1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
|
//===--- FunctionSignatureOpts.cpp - Optimizes function signatures --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This pass defines function signature related optimizations.
/// When a function signature optimization is performed, changes are made to
/// the original function and after all function signature optimizations are
/// finished, a new function is created and the old function is turned into
/// a thunk.
///
/// Another possibility is to implement these optimizations as separate passes,
/// but then we would send slightly different functions to the pass pipeline
/// multiple times through notifyPassManagerOfFunction.
///
/// TODO: Optimize function with generic parameters.
///
/// TODO: Improve epilogue release matcher, i.e. do a data flow instead of
/// only finding releases in the return block.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-function-signature-opt"
#include "FunctionSignatureOpts.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/CallerAnalysis.h"
#include "swift/SILOptimizer/Analysis/EpilogueARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumFunctionSignaturesOptimized, "Total func sig optimized");
STATISTIC(NumDeadArgsEliminated, "Total dead args eliminated");
STATISTIC(NumOwnedConvertedToGuaranteed, "Total owned args -> guaranteed args");
STATISTIC(NumOwnedConvertedToNotOwnedResult, "Total owned result -> not owned result");
STATISTIC(NumSROAArguments, "Total SROA arguments optimized");
using SILParameterInfoList = llvm::SmallVector<SILParameterInfo, 8>;
using ArgumentIndexMap = llvm::SmallDenseMap<int, int>;
//===----------------------------------------------------------------------===//
// Optimization Heuristic
//===----------------------------------------------------------------------===//
/// Set to true to enable the support for partial specialization.
static llvm::cl::opt<bool>
FSOEnableGenerics("sil-fso-enable-generics", llvm::cl::init(true),
llvm::cl::desc("Support function signature optimization "
"of generic functions"));
static llvm::cl::opt<bool>
FSOOptimizeIfNotCalled("sil-fso-optimize-if-not-called",
llvm::cl::init(false),
llvm::cl::desc("Optimize even if a function isn't "
"called. For testing only!"));
static bool isSpecializableRepresentation(SILFunctionTypeRepresentation Rep,
bool OptForPartialApply) {
switch (Rep) {
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::CXXMethod:
case SILFunctionTypeRepresentation::KeyPathAccessorGetter:
case SILFunctionTypeRepresentation::KeyPathAccessorSetter:
case SILFunctionTypeRepresentation::KeyPathAccessorEquals:
case SILFunctionTypeRepresentation::KeyPathAccessorHash:
return true;
case SILFunctionTypeRepresentation::WitnessMethod:
return OptForPartialApply;
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::Block:
return false;
}
llvm_unreachable("Unhandled SILFunctionTypeRepresentation in switch.");
}
/// Returns true if F is a function which the pass knows how to specialize
/// function signatures for.
static bool canSpecializeFunction(SILFunction *F,
const CallerAnalysis::FunctionInfo *FuncInfo,
bool OptForPartialApply) {
// Do not specialize the signature of SILFunctions that are external
// declarations since there is no body to optimize.
if (F->isExternalDeclaration())
return false;
// For now ignore functions with indirect results.
if (F->getConventions().hasIndirectSILResults())
return false;
// For now ignore functions with indirect error results.
if (F->getConventions().hasIndirectSILErrorResults())
return false;
// For now ignore coroutines.
if (F->getLoweredFunctionType()->isCoroutine())
return false;
// Do not specialize the signature of always inline functions. We
// will just inline them and specialize each one of the individual
// functions that these sorts of functions are inlined into.
// It is OK to specialize always inline functions if they are
// used by partial_apply instructions.
assert(!OptForPartialApply || FuncInfo);
if (F->getInlineStrategy() == Inline_t::AlwaysInline &&
(!OptForPartialApply || !FuncInfo->getMinPartialAppliedArgs()))
return false;
// For now ignore generic functions to keep things simple...
if (!FSOEnableGenerics && F->getLoweredFunctionType()->isPolymorphic())
return false;
// Make sure F has a linkage that we can optimize.
if (!isSpecializableRepresentation(F->getRepresentation(),
OptForPartialApply))
return false;
// Cannot specialize witnesses of distributed protocol requirements with
// ad-hoc `SerializationRequirement` because that erases information
// IRGen relies on to emit protocol conformances at runtime.
if (F->hasLocation()) {
if (auto *funcDecl =
dyn_cast_or_null<FuncDecl>(F->getLocation().getAsDeclContext())) {
if (funcDecl->isDistributedWitnessWithAdHocSerializationRequirement())
return false;
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Function Signature Transform Descriptor
//===----------------------------------------------------------------------===//
void FunctionSignatureTransformDescriptor::addThunkArgument(
ArgumentDescriptor &AD, SILBuilder &Builder, SILBasicBlock *BB,
llvm::SmallVectorImpl<SILValue> &NewArgs) {
// Dead argument.
if (AD.IsEntirelyDead) {
return;
}
// Explode the argument.
if (AD.Explode) {
llvm::SmallVector<SILValue, 4> LeafValues;
AD.ProjTree.createTreeFromValue(Builder, BB->getParent()->getLocation(),
BB->getArgument(AD.Index), LeafValues);
NewArgs.append(LeafValues.begin(), LeafValues.end());
return;
}
// All other arguments get pushed as what they are.
NewArgs.push_back(BB->getArgument(AD.Index));
}
std::string
FunctionSignatureTransformDescriptor::createOptimizedSILFunctionName() {
SILFunction *F = OriginalFunction;
auto P = Demangle::SpecializationPass::FunctionSignatureOpts;
Mangle::FunctionSignatureSpecializationMangler Mangler(
P, F->getSerializedKind(), F);
// Handle arguments' changes.
for (unsigned i : indices(ArgumentDescList)) {
const ArgumentDescriptor &Arg = ArgumentDescList[i];
if (Arg.IsEntirelyDead) {
Mangler.setArgumentDead(i);
// No point setting other attribute if argument is dead.
continue;
}
// If we have an @owned argument and found a callee release for it,
// convert the argument to guaranteed.
if (Arg.OwnedToGuaranteed) {
Mangler.setArgumentOwnedToGuaranteed(i);
}
// If this argument is not dead and we can explode it, add 's' to the
// mangling.
if (Arg.Explode) {
Mangler.setArgumentSROA(i);
}
}
// Handle return value's change.
// FIXME: handle multiple direct results here
if (ResultDescList.size() == 1 && !ResultDescList[0].CalleeRetain.empty()) {
Mangler.setReturnValueOwnedToUnowned();
}
return Mangler.mangle();
}
/// Collect all archetypes used by a function.
static bool usesGenerics(SILFunction *F,
ArrayRef<SILParameterInfo> InterfaceParams,
ArrayRef<SILResultInfo> InterfaceResults) {
CanSILFunctionType FTy = F->getLoweredFunctionType();
auto HasGenericSignature = FTy->getInvocationGenericSignature() != nullptr;
if (!HasGenericSignature)
return false;
bool UsesGenerics = false;
auto FindArchetypesAndGenericTypes = [FTy, &UsesGenerics](Type Ty) {
if (Ty.findIf([FTy](Type Ty) -> bool {
// Assume archetypes are always a problem.
// TODO: This can ignore non-contextual archetypes.
if (Ty->hasArchetype()) return true;
// Assume type parameters are always a problem. However, this
// can ignore types that would substitute to concrete types.
if (Ty->isTypeParameter()) {
auto subs = FTy->getPatternSubstitutions();
return (!subs || Ty.subst(subs)->isTypeParameter());
}
return false;
}))
UsesGenerics = true;
};
for (auto Param : InterfaceParams) {
Param.getInterfaceType().visit(FindArchetypesAndGenericTypes);
}
for (auto Result : InterfaceResults) {
Result.getInterfaceType().visit(FindArchetypesAndGenericTypes);
}
if (UsesGenerics)
return UsesGenerics;
for (auto &BB : *F) {
for (auto &I : BB) {
for (auto Arg : BB.getArguments()) {
if (&BB != &*F->begin()) {
// Scan types of all BB arguments. Ignore the entry BB, because
// it is handled in a special way.
Arg->getType().getASTType().visit(FindArchetypesAndGenericTypes);
if (UsesGenerics)
return UsesGenerics;
}
}
// Scan types of all operands.
for (auto &Op : I.getAllOperands()) {
Op.get()->getType().getASTType().visit(FindArchetypesAndGenericTypes);
}
// Scan all substitutions of apply instructions.
if (auto AI = ApplySite::isa(&I)) {
auto Subs = AI.getSubstitutionMap();
for (auto Replacement : Subs.getReplacementTypes()) {
Replacement.visit(FindArchetypesAndGenericTypes);
}
}
// Scan all substitutions of builtin instructions.
if (auto *BI = dyn_cast<BuiltinInst>(&I)) {
auto Subs = BI->getSubstitutions();
for (auto Ty : Subs.getReplacementTypes()) {
Ty.visit(FindArchetypesAndGenericTypes);
}
}
// Scan the result type of the instruction.
for (auto V : I.getResults()) {
V->getType().getASTType().visit(FindArchetypesAndGenericTypes);
}
if (UsesGenerics)
return UsesGenerics;
}
}
return UsesGenerics;
}
// Map the parameter, result and error types out of context to get the interface
// type.
static void
mapInterfaceTypes(SILFunction *F,
MutableArrayRef<SILParameterInfo> InterfaceParams,
MutableArrayRef<SILResultInfo> InterfaceResults,
std::optional<SILResultInfo> &InterfaceErrorResult) {
for (auto &Param : InterfaceParams) {
if (!Param.getInterfaceType()->hasArchetype())
continue;
Param = SILParameterInfo(
Param.getInterfaceType()->mapTypeOutOfContext()->getCanonicalType(),
Param.getConvention());
}
for (auto &Result : InterfaceResults) {
if (!Result.getInterfaceType()->hasArchetype())
continue;
auto InterfaceResult = Result.getWithInterfaceType(
Result.getInterfaceType()->mapTypeOutOfContext()->getCanonicalType());
Result = InterfaceResult;
}
if (InterfaceErrorResult.has_value()) {
if (InterfaceErrorResult.value().getInterfaceType()->hasArchetype()) {
InterfaceErrorResult =
SILResultInfo(InterfaceErrorResult.value()
.getInterfaceType()
->mapTypeOutOfContext()
->getCanonicalType(),
InterfaceErrorResult.value().getConvention());
}
}
}
CanSILFunctionType
FunctionSignatureTransformDescriptor::createOptimizedSILFunctionType() {
SILFunction *F = OriginalFunction;
CanSILFunctionType FTy = F->getLoweredFunctionType();
auto ExpectedFTy = F->getLoweredType().castTo<SILFunctionType>();
auto HasGenericSignature = FTy->getSubstGenericSignature() != nullptr;
// The only way that we modify the arity of function parameters is here for
// dead arguments. Doing anything else is unsafe since by definition non-dead
// arguments will have SSA uses in the function. We would need to be smarter
// in our moving to handle such cases.
llvm::SmallVector<SILParameterInfo, 8> InterfaceParams;
for (auto &ArgDesc : ArgumentDescList) {
computeOptimizedArgInterface(ArgDesc, InterfaceParams);
}
// ResultDescs only covers the direct results; we currently can't ever
// change an indirect result. Piece the modified direct result information
// back into the all-results list.
llvm::SmallVector<SILResultInfo, 8> InterfaceResults;
for (SILResultInfo InterfaceResult : FTy->getResults()) {
if (InterfaceResult.isFormalDirect()) {
auto &RV = ResultDescList[0];
if (!RV.CalleeRetain.empty()) {
++NumOwnedConvertedToNotOwnedResult;
InterfaceResults.push_back(SILResultInfo(InterfaceResult.getInterfaceType(),
ResultConvention::Unowned));
continue;
}
}
InterfaceResults.push_back(InterfaceResult);
}
llvm::SmallVector<SILYieldInfo, 8> InterfaceYields;
for (SILYieldInfo InterfaceYield : FTy->getYields()) {
// For now, don't touch the yield types.
InterfaceYields.push_back(InterfaceYield);
}
bool UsesGenerics = false;
if (HasGenericSignature) {
// Not all of the generic type parameters are used by the function
// parameters.
// Check which of the generic type parameters are not used and check if they
// are used anywhere in the function body. If this is not the case, we can
// remove the unused generic type parameters from the generic signature.
// This makes the code both smaller and faster, because no implicit
// parameters for type metadata and conformances need to be passed to the
// callee at the LLVM IR level.
// TODO: Implement a more precise analysis, so that we can eliminate only
// those generic parameters which are not used.
UsesGenerics = usesGenerics(F, InterfaceParams, InterfaceResults);
// The set of used archetypes is complete now.
if (!UsesGenerics) {
// None of the generic type parameters are used.
LLVM_DEBUG(llvm::dbgs() << "None of generic parameters are used by "
<< F->getName() << "\n";
llvm::dbgs() << "Interface params:\n";
for (auto Param : InterfaceParams) {
Param.getInterfaceType().dump(llvm::dbgs());
}
llvm::dbgs() << "Interface results:\n";
for (auto Result : InterfaceResults) {
Result.getInterfaceType().dump(llvm::dbgs());
});
}
}
// Don't use a method representation if we modified self.
auto ExtInfo = FTy->getExtInfo();
auto witnessMethodConformance = FTy->getWitnessMethodConformanceOrInvalid();
if (shouldModifySelfArgument) {
ExtInfo = ExtInfo.withRepresentation(SILFunctionTypeRepresentation::Thin);
witnessMethodConformance = ProtocolConformanceRef::forInvalid();
}
std::optional<SILResultInfo> InterfaceErrorResult;
if (ExpectedFTy->hasErrorResult()) {
InterfaceErrorResult = ExpectedFTy->getErrorResult();
}
// Map the parameter, result and error types out of context to get the
// proper interface type. This is required for generic functions.
mapInterfaceTypes(F, InterfaceParams, InterfaceResults, InterfaceErrorResult);
GenericSignature GenericSig =
UsesGenerics ? FTy->getInvocationGenericSignature() : nullptr;
return SILFunctionType::get(
GenericSig, ExtInfo, FTy->getCoroutineKind(), FTy->getCalleeConvention(),
InterfaceParams, InterfaceYields, InterfaceResults, InterfaceErrorResult,
FTy->getPatternSubstitutions(), SubstitutionMap(),
F->getModule().getASTContext(), witnessMethodConformance);
}
/// Compute what the function interface will look like based on the
/// optimization we are doing on the given argument descriptor. Default
/// implementation simply passes it through.
void FunctionSignatureTransformDescriptor::computeOptimizedArgInterface(
ArgumentDescriptor &AD, SmallVectorImpl<SILParameterInfo> &Out) {
// If this argument is live, but we cannot optimize it.
if (!AD.canOptimizeLiveArg()) {
if (AD.PInfo.has_value())
Out.push_back(AD.PInfo.value());
return;
}
// If we have a dead argument, bail.
if (AD.IsEntirelyDead) {
++NumDeadArgsEliminated;
return;
}
// Explode the argument or not ?
if (AD.Explode) {
++NumSROAArguments;
llvm::SmallVector<const ProjectionTreeNode *, 8> LeafNodes;
AD.ProjTree.getLiveLeafNodes(LeafNodes);
for (auto Node : LeafNodes) {
SILType Ty = Node->getType();
LLVM_DEBUG(llvm::dbgs() << " " << Ty << "\n");
// If Ty is trivial, just pass it directly.
if (Ty.isTrivial(*AD.Arg->getFunction())) {
SILParameterInfo NewInfo(Ty.getASTType(),
ParameterConvention::Direct_Unowned);
Out.push_back(NewInfo);
continue;
}
// Ty is not trivial, pass it through as the original calling convention.
auto ParameterConvention = AD.PInfo.value().getConvention();
if (AD.OwnedToGuaranteed) {
if (ParameterConvention == ParameterConvention::Direct_Owned)
ParameterConvention = ParameterConvention::Direct_Guaranteed;
else if (ParameterConvention == ParameterConvention::Indirect_In)
ParameterConvention = ParameterConvention::Indirect_In_Guaranteed;
else {
llvm_unreachable("Unknown parameter convention transformation");
}
}
SILParameterInfo NewInfo(Ty.getASTType(), ParameterConvention);
Out.push_back(NewInfo);
}
return;
}
// If we cannot explode this value, handle callee release and return.
// If we found releases in the callee in the last BB on an @owned
// parameter, change the parameter to @guaranteed and continue...
if (AD.OwnedToGuaranteed) {
++NumOwnedConvertedToGuaranteed;
auto ParameterConvention = AD.PInfo.value().getConvention();
if (ParameterConvention == ParameterConvention::Direct_Owned)
ParameterConvention = ParameterConvention::Direct_Guaranteed;
else if (ParameterConvention == ParameterConvention::Indirect_In)
ParameterConvention = ParameterConvention::Indirect_In_Guaranteed;
else {
llvm_unreachable("Unknown parameter convention transformation");
}
SILParameterInfo NewInfo(AD.PInfo.value().getInterfaceType(),
ParameterConvention);
Out.push_back(NewInfo);
return;
}
// Otherwise just propagate through the parameter info.
Out.push_back(AD.PInfo.value());
}
//===----------------------------------------------------------------------===//
// Function Signature Transform
//===----------------------------------------------------------------------===//
void FunctionSignatureTransform::createFunctionSignatureOptimizedFunction() {
// Create the optimized function!
SILFunction *F = TransformDescriptor.OriginalFunction;
SILModule &M = F->getModule();
std::string Name = TransformDescriptor.createOptimizedSILFunctionName();
// The transformed function must not already exist. This would indicate
// repeated application of FSO on the same function. That situation should be
// detected earlier by avoiding reoptimization of FSO thunks.
assert(!F->getModule().hasFunction(Name));
SILLinkage linkage = getSpecializedLinkage(F, F->getLinkage());
LLVM_DEBUG(llvm::dbgs() << " -> create specialized function " << Name
<< "\n");
auto NewFTy = TransformDescriptor.createOptimizedSILFunctionType();
GenericEnvironment *NewFGenericEnv;
if (NewFTy->getInvocationGenericSignature()) {
NewFGenericEnv = F->getGenericEnvironment();
} else {
NewFGenericEnv = nullptr;
}
// The specialized function is an internal detail, so we need to disconnect it
// from a parent class, if one exists, thus the override of the
// classSubclassScope.
TransformDescriptor.OptimizedFunction = FunctionBuilder.createFunction(
linkage, Name, NewFTy, NewFGenericEnv, F->getLocation(), F->isBare(),
F->isTransparent(), F->getSerializedKind(), IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible, F->getEntryCount(),
F->isThunk(),
/*classSubclassScope=*/SubclassScope::NotApplicable,
F->getInlineStrategy(), F->getEffectsKind(), nullptr, F->getDebugScope());
SILFunction *NewF = TransformDescriptor.OptimizedFunction.get();
if (!F->hasOwnership()) {
NewF->setOwnershipEliminated();
}
if (F->isSpecialization()) {
NewF->setSpecializationInfo(F->getSpecializationInfo());
}
// Then we transfer the body of F to NewF.
NewF->moveAllBlocksFromOtherFunction(F);
// Array semantic clients rely on the signature being as in the original
// version.
for (auto &Attr : F->getSemanticsAttrs()) {
if (!StringRef(Attr).starts_with("array."))
NewF->addSemanticsAttr(Attr);
}
// Do the last bit of work to the newly created optimized function.
DeadArgumentFinalizeOptimizedFunction();
ArgumentExplosionFinalizeOptimizedFunction();
// Update the ownership kinds of function entry BB arguments.
for (auto Arg : NewF->begin()->getSILFunctionArguments()) {
SILType MappedTy = Arg->getType();
auto Ownershipkind =
ValueOwnershipKind(*NewF, MappedTy, Arg->getArgumentConvention());
Arg->setOwnershipKind(Ownershipkind);
}
// Create the thunk body !
F->setThunk(IsSignatureOptimizedThunk);
// The thunk now carries the information on how the signature is
// optimized. If we inline the thunk, we will get the benefit of calling
// the signature optimized function without additional setup on the
// caller side.
F->setInlineStrategy(AlwaysInline);
SILBasicBlock *ThunkBody = F->createBasicBlock();
for (auto &ArgDesc : TransformDescriptor.ArgumentDescList) {
auto *NewArg =
ThunkBody->createFunctionArgument(ArgDesc.Arg->getType(), ArgDesc.Decl);
NewArg->copyFlags(ArgDesc.Arg);
}
SILLocation Loc = RegularLocation::getAutoGeneratedLocation();
SILBuilder Builder(ThunkBody);
Builder.setCurrentDebugScope(ThunkBody->getParent()->getDebugScope());
FunctionRefInst *FRI = Builder.createFunctionRef(Loc, NewF);
// Create the args for the thunk's apply, ignoring any dead arguments.
llvm::SmallVector<SILValue, 8> ThunkArgs;
for (auto &ArgDesc : TransformDescriptor.ArgumentDescList) {
TransformDescriptor.addThunkArgument(ArgDesc, Builder, ThunkBody,
ThunkArgs);
}
SILValue ReturnValue;
SILType LoweredType = NewF->getLoweredType();
SILType ResultType = NewF->getConventions().getSILResultType(
Builder.getTypeExpansionContext());
auto GenCalleeType = NewF->getLoweredFunctionType();
auto SubstCalleeSILType = LoweredType;
SubstitutionMap Subs;
// Handle generic functions.
if (GenCalleeType->isPolymorphic()) {
// Produce a substitutions list and a set of substituted SIL types
// required for creating a new SIL function.
Subs = F->getForwardingSubstitutionMap();
auto SubstCalleeType = GenCalleeType->substGenericArgs(
M, Subs, Builder.getTypeExpansionContext());
SubstCalleeSILType = SILType::getPrimitiveObjectType(SubstCalleeType);
SILFunctionConventions Conv(SubstCalleeType, M);
ResultType = Conv.getSILResultType(Builder.getTypeExpansionContext());
}
auto FunctionTy = LoweredType.castTo<SILFunctionType>();
if (FunctionTy->hasErrorResult()) {
// We need a try_apply to call a function with an error result.
SILFunction *Thunk = ThunkBody->getParent();
SILBasicBlock *NormalBlock = Thunk->createBasicBlock();
ReturnValue =
NormalBlock->createPhiArgument(ResultType, OwnershipKind::Owned);
SILBasicBlock *ErrorBlock = Thunk->createBasicBlock();
SILType Error =
SILType::getPrimitiveObjectType(FunctionTy->getErrorResult().getInterfaceType());
auto *ErrorArg = ErrorBlock->createPhiArgument(Error, OwnershipKind::Owned);
Builder.createTryApply(Loc, FRI, Subs, ThunkArgs, NormalBlock, ErrorBlock);
Builder.setInsertionPoint(ErrorBlock);
Builder.createThrow(Loc, ErrorArg);
Builder.setInsertionPoint(NormalBlock);
} else {
ReturnValue = Builder.createApply(Loc, FRI, Subs, ThunkArgs);
}
// Set up the return results.
if (NewF->isNoReturnFunction(Builder.getTypeExpansionContext())) {
Builder.createUnreachable(Loc);
} else {
Builder.createReturn(Loc, ReturnValue);
}
// Do the last bit work to finalize the thunk.
OwnedToGuaranteedFinalizeThunkFunction(Builder, F);
assert(F->getDebugScope()->Parent != NewF->getDebugScope()->Parent);
}
// Run the optimization.
bool FunctionSignatureTransform::run(bool hasCaller) {
// We use a reference here on purpose so our transformations can know if we
// are going to make a thunk and thus should just optimize.
bool &Changed = TransformDescriptor.Changed;
bool hasOnlyDirectInModuleCallers =
TransformDescriptor.hasOnlyDirectInModuleCallers;
SILFunction *F = TransformDescriptor.OriginalFunction;
// If we are asked to assume a caller for testing purposes, set the flag.
hasCaller |= FSOOptimizeIfNotCalled;
if (!hasCaller && (F->getDynamicallyReplacedFunction() ||
F->getReferencedAdHocRequirementWitnessFunction() ||
canBeCalledIndirectly(F->getRepresentation()))) {
LLVM_DEBUG(llvm::dbgs() << " function has no caller -> abort\n");
return false;
}
// Bail if we have a pseudo-generic function. We do not handle these today. If
// we let it through here we crash when attempting to compute the optimized
// function type.
//
// TODO: Add support for this.
if (F->getLoweredFunctionType()->isPseudogeneric()) {
LLVM_DEBUG(llvm::dbgs() << " function is pseudo-generic -> abort\n");
return false;
}
// Run OwnedToGuaranteed optimization.
if (OwnedToGuaranteedAnalyze()) {
Changed = true;
LLVM_DEBUG(llvm::dbgs() << " transform owned-to-guaranteed\n");
OwnedToGuaranteedTransform();
}
// Run DeadArgument elimination transformation. We only specialize
// if this function has a caller inside the current module or we have
// already created a thunk.
if ((hasCaller || Changed || hasOnlyDirectInModuleCallers) &&
DeadArgumentAnalyzeParameters()) {
Changed = true;
LLVM_DEBUG(llvm::dbgs() << " remove dead arguments\n");
DeadArgumentTransformFunction();
}
// Run ArgumentExplosion transformation. We only specialize
// if this function has a caller inside the current module or we have
// already created a thunk.
//
// NOTE: we run argument explosion last because we've already initialized
// the ArgumentDescList to have unexploded number of arguments. Exploding
// it without changing the argument count is not going to help with
// owned-to-guaranteed transformation.
//
// In order to not miss any opportunity, we send the optimized function
// to the passmanager to optimize any opportunities exposed by argument
// explosion.
if ((hasCaller || Changed || hasOnlyDirectInModuleCallers) &&
ArgumentExplosionAnalyzeParameters()) {
Changed = true;
}
// Check if generic signature of the function could be changed by
// removed some unused generic arguments.
if (F->getLoweredFunctionType()->isPolymorphic() &&
TransformDescriptor.createOptimizedSILFunctionType() !=
F->getLoweredFunctionType()) {
Changed = true;
}
// Create the specialized function and invalidate the old function.
if (Changed) {
createFunctionSignatureOptimizedFunction();
}
return Changed;
}
// Run dead argument elimination of partially applied functions.
//
// After this optimization CapturePropagation can replace the partial_apply by a
// direct reference to the specialized function.
bool FunctionSignatureTransform::removeDeadArgs(int minPartialAppliedArgs) {
if (minPartialAppliedArgs < 1)
return false;
if (!DeadArgumentAnalyzeParameters())
return false;
SILFunction *F = TransformDescriptor.OriginalFunction;
auto ArgumentDescList = TransformDescriptor.ArgumentDescList;
// Check if at least the minimum number of partially applied arguments
// are dead. Otherwise no partial_apply can be removed anyway.
unsigned Size = ArgumentDescList.size();
for (unsigned Idx : range(Size)) {
if (Idx < Size - minPartialAppliedArgs) {
// Don't remove arguments other than the partial applied ones, even if
// they are dead.
ArgumentDescList[Idx].IsEntirelyDead = false;
continue;
}
// Is the partially applied argument dead?
if (!ArgumentDescList[Idx].IsEntirelyDead)
return false;
// Currently we require that all dead parameters have trivial types. The
// reason is that it's very hard to find places where we can release those
// parameters (as a replacement for the removed partial_apply).
//
// TODO: Maybe we can skip this restriction when we have semantic ARC.
if (ArgumentDescList[Idx].Arg->getType().isTrivial(*F))
continue;
return false;
}
LLVM_DEBUG(llvm::dbgs() << " remove dead arguments for partial_apply\n");
DeadArgumentTransformFunction();
createFunctionSignatureOptimizedFunction();
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Entry Point
//===----------------------------------------------------------------------===//
namespace {
class FunctionSignatureOpts : public SILFunctionTransform {
/// If true, perform a special kind of dead argument elimination to enable
/// removal of partial_apply instructions where all partially applied
/// arguments are dead.
bool OptForPartialApply;
public:
FunctionSignatureOpts(bool OptForPartialApply) :
OptForPartialApply(OptForPartialApply) { }
void run() override {
auto *F = getFunction();
// Don't run function signature optimizations at -Os.
if (F->optimizeForSize())
return;
// Don't optimize callees that should not be optimized.
if (!F->shouldOptimize())
return;
if (F->isDynamicallyReplaceable())
return;
// This is the function to optimize.
LLVM_DEBUG(llvm::dbgs() << "*** FSO on function: " << F->getName()
<< " ***\n");
// Check the signature of F to make sure that it is a function that we
// can specialize. These are conditions independent of the call graph.
// No need for CallerAnalysis if we are not optimizing for partial
// applies.
if (!OptForPartialApply &&
!canSpecializeFunction(F, nullptr, OptForPartialApply)) {
LLVM_DEBUG(llvm::dbgs() << " cannot specialize function -> abort\n");
return;
}
const CallerAnalysis *CA = PM->getAnalysis<CallerAnalysis>();
const CallerAnalysis::FunctionInfo &FuncInfo = CA->getFunctionInfo(F);
// Check the signature of F to make sure that it is a function that we
// can specialize. These are conditions independent of the call graph.
if (OptForPartialApply &&
!canSpecializeFunction(F, &FuncInfo, OptForPartialApply)) {
LLVM_DEBUG(llvm::dbgs() << " cannot specialize function -> abort\n");
return;
}
// Never repeat the same function signature optimization on the same
// function. Multiple function signature optimizations are composed by
// successively optimizing the newly created functions. Each optimization
// creates a new level of thunk which are all ultimately inlined away.
//
// This happens, for example, when a reference to the original function is
// discovered during devirtualization. That will cause the original function
// (now an FSO thunk) to be pushed back on the function pass pipeline.
if (F->isThunk() == IsSignatureOptimizedThunk) {
LLVM_DEBUG(llvm::dbgs() << " FSO already performed on this thunk\n");
return;
}
// Ok, we think we can perform optimization. Now perform a quick check
auto *RCIA = getAnalysis<RCIdentityAnalysis>();
auto *EA = PM->getAnalysis<EpilogueARCAnalysis>();
// As we optimize the function more and more, the name of the function is
// going to change, make sure the mangler is aware of all the changes done
// to the function.
auto P = Demangle::SpecializationPass::FunctionSignatureOpts;
Mangle::FunctionSignatureSpecializationMangler Mangler(
P, F->getSerializedKind(), F);
/// Keep a map between the exploded argument index and the original argument
/// index.
llvm::SmallDenseMap<int, int> AIM;
int asize = F->begin()->getArguments().size();
for (unsigned i : range(asize)) {
AIM[i] = i;
}
// Allocate the argument and result descriptors.
llvm::SpecificBumpPtrAllocator<ProjectionTreeNode> Allocator;
llvm::SmallVector<ArgumentDescriptor, 4> ArgumentDescList;
llvm::SmallVector<ResultDescriptor, 4> ResultDescList;
auto Args = F->begin()->getSILFunctionArguments();
for (unsigned i : indices(Args)) {
ArgumentDescList.emplace_back(Args[i], Allocator);
}
for (SILResultInfo IR : F->getLoweredFunctionType()->getResults()) {
ResultDescList.emplace_back(IR);
}
SILOptFunctionBuilder FuncBuilder(*this);
// Owned to guaranteed optimization.
FunctionSignatureTransform FST(FuncBuilder, F, RCIA, EA, Mangler, AIM,
ArgumentDescList, ResultDescList,
FuncInfo.foundAllCallers());
bool Changed = false;
if (OptForPartialApply) {
Changed = FST.removeDeadArgs(FuncInfo.getMinPartialAppliedArgs());
} else {
Changed = FST.run(FuncInfo.hasDirectCaller());
}
if (!Changed) {
return;
}
++NumFunctionSignaturesOptimized;
// The old function must be a thunk now.
assert(F->isThunk() && "Old function should have been turned into a thunk");
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
// Make sure the PM knows about this function. This will also help us
// with self-recursion.
addFunctionToPassManagerWorklist(FST.getOptimizedFunction(), F);
if (!OptForPartialApply) {
// We have to restart the pipeline for this thunk in order to run the
// inliner (and other opts) again. This is important if the new
// specialized function (which is called from this thunk) is
// function-signature-optimized again and also becomes an
// always-inline-thunk.
restartPassPipeline();
}
}
};
} // end anonymous namespace
SILTransform *swift::createFunctionSignatureOpts() {
return new FunctionSignatureOpts(/* OptForPartialApply */ false);
}
SILTransform *swift::createDeadArgSignatureOpt() {
return new FunctionSignatureOpts(/* OptForPartialApply */ true);
}
|