrorBlock);
Builder.setInsertionPoint(ErrorBlock);
Builder.createThrow(Loc, ErrorArg);
Builder.setInsertionPoint(NormalBlock);
} else {
/// Create the Apply with substitutions
ReturnValue = Builder.createApply(Loc, FRI, SubMap, ApplyArgs);
}
auto cleanupLoc = RegularLocation::getAutoGeneratedLocation();
for (auto &Temp : llvm::reverse(Temps)) {
// The original argument was copied into a temporary and consumed by the
// callee as such:
// bb (%consumedExistential : $*Protocol)
// %valAdr = open_existential_addr %consumedExistential
// %temp = alloc_stack $T
// copy_addr %valAdr to %temp // <== Temp CopyAddr
// apply(%temp) // <== Temp is consumed by the apply
//
// Destroy the original argument and deallocation the temporary. If we have
// an address this becomes:
// destroy_addr %consumedExistential : $*Protocol
// dealloc_stack %temp : $*T
//
// Otherwise, if we had an object, we just emit a destroy_value.
if (Temp.DestroyValue)
Builder.emitDestroyOperation(cleanupLoc, Temp.DestroyValue);
if (Temp.DeallocStackEntry)
Builder.createDeallocStack(cleanupLoc, Temp.DeallocStackEntry);
}
/// Set up the return results.
if (NewF->isNoReturnFunction(Builder.getTypeExpansionContext())) {
Builder.createUnreachable(Loc);
} else {
Builder.createReturn(Loc, ReturnValue);
}
}
/// Strategy to specialize existential arguments:
/// (1) Create a protocol constrained generic function from the old function;
/// (2) Create a thunk for the original function that invokes (1) including
/// setting
/// its inline strategy as always inline.
void ExistentialTransform::createExistentialSpecializedFunction() {
std::string Name = createExistentialSpecializedFunctionName();
/// Create devirtualized function type and populate ArgToGenericTypeMap.
auto NewFTy = createExistentialSpecializedFunctionType();
/// Step 1: Create the new protocol constrained generic function.
if (auto *CachedFn = F->getModule().lookUpFunction(Name)) {
// The specialized body still exists (because it is now called directly),
// but the thunk has been dead-code eliminated.
assert(CachedFn->getLoweredFunctionType() == NewFTy);
NewF = CachedFn;
} else {
auto NewFGenericSig = NewFTy->getInvocationGenericSignature();
auto NewFGenericEnv = NewFGenericSig.getGenericEnvironment();
SILLinkage linkage = getSpecializedLinkage(F, F->getLinkage());
NewF = FunctionBuilder.createFunction(
linkage, Name, NewFTy, NewFGenericEnv, F->getLocation(), F->isBare(),
F->isTransparent(), F->getSerializedKind(), IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible, F->getEntryCount(),
F->isThunk(), F->getClassSubclassScope(), F->getInlineStrategy(),
F->getEffectsKind(), nullptr, F->getDebugScope());
/// Set the semantics attributes for the new function.
for (auto &Attr : F->getSemanticsAttrs())
NewF->addSemanticsAttr(Attr);
/// Set Unqualified ownership, if any.
if (!F->hasOwnership()) {
NewF->setOwnershipEliminated();
}
/// Step 1a: Populate the body of NewF.
SubstitutionMap Subs = SubstitutionMap::get(
NewFGenericSig,
[&](SubstitutableType *type) -> Type {
return NewFGenericEnv->mapTypeIntoContext(type);
},
LookUpConformanceInModule(F->getModule().getSwiftModule()));
ExistentialSpecializerCloner cloner(F, NewF, Subs, ArgumentDescList,
ArgToGenericTypeMap,
ExistentialArgDescriptor);
cloner.cloneAndPopulateFunction();
}
/// Step 2: Create the thunk with always_inline and populate its body.
populateThunkBody();
assert(F->getDebugScope()->Parent != NewF->getDebugScope()->Parent);
LLVM_DEBUG(llvm::dbgs() << "After ExistentialSpecializer Pass\n"; F->dump();
NewF->dump(););
}
|