1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
//===--- CapturePropagation.cpp - Propagate closure capture constants -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "capture-prop"
#include "swift/AST/GenericEnvironment.h"
#include "swift/Demangling/Demangle.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/TypeSubstCloner.h"
#include "swift/SILOptimizer/Analysis/ColdBlockInfo.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumCapturesPropagated, "Number of constant captures propagated");
namespace {
/// Propagate constants through closure captures by specializing the partially
/// applied function.
/// Also optimize away partial_apply instructions where all partially applied
/// arguments are dead.
class CapturePropagation : public SILFunctionTransform
{
public:
void run() override;
protected:
bool optimizePartialApply(PartialApplyInst *PAI);
SILFunction *specializeConstClosure(PartialApplyInst *PAI,
SILFunction *SubstF);
void rewritePartialApply(PartialApplyInst *PAI, SILFunction *SpecialF);
};
} // end anonymous namespace
static SILInstruction *getConstant(SILValue V) {
if (auto I = dyn_cast<ThinToThickFunctionInst>(V))
return getConstant(I->getOperand());
if (auto I = dyn_cast<ConvertFunctionInst>(V))
return getConstant(I->getOperand());
if (auto *SLI = dyn_cast<StringLiteralInst>(V)) {
// We do not optimize string literals of length > 32 since we would need to
// encode them into the symbol name for uniqueness.
if (SLI->getValue().size() > 32)
return nullptr;
return SLI;
}
if (auto *lit = dyn_cast<LiteralInst>(V))
return lit;
if (auto *kp = dyn_cast<KeyPathInst>(V)) {
// We could support operands, if they are constants, to enable propagation
// of subscript keypaths. This would require to add the operands in the
// mangling scheme.
// But currently it's not worth it because we do not optimize subscript
// keypaths in SILCombine.
if (kp->getPatternOperands().size() != 0)
return nullptr;
if (!kp->hasPattern())
return nullptr;
if (kp->getSubstitutions().hasAnySubstitutableParams())
return nullptr;
return kp;
}
return nullptr;
}
static std::string getClonedName(PartialApplyInst *PAI,
SerializedKind_t Serialized, SILFunction *F) {
auto P = Demangle::SpecializationPass::CapturePropagation;
Mangle::FunctionSignatureSpecializationMangler Mangler(P, Serialized, F);
// We know that all arguments are literal insts.
unsigned argIdx = ApplySite(PAI).getCalleeArgIndexOfFirstAppliedArg();
for (auto arg : PAI->getArguments()) {
Mangler.setArgumentConstantProp(argIdx, getConstant(arg));
++argIdx;
}
return Mangler.mangle();
}
namespace {
/// Clone the partially applied function, replacing incoming arguments with
/// literal constants.
///
/// The cloned literals will retain the SILLocation from the partial apply's
/// caller, so the cloned function will have a mix of locations from different
/// functions.
class CapturePropagationCloner
: public TypeSubstCloner<CapturePropagationCloner, SILOptFunctionBuilder> {
using SuperTy =
TypeSubstCloner<CapturePropagationCloner, SILOptFunctionBuilder>;
friend class SILInstructionVisitor<CapturePropagationCloner>;
friend class SILCloner<CapturePropagationCloner>;
SILFunction *OrigF;
bool IsCloningConstant;
public:
CapturePropagationCloner(SILFunction *OrigF, SILFunction *NewF,
SubstitutionMap Subs)
: SuperTy(*NewF, *OrigF, Subs), OrigF(OrigF), IsCloningConstant(false) {}
void cloneClosure(OperandValueArrayRef Args);
protected:
/// Literals cloned from the caller drop their location so the debug line
/// tables don't senselessly jump around. As a placeholder give them the
/// location of the newly cloned function.
SILLocation remapLocation(SILLocation InLoc) {
if (IsCloningConstant)
return getBuilder().getFunction().getLocation();
return InLoc;
}
/// Literals cloned from the caller take on the new function's debug scope.
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
assert(IsCloningConstant == (Orig->getFunction() != OrigF) &&
"Expect only cloned constants from the caller function.");
SILClonerWithScopes<CapturePropagationCloner>::postProcess(Orig, Cloned);
}
const SILDebugScope *remapScope(const SILDebugScope *DS) {
if (IsCloningConstant)
return getBuilder().getFunction().getDebugScope();
else
return SILClonerWithScopes<CapturePropagationCloner>::remapScope(DS);
}
void cloneConstValue(SILValue Const);
};
} // end anonymous namespace
/// Clone a constant value. Recursively walk the operand chain through cast
/// instructions to ensure that all dependents are cloned. Note that the
/// original value may not belong to the same function as the one being cloned
/// by cloneClosure() (they may be from the partial apply caller).
void CapturePropagationCloner::cloneConstValue(SILValue Val) {
assert(IsCloningConstant && "incorrect mode");
if (isValueCloned(Val))
return;
// TODO: MultiValueInstruction?
auto Inst = dyn_cast<SingleValueInstruction>(Val);
if (!Inst)
return;
if (Inst->getNumOperands() > 0) {
// Only handle single operands for simple recursion without a worklist.
assert(Inst->getNumOperands() == 1 && "expected single-operand cast");
cloneConstValue(Inst->getOperand(0));
}
visit(Inst);
}
/// Clone the original partially applied function into the new specialized
/// function, replacing some arguments with literals.
void CapturePropagationCloner::cloneClosure(
OperandValueArrayRef PartialApplyArgs) {
SILFunction &CloneF = getBuilder().getFunction();
// Create the entry basic block with the function arguments.
SILBasicBlock *OrigEntryBB = &*OrigF->begin();
SILBasicBlock *ClonedEntryBB = CloneF.createBasicBlock();
auto cloneConv = CloneF.getConventions();
// Only clone the arguments that remain in the new function type. The trailing
// arguments are now propagated through the partial apply.
assert(!IsCloningConstant && "incorrect mode");
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(OrigEntryBB->getArguments().size());
unsigned ArgIdx = 0;
for (unsigned NewArgEnd = cloneConv.getNumSILArguments(); ArgIdx != NewArgEnd;
++ArgIdx) {
SILArgument *Arg = OrigEntryBB->getArgument(ArgIdx);
auto *MappedValue = ClonedEntryBB->createFunctionArgument(
remapType(Arg->getType()), Arg->getDecl());
MappedValue->copyFlags(cast<SILFunctionArgument>(Arg));
entryArgs.push_back(MappedValue);
}
assert(OrigEntryBB->args_size() - ArgIdx == PartialApplyArgs.size()
&& "unexpected number of partial apply arguments");
// Replace the rest of the old arguments with constants.
getBuilder().setInsertionPoint(ClonedEntryBB);
IsCloningConstant = true;
llvm::SmallVector<KeyPathInst *, 8> toDestroy;
for (SILValue PartialApplyArg : PartialApplyArgs) {
assert(getConstant(PartialApplyArg) &&
"expected a constant arg to partial apply");
cloneConstValue(PartialApplyArg);
if (auto *kp = dyn_cast<KeyPathInst>(getMappedValue(PartialApplyArg))) {
toDestroy.push_back(kp);
}
// The PartialApplyArg from the caller is now mapped to its cloned
// instruction. Also map the original argument to the cloned instruction.
entryArgs.push_back(getMappedValue(PartialApplyArg));
++ArgIdx;
}
IsCloningConstant = false;
// Clear information about cloned values from the caller function.
clearClonerState();
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
cloneFunctionBody(OrigF, ClonedEntryBB, entryArgs);
// Destroy all the inserted keypaths at the function exits.
for (KeyPathInst *kpToDestroy : toDestroy) {
SILLocation loc = RegularLocation::getAutoGeneratedLocation();
for (SILBasicBlock &clonedBB : CloneF) {
TermInst *term = clonedBB.getTerminator();
if (term->isFunctionExiting()) {
SILBuilder builder(term);
if (CloneF.hasOwnership()) {
builder.createDestroyValue(loc, kpToDestroy);
} else {
builder.createStrongRelease(loc, kpToDestroy, builder.getDefaultAtomicity());
}
}
}
}
}
CanSILFunctionType getPartialApplyInterfaceResultType(PartialApplyInst *PAI) {
// The new partial_apply will no longer take any arguments--they are all
// expressed as literals. So its callee signature will be the same as its
// return signature.
auto FTy = PAI->getType().castTo<SILFunctionType>();
assert(!PAI->hasSubstitutions() ||
!PAI->getSubstitutionMap().hasArchetypes());
FTy = cast<SILFunctionType>(
FTy->mapTypeOutOfContext()->getCanonicalType());
auto NewFTy = FTy;
return NewFTy;
}
/// Given a partial_apply instruction, create a specialized callee by removing
/// all constant arguments and adding constant literals to the specialized
/// function body.
SILFunction *CapturePropagation::specializeConstClosure(PartialApplyInst *PAI,
SILFunction *OrigF) {
SerializedKind_t serializedKind = PAI->getFunction()->getSerializedKind();
std::string Name = getClonedName(PAI, serializedKind, OrigF);
// See if we already have a version of this function in the module. If so,
// just return it.
if (auto *NewF = OrigF->getModule().lookUpFunction(Name)) {
assert(NewF->getSerializedKind() == serializedKind);
LLVM_DEBUG(llvm::dbgs()
<< " Found an already specialized version of the callee: ";
NewF->printName(llvm::dbgs()); llvm::dbgs() << "\n");
return NewF;
}
// The new partial_apply will no longer take any arguments--they are all
// expressed as literals. So its callee signature will be the same as its
// return signature.
auto NewFTy = getPartialApplyInterfaceResultType(PAI);
NewFTy = NewFTy->getWithRepresentation(SILFunctionType::Representation::Thin);
GenericEnvironment *GenericEnv = nullptr;
if (NewFTy->getInvocationGenericSignature())
GenericEnv = OrigF->getGenericEnvironment();
SILOptFunctionBuilder FuncBuilder(*this);
SILFunction *NewF = FuncBuilder.createFunction(
SILLinkage::Shared, Name, NewFTy, GenericEnv, OrigF->getLocation(),
OrigF->isBare(), OrigF->isTransparent(), serializedKind, IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible, OrigF->getEntryCount(),
OrigF->isThunk(), OrigF->getClassSubclassScope(),
OrigF->getInlineStrategy(), OrigF->getEffectsKind(),
/*InsertBefore*/ OrigF, OrigF->getDebugScope());
if (!OrigF->hasOwnership()) {
NewF->setOwnershipEliminated();
}
LLVM_DEBUG(llvm::dbgs() << " Specialize callee as ";
NewF->printName(llvm::dbgs());
llvm::dbgs() << " " << NewFTy << "\n");
LLVM_DEBUG(if (PAI->hasSubstitutions()) {
llvm::dbgs() << "CapturePropagation of generic partial_apply:\n";
PAI->dumpInContext();
});
CapturePropagationCloner cloner(OrigF, NewF, PAI->getSubstitutionMap());
cloner.cloneClosure(PAI->getArguments());
assert(OrigF->getDebugScope()->Parent != NewF->getDebugScope()->Parent);
return NewF;
}
void CapturePropagation::rewritePartialApply(PartialApplyInst *OrigPAI,
SILFunction *SpecialF) {
LLVM_DEBUG(llvm::dbgs() << "\n Rewriting a partial apply:\n";
OrigPAI->dumpInContext();
llvm::dbgs() << " with special function: "
<< SpecialF->getName() << "\n";
llvm::dbgs() << "\nThe function being rewritten is:\n";
OrigPAI->getFunction()->dump());
SILBuilderWithScope Builder(OrigPAI);
auto FuncRef = Builder.createFunctionRef(OrigPAI->getLoc(), SpecialF);
auto *T2TF = Builder.createThinToThickFunction(OrigPAI->getLoc(), FuncRef,
OrigPAI->getType());
OrigPAI->replaceAllUsesWith(T2TF);
// Bypass any mark_dependence on the captures we specialized away.
//
// TODO: If we start to specialize away key path literals with operands
// (subscripts etc.), then a dependence of the new partial_apply on those
// operands may still exist. However, we should still leave the key path
// itself out of the dependency chain, and introduce dependencies on those
// operands instead, so that the key path object itself can be made dead.
for (auto user : T2TF->getUsersOfType<MarkDependenceInst>()) {
if (auto depUser = user->getBase()->getSingleUserOfType<PartialApplyInst>()){
if (depUser == OrigPAI) {
user->replaceAllUsesWith(T2TF);
}
}
}
// Remove any dealloc_stack users.
SmallVector<Operand*, 16> Uses(T2TF->getUses());
for (auto *Use : Uses)
if (auto *DS = dyn_cast<DeallocStackInst>(Use->getUser()))
DS->eraseFromParent();
recursivelyDeleteTriviallyDeadInstructions(OrigPAI, true);
LLVM_DEBUG(llvm::dbgs() << " Rewrote caller:\n" << *T2TF);
}
static bool isKeyPathFunction(FullApplySite FAS, SILValue keyPath) {
SILFunction *callee = FAS.getReferencedFunctionOrNull();
if (!callee)
return false;
if (callee->getName() == "swift_setAtWritableKeyPath" ||
callee->getName() == "swift_setAtReferenceWritableKeyPath") {
return FAS.getArgument(1) == keyPath;
}
if (callee->getName() == "swift_getAtKeyPath") {
return FAS.getArgument(2) == keyPath;
}
return false;
}
/// For now, we conservative only specialize if doing so can eliminate dynamic
/// dispatch.
///
/// TODO: Check for other profitable constant propagation, like builtin compare.
static bool isProfitable(SILFunction *Callee) {
SILBasicBlock *EntryBB = &*Callee->begin();
for (auto *Arg : EntryBB->getArguments()) {
for (auto *Operand : Arg->getUses()) {
if (FullApplySite FAS = FullApplySite::isa(Operand->getUser())) {
if (FAS.getCallee() == Operand->get())
return true;
if (isKeyPathFunction(FAS, Arg))
return true;
}
}
}
return false;
}
/// Returns true if block \p BB only contains a return or throw of the first
/// block argument and side-effect-free instructions.
static bool onlyContainsReturnOrThrowOfArg(SILBasicBlock *BB) {
for (SILInstruction &I : *BB) {
if (isa<ReturnInst>(&I) || isa<ThrowInst>(&I)) {
SILValue RetVal = I.getOperand(0);
return BB->getNumArguments() == 1 && RetVal == BB->getArgument(0);
}
if (I.mayHaveSideEffects() || isa<TermInst>(&I))
return false;
}
llvm_unreachable("should have seen a terminator instruction");
}
/// Checks if \p Orig is a thunk which calls another function but without
/// passing the trailing \p numDeadParams dead parameters.
/// If a generic specialization was performed for a generic capture,
/// GenericSpecialized contains a tuple:
/// (new specialized function, old function)
static SILFunction *getSpecializedWithDeadParams(
SILOptFunctionBuilder &FuncBuilder,
PartialApplyInst *PAI, SILFunction *Orig, int numDeadParams,
std::pair<SILFunction *, SILFunction *> &GenericSpecialized) {
SILBasicBlock &EntryBB = *Orig->begin();
unsigned NumArgs = EntryBB.getNumArguments();
// Check if all dead parameters have trivial types. We don't support non-
// trivial types because it's very hard to find places where we can release
// those parameters (as a replacement for the removed partial_apply).
// TODO: maybe we can skip this restriction when we have semantic ARC.
for (unsigned Idx = NumArgs - numDeadParams; Idx < NumArgs; ++Idx) {
SILType ArgTy = EntryBB.getArgument(Idx)->getType();
if (!ArgTy.isTrivial(*Orig))
return nullptr;
}
SILFunction *Specialized = nullptr;
SILValue RetValue;
// Check all instruction of the entry block.
for (SILInstruction &I : EntryBB) {
if (auto FAS = FullApplySite::isa(&I)) {
// Check if this is the call of the specialized function.
// If the original partial_apply didn't have substitutions,
// also the specialized function must be not generic.
if (!PAI->hasSubstitutions() && FAS.hasSubstitutions())
return nullptr;
// Is it the only call?
if (Specialized)
return nullptr;
Specialized = FAS.getReferencedFunctionOrNull();
if (!Specialized)
return nullptr;
// Check if parameters are passes 1-to-1
unsigned NumArgs = FAS.getNumArguments();
if (EntryBB.getNumArguments() - numDeadParams != NumArgs)
return nullptr;
for (unsigned Idx = 0; Idx < NumArgs; ++Idx) {
if (FAS.getArgument(Idx) != (ValueBase *)EntryBB.getArgument(Idx))
return nullptr;
}
if (auto *TAI = dyn_cast<TryApplyInst>(&I)) {
// Check the normal and throw blocks of the try_apply.
if (onlyContainsReturnOrThrowOfArg(TAI->getNormalBB()) &&
onlyContainsReturnOrThrowOfArg(TAI->getErrorBB()))
return Specialized;
return nullptr;
}
assert(isa<ApplyInst>(&I) && "unknown FullApplySite instruction");
RetValue = cast<ApplyInst>(&I);
continue;
}
if (auto *RI = dyn_cast<ReturnInst>(&I)) {
// Check if we return the result of the apply.
if (RI->getOperand() != RetValue)
return nullptr;
continue;
}
if (I.mayHaveSideEffects() || isa<TermInst>(&I))
return nullptr;
}
auto Rep = Specialized->getLoweredFunctionType()->getRepresentation();
if (getSILFunctionLanguage(Rep) != SILFunctionLanguage::Swift)
return nullptr;
GenericSpecialized = std::make_pair(nullptr, nullptr);
if (PAI->hasSubstitutions()) {
if (Specialized->isExternalDeclaration())
return nullptr;
if (!Orig->shouldOptimize())
return nullptr;
// Perform a generic specialization of the Specialized function.
ReabstractionInfo ReInfo(
FuncBuilder.getModule().getSwiftModule(),
FuncBuilder.getModule().isWholeModule(), ApplySite(), Specialized,
PAI->getSubstitutionMap(), Specialized->getSerializedKind(),
/* ConvertIndirectToDirect */ false, /*dropMetatypeArgs=*/false);
GenericFuncSpecializer FuncSpecializer(FuncBuilder,
Specialized,
ReInfo.getClonerParamSubstitutionMap(),
ReInfo);
SILFunction *GenericSpecializedFunc = FuncSpecializer.trySpecialization();
if (!GenericSpecializedFunc)
return nullptr;
GenericSpecialized = std::make_pair(GenericSpecializedFunc, Specialized);
return GenericSpecializedFunc;
}
return Specialized;
}
bool CapturePropagation::optimizePartialApply(PartialApplyInst *PAI) {
SILFunction *SubstF = PAI->getReferencedFunctionOrNull();
if (!SubstF)
return false;
if (SubstF->isExternalDeclaration())
return false;
if (PAI->hasSubstitutions() && PAI->getSubstitutionMap().hasArchetypes()) {
LLVM_DEBUG(llvm::dbgs()
<< "CapturePropagation: cannot handle partial specialization "
"of partial_apply:\n";
PAI->dumpInContext());
return false;
}
// First possibility: Is it a partial_apply where all partially applied
// arguments are dead?
std::pair<SILFunction *, SILFunction *> GenericSpecialized;
SILOptFunctionBuilder FuncBuilder(*this);
if (auto *NewFunc = getSpecializedWithDeadParams(FuncBuilder, PAI, SubstF,
PAI->getNumArguments(),
GenericSpecialized)) {
// `partial_apply` can be rewritten to `thin_to_thick_function` only if the
// specialized callee is `@convention(thin)`.
if (NewFunc->getRepresentation() == SILFunctionTypeRepresentation::Thin) {
rewritePartialApply(PAI, NewFunc);
if (GenericSpecialized.first) {
// Notify the pass manager about the new function.
addFunctionToPassManagerWorklist(GenericSpecialized.first,
GenericSpecialized.second);
}
return true;
}
}
// Second possibility: Are all partially applied arguments constant?
llvm::SmallVector<SILInstruction *, 8> toDelete;
for (const Operand &argOp : PAI->getArgumentOperands()) {
SILInstruction *constInst = getConstant(argOp.get());
if (!constInst)
return false;
if (auto *kp = dyn_cast<KeyPathInst>(constInst)) {
auto argConv = ApplySite(PAI).getArgumentConvention(argOp).Value;
// Only handle the common case of a guaranteed keypath arguments. That
// refers to the callee function.
if (argConv != SILArgumentConvention::Direct_Guaranteed)
return false;
// For escaping closures:
// To keep things simple, we don't do a liferange analysis to insert
// compensating destroys of the keypath.
// Instead we require that the PAI is the only use of the keypath (= the
// common case). This allows us to just delete the now unused keypath
// instruction.
//
// For non-escaping closures:
// The keypath is not consumed by the PAI. We don't need todelete the
// keypath instruction in this pass, but let dead-object-elimination clean
// it up later.
if (!PAI->isOnStack()) {
if (getSingleNonDebugUser(kp) != PAI)
return false;
toDelete.push_back(kp);
}
}
}
if (!isProfitable(SubstF))
return false;
LLVM_DEBUG(llvm::dbgs() << "Specializing closure for constant arguments:\n"
<< " " << SubstF->getName() << "\n"
<< *PAI);
++NumCapturesPropagated;
SILFunction *NewF = specializeConstClosure(PAI, SubstF);
rewritePartialApply(PAI, NewF);
recursivelyDeleteTriviallyDeadInstructions(toDelete, /*force*/ true);
addFunctionToPassManagerWorklist(NewF, SubstF);
return true;
}
void CapturePropagation::run() {
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
auto *F = getFunction();
bool HasChanged = false;
// Don't optimize functions that are marked with the opt.never attribute.
if (!F->shouldOptimize())
return;
// Cache cold blocks per function.
ColdBlockInfo ColdBlocks(DA);
for (auto &BB : *F) {
if (ColdBlocks.isCold(&BB))
continue;
auto I = BB.begin();
while (I != BB.end()) {
SILInstruction *Inst = &*I;
++I;
if (auto *PAI = dyn_cast<PartialApplyInst>(Inst))
HasChanged |= optimizePartialApply(PAI);
}
}
if (HasChanged) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
SILTransform *swift::createCapturePropagation() {
return new CapturePropagation();
}
|