1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
|
//===--- ClosureSpecializer.cpp - Performs Closure Specialization ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Closure Specialization
/// ----------------------
///
/// The purpose of the algorithm in this file is to perform the following
/// transformation: given a closure passed into a function which the closure is
/// then invoked in, clone the function and create a copy of the closure inside
/// the function. This closure will be able to be eliminated easily and the
/// overhead is gone. We then try to remove the original closure.
///
/// There are some complications. They are listed below and how we work around
/// them:
///
/// 1. If we support the specialization of closures with multiple user callsites
/// that can be specialized, we need to ensure that any captured values have
/// their reference counts adjusted properly. This implies for every
/// specialized call site, we insert an additional retain for each captured
/// argument with reference semantics. We will pass them in as extra @owned
/// to the specialized function. This @owned will be consumed by the "copy"
/// partial apply that is in the specialized function. Now the partial apply
/// will own those ref counts. This is unapplicable to thin_to_thick_function
/// since they do not have any captured args.
///
/// 2. If the closure was passed in @owned vs if the closure was passed in
/// @guaranteed. If the original closure was passed in @owned, then we know
/// that there is a balancing release for the new "copy" partial apply. But
/// since the original partial apply no longer will have that corresponding
/// -1, we need to insert a release for the old partial apply. We do this
/// right after the old call site where the original partial apply was
/// called. This ensures we do not shrink the lifetime of the old partial
/// apply. In the case where the old partial_apply was passed in at +0, we
/// know that the old partial_apply does not need to have any ref count
/// adjustments. On the other hand, the new "copy" partial apply in the
/// specialized function now needs to be balanced lest we leak. Thus we
/// insert a release right before any exit from the function. This ensures
/// that the release occurs in the epilog after any retains associated with
/// @owned return values.
///
/// 3. In !useLoweredAddresses mode, we do not support specialization of closures
/// with arguments passed using any indirect calling conventions besides
/// @inout and @inout_aliasable. This is a temporary limitation that goes
/// away with sil-opaque-values.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "closure-specialization"
#include "swift/Basic/Range.h"
#include "swift/Demangling/Demangler.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/FunctionOrder.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumClosureSpecialized,
"Number of functions with closures specialized");
STATISTIC(NumPropagatedClosuresEliminated,
"Number of closures propagated and then eliminated");
STATISTIC(NumPropagatedClosuresNotEliminated,
"Number of closures propagated but not eliminated");
llvm::cl::opt<bool> EliminateDeadClosures(
"closure-specialize-eliminate-dead-closures", llvm::cl::init(true),
llvm::cl::desc("Do not eliminate dead closures after closure "
"specialization. This is meant ot be used when testing."));
//===----------------------------------------------------------------------===//
// Utility
//===----------------------------------------------------------------------===//
static bool isSupportedClosureKind(const SILInstruction *I) {
return isa<ThinToThickFunctionInst>(I) || isa<PartialApplyInst>(I);
}
//===----------------------------------------------------------------------===//
// Closure Spec Cloner Interface
//===----------------------------------------------------------------------===//
namespace {
class CallSiteDescriptor;
/// A SILCloner subclass which clones a function that takes a closure
/// argument. We update the parameter list to remove the parameter for the
/// closure argument and to append the variables captured in the closure.
/// We also need to replace the closure parameter with the partial apply
/// on the closure. We need to update the callsite to pass in the correct
/// arguments.
class ClosureSpecCloner : public SILClonerWithScopes<ClosureSpecCloner> {
public:
using SuperTy = SILClonerWithScopes<ClosureSpecCloner>;
friend class SILInstructionVisitor<ClosureSpecCloner>;
friend class SILCloner<ClosureSpecCloner>;
ClosureSpecCloner(SILOptFunctionBuilder &FunctionBuilder,
const CallSiteDescriptor &CallSiteDesc,
StringRef ClonedName)
: SuperTy(*initCloned(FunctionBuilder, CallSiteDesc, ClonedName)),
CallSiteDesc(CallSiteDesc) {}
void populateCloned();
SILValue
cloneCalleeConversion(SILValue calleeValue, SILValue NewClosure,
SILBuilder &Builder,
SmallVectorImpl<PartialApplyInst *> &NeedsRelease,
llvm::DenseMap<SILValue, SILValue> &CapturedMap);
SILFunction *getCloned() { return &getBuilder().getFunction(); }
static SILFunction *cloneFunction(SILOptFunctionBuilder &FunctionBuilder,
const CallSiteDescriptor &CallSiteDesc,
StringRef NewName) {
ClosureSpecCloner C(FunctionBuilder, CallSiteDesc, NewName);
C.populateCloned();
++NumClosureSpecialized;
return C.getCloned();
};
private:
static SILFunction *initCloned(SILOptFunctionBuilder &FunctionBuilder,
const CallSiteDescriptor &CallSiteDesc,
StringRef ClonedName);
const CallSiteDescriptor &CallSiteDesc;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Call Site Descriptor
//===----------------------------------------------------------------------===//
namespace {
struct ClosureInfo;
static SILFunction *getClosureCallee(SILInstruction *inst) {
if (auto *PAI = dyn_cast<PartialApplyInst>(inst))
return cast<FunctionRefInst>(PAI->getCallee())->getReferencedFunction();
auto *TTTFI = cast<ThinToThickFunctionInst>(inst);
return cast<FunctionRefInst>(TTTFI->getCallee())->getReferencedFunction();
}
class CallSiteDescriptor {
ClosureInfo *CInfo;
FullApplySite AI;
unsigned ClosureIndex;
SILParameterInfo ClosureParamInfo;
// This is only needed if we have guaranteed parameters. In most cases it will
// have only one element, a return inst.
llvm::TinyPtrVector<SILBasicBlock *> NonFailureExitBBs;
public:
CallSiteDescriptor(ClosureInfo *CInfo, FullApplySite AI,
unsigned ClosureIndex, SILParameterInfo ClosureParamInfo,
llvm::TinyPtrVector<SILBasicBlock *> &&NonFailureExitBBs)
: CInfo(CInfo), AI(AI), ClosureIndex(ClosureIndex),
ClosureParamInfo(ClosureParamInfo),
NonFailureExitBBs(NonFailureExitBBs) {}
CallSiteDescriptor(CallSiteDescriptor&&) =default;
CallSiteDescriptor &operator=(CallSiteDescriptor &&) =default;
SILFunction *getApplyCallee() const {
return cast<FunctionRefInst>(AI.getCallee())->getReferencedFunction();
}
SILFunction *getClosureCallee() const {
return ::getClosureCallee(getClosure());
}
bool closureHasRefSemanticContext() const {
return isa<PartialApplyInst>(getClosure()) &&
!cast<PartialApplyInst>(getClosure())->isOnStack();
}
bool destroyIfPartialApplyStack(SILBuilder &B,
SingleValueInstruction *newClosure) const {
auto *PA = dyn_cast<PartialApplyInst>(newClosure);
if (!PA || !PA->isOnStack())
return false;
if (B.getFunction().hasOwnership()) {
// Under OSSA, the closure acts as an owned value whose lifetime is a
// borrow scope for the captures, so we need to end the borrow scope
// before ending the lifetimes of the captures themselves.
B.createDestroyValue(getClosure()->getLoc(), PA);
insertDestroyOfCapturedArguments(PA, B);
// The stack slot for the partial_apply doesn't get reified until after
// OSSA.
return false;
} else {
insertDestroyOfCapturedArguments(PA, B);
B.createDeallocStack(getClosure()->getLoc(), PA);
return true;
}
}
unsigned getClosureIndex() const { return ClosureIndex; }
// Get the closure value passed to the apply (on the caller side).
SILValue getClosureCallerArg() const {
return getApplyInst().getArgument(ClosureIndex);
}
SILParameterInfo getClosureParameterInfo() const { return ClosureParamInfo; }
SingleValueInstruction *
createNewClosure(SILBuilder &B, SILValue V,
llvm::SmallVectorImpl<SILValue> &Args) const {
if (auto *PA = dyn_cast<PartialApplyInst>(getClosure()))
return B.createPartialApply(getClosure()->getLoc(), V, {}, Args,
PA->getCalleeConvention(),
PA->getResultIsolation(),
PA->isOnStack());
assert(isa<ThinToThickFunctionInst>(getClosure()) &&
"We only support partial_apply and thin_to_thick_function");
return B.createThinToThickFunction(getClosure()->getLoc(), V,
getClosure()->getType());
}
FullApplySite getApplyInst() const { return AI; }
bool isSerialized() const;
SerializedKind_t getSerializedKind() const;
std::string createName() const;
OperandValueArrayRef getArguments() const {
if (auto *PAI = dyn_cast<PartialApplyInst>(getClosure()))
return PAI->getArguments();
// Thin to thick function has no non-callee arguments.
assert(isa<ThinToThickFunctionInst>(getClosure()) &&
"We only support partial_apply and thin_to_thick_function");
return OperandValueArrayRef(ArrayRef<Operand>());
}
inline SingleValueInstruction *getClosure() const;
unsigned getNumArguments() const {
if (auto *PAI = dyn_cast<PartialApplyInst>(getClosure()))
return PAI->getNumArguments();
// Thin to thick function has no non-callee arguments.
assert(isa<ThinToThickFunctionInst>(getClosure()) &&
"We only support partial_apply and thin_to_thick_function");
return 0;
}
bool isClosureGuaranteed() const {
return getClosureParameterInfo().isGuaranteed();
}
bool isClosureConsumed() const {
return getClosureParameterInfo().isConsumed();
}
bool isClosureOnStack() const {
auto *PA = dyn_cast<PartialApplyInst>(getClosure());
if (!PA)
return false;
return PA->isOnStack();
}
bool isTrivialNoEscapeParameter() const {
auto ClosureParmFnTy =
getClosureParameterInfo().getInterfaceType()->getAs<SILFunctionType>();
return ClosureParmFnTy->isTrivialNoEscape();
}
SILLocation getLoc() const { return getClosure()->getLoc(); }
SILModule &getModule() const { return AI.getModule(); }
ArrayRef<SILBasicBlock *> getNonFailureExitBBs() const {
return NonFailureExitBBs;
}
/// Extend the lifetime of 'Arg' to the lifetime of the closure.
void extendArgumentLifetime(SILValue Arg,
SILArgumentConvention ArgConvention) const;
};
} // end anonymous namespace
namespace {
struct ClosureInfo {
SingleValueInstruction *Closure;
ValueLifetimeAnalysis::Frontier LifetimeFrontier;
llvm::SmallVector<CallSiteDescriptor, 8> CallSites;
ClosureInfo(SingleValueInstruction *Closure) : Closure(Closure) {}
ClosureInfo(ClosureInfo &&) =default;
ClosureInfo &operator=(ClosureInfo &&) =default;
};
} // end anonymous namespace
SingleValueInstruction *CallSiteDescriptor::getClosure() const {
return CInfo->Closure;
}
static bool isNonInoutIndirectSILArgument(SILValue Arg,
SILArgumentConvention ArgConvention) {
return !Arg->getType().isObject() && ArgConvention.isIndirectConvention() &&
ArgConvention != SILArgumentConvention::Indirect_Inout &&
ArgConvention != SILArgumentConvention::Indirect_InoutAliasable;
}
/// Update the callsite to pass in the correct arguments.
static void rewriteApplyInst(const CallSiteDescriptor &CSDesc,
SILFunction *NewF) {
FullApplySite AI = CSDesc.getApplyInst();
SingleValueInstruction *Closure = CSDesc.getClosure();
SILBuilderWithScope Builder(Closure);
FunctionRefInst *FRI = Builder.createFunctionRef(AI.getLoc(), NewF);
// Create the args for the new apply by removing the closure argument...
llvm::SmallVector<SILValue, 8> NewArgs;
unsigned Index = 0;
for (auto Arg : AI.getArguments()) {
if (Index != CSDesc.getClosureIndex())
NewArgs.push_back(Arg);
++Index;
}
// ... and appending the captured arguments. We also insert retains here at
// the location of the original closure. This is needed to balance the
// implicit release of all captured arguments that occurs when the partial
// apply is destroyed.
auto ClosureCalleeConv = CSDesc.getClosureCallee()->getConventions();
unsigned ClosureArgIdx =
ClosureCalleeConv.getNumSILArguments() - CSDesc.getNumArguments();
for (auto Arg : CSDesc.getArguments()) {
SILType ArgTy = Arg->getType();
// If our argument is of trivial type, continue...
if (ArgTy.isTrivial(*NewF)) {
NewArgs.push_back(Arg);
++ClosureArgIdx;
continue;
}
auto ArgConvention =
ClosureCalleeConv.getSILArgumentConvention(ClosureArgIdx);
// Non-inout indirect arguments are not supported yet.
assert(ArgTy.isObject() ||
!isNonInoutIndirectSILArgument(Arg, ArgConvention));
// If argument is not an object and it is an inout parameter,
// continue...
if (!ArgTy.isObject() &&
!isNonInoutIndirectSILArgument(Arg, ArgConvention)) {
NewArgs.push_back(Arg);
++ClosureArgIdx;
continue;
}
// TODO: When we support address types, this code path will need to be
// updated.
// We need to balance the consumed argument of the new partial_apply in the
// specialized callee by a retain. If both the original partial_apply and
// the apply of the callee are in the same basic block we can assume they
// are executed the same number of times. Therefore it is sufficient to just
// retain the argument at the site of the original partial_apply.
//
// %closure = partial_apply (%arg)
// = apply %callee(%closure)
// =>
// retain %arg
// %closure = partial_apply (%arg)
// apply %specialized_callee(..., %arg)
//
// However, if they are not in the same basic block the callee might be
// executed more frequently than the closure (for example, if the closure is
// created in a loop preheader and the callee taking the closure is executed
// in the loop). In such a case we must keep the argument live across the
// call site of the callee and emit a matching retain for every invocation
// of the callee.
//
// %closure = partial_apply (%arg)
//
// while () {
// = %callee(%closure)
// }
// =>
// retain %arg
// %closure = partial_apply (%arg)
//
// while () {
// retain %arg
// apply %specialized_callee(.., %arg)
// }
// release %arg
//
if (AI.getParent() != Closure->getParent()) {
// Emit the retain and release that keeps the argument life across the
// callee using the closure.
CSDesc.extendArgumentLifetime(Arg, ArgConvention);
// Emit the retain that matches the captured argument by the
// partial_apply
// in the callee that is consumed by the partial_apply.
Builder.setInsertionPoint(AI.getInstruction());
Builder.createRetainValue(Closure->getLoc(), Arg,
Builder.getDefaultAtomicity());
} else {
Builder.createRetainValue(Closure->getLoc(), Arg,
Builder.getDefaultAtomicity());
}
NewArgs.push_back(Arg);
++ClosureArgIdx;
}
Builder.setInsertionPoint(AI.getInstruction());
FullApplySite NewAI;
switch (AI.getKind()) {
case FullApplySiteKind::TryApplyInst: {
auto *TAI = cast<TryApplyInst>(AI);
NewAI = Builder.createTryApply(AI.getLoc(), FRI,
SubstitutionMap(), NewArgs,
TAI->getNormalBB(), TAI->getErrorBB(),
TAI->getApplyOptions());
// If we passed in the original closure as @owned, then insert a release
// right after NewAI. This is to balance the +1 from being an @owned
// argument to AI.
if (!CSDesc.isClosureConsumed() || CSDesc.isTrivialNoEscapeParameter() ||
!CSDesc.closureHasRefSemanticContext()) {
break;
}
Builder.setInsertionPoint(TAI->getNormalBB()->begin());
Builder.createReleaseValue(Closure->getLoc(), Closure,
Builder.getDefaultAtomicity());
Builder.setInsertionPoint(TAI->getErrorBB()->begin());
Builder.createReleaseValue(Closure->getLoc(), Closure,
Builder.getDefaultAtomicity());
Builder.setInsertionPoint(AI.getInstruction());
break;
}
case FullApplySiteKind::ApplyInst: {
auto oldApply = cast<ApplyInst>(AI);
auto newApply = Builder.createApply(oldApply->getLoc(), FRI,
SubstitutionMap(), NewArgs,
oldApply->getApplyOptions());
// If we passed in the original closure as @owned, then insert a release
// right after NewAI. This is to balance the +1 from being an @owned
// argument to AI.
if (CSDesc.isClosureConsumed() && !CSDesc.isTrivialNoEscapeParameter() &&
CSDesc.closureHasRefSemanticContext())
Builder.createReleaseValue(Closure->getLoc(), Closure,
Builder.getDefaultAtomicity());
// Replace all uses of the old apply with the new apply.
oldApply->replaceAllUsesWith(newApply);
break;
}
case FullApplySiteKind::BeginApplyInst:
llvm_unreachable("Unhandled case");
}
// Erase the old apply.
AI.getInstruction()->eraseFromParent();
// TODO: Maybe include invalidation code for CallSiteDescriptor after we erase
// AI from parent?
}
bool CallSiteDescriptor::isSerialized() const {
return getClosure()->getFunction()->getSerializedKind() == IsSerialized;
}
SerializedKind_t CallSiteDescriptor::getSerializedKind() const {
return getClosure()->getFunction()->getSerializedKind();
}
std::string CallSiteDescriptor::createName() const {
auto P = Demangle::SpecializationPass::ClosureSpecializer;
Mangle::FunctionSignatureSpecializationMangler Mangler(P, getSerializedKind(),
getApplyCallee());
if (auto *PAI = dyn_cast<PartialApplyInst>(getClosure())) {
Mangler.setArgumentClosureProp(getClosureIndex(), PAI);
} else {
auto *TTTFI = cast<ThinToThickFunctionInst>(getClosure());
Mangler.setArgumentClosureProp(getClosureIndex(), TTTFI);
}
return Mangler.mangle();
}
void CallSiteDescriptor::extendArgumentLifetime(
SILValue Arg, SILArgumentConvention ArgConvention) const {
assert(!CInfo->LifetimeFrontier.empty() &&
"Need a post-dominating release(s)");
auto ArgTy = Arg->getType();
// Extend the lifetime of a captured argument to cover the callee.
SILBuilderWithScope Builder(getClosure());
// Indirect non-inout arguments are not supported yet.
assert(!isNonInoutIndirectSILArgument(Arg, ArgConvention));
if (ArgTy.isObject()) {
Builder.createRetainValue(getClosure()->getLoc(), Arg,
Builder.getDefaultAtomicity());
for (auto *I : CInfo->LifetimeFrontier) {
Builder.setInsertionPoint(I);
Builder.createReleaseValue(getClosure()->getLoc(), Arg,
Builder.getDefaultAtomicity());
}
}
}
static bool isSupportedClosure(const SILInstruction *Closure) {
if (!isSupportedClosureKind(Closure))
return false;
// We only support simple closures where a partial_apply or
// thin_to_thick_function is passed a function_ref. This will be stored here
// so the checking of the Callee can use the same code in both cases.
SILValue Callee;
// If Closure is a partial apply...
if (auto *PAI = dyn_cast<PartialApplyInst>(Closure)) {
// And it has substitutions, return false.
if (PAI->hasSubstitutions())
return false;
// Ok, it is a closure we support, set Callee.
Callee = PAI->getCallee();
} else {
// Otherwise closure must be a thin_to_thick_function.
Callee = cast<ThinToThickFunctionInst>(Closure)->getCallee();
}
// Make sure that it is a simple partial apply (i.e. its callee is a
// function_ref).
//
// TODO: We can probably handle other partial applies here.
auto *FRI = dyn_cast_or_null<FunctionRefInst>(Callee);
if (!FRI)
return false;
if (auto *PAI = dyn_cast<PartialApplyInst>(Closure)) {
// Check whether each argument is supported.
auto ClosureCallee = FRI->getReferencedFunction();
auto ClosureCalleeConv = ClosureCallee->getConventions();
unsigned ClosureArgIdxBase =
ClosureCalleeConv.getNumSILArguments() - PAI->getNumArguments();
for (auto pair : llvm::enumerate(PAI->getArguments())) {
auto Arg = pair.value();
auto ClosureArgIdx = pair.index() + ClosureArgIdxBase;
auto ArgConvention =
ClosureCalleeConv.getSILArgumentConvention(ClosureArgIdx);
SILType ArgTy = Arg->getType();
// Specializing (currently) always produces a retain in the caller.
// That's not allowed for values of move-only type.
if (ArgTy.isMoveOnly()) {
return false;
}
// Only @inout/@inout_aliasable addresses are (currently) supported.
// If our argument is an object, continue...
if (ArgTy.isObject()) {
++ClosureArgIdx;
continue;
}
if (ArgConvention != SILArgumentConvention::Indirect_Inout &&
ArgConvention != SILArgumentConvention::Indirect_InoutAliasable)
return false;
++ClosureArgIdx;
}
}
// Otherwise, we do support specializing this closure.
return true;
}
//===----------------------------------------------------------------------===//
// Closure Spec Cloner Implementation
//===----------------------------------------------------------------------===//
/// In this function we create the actual cloned function and its proper cloned
/// type. But we do not create any body. This implies that the creation of the
/// actual arguments in the function is in populateCloned.
///
/// \arg PAUser The function that is being passed the partial apply.
/// \arg PAI The partial apply that is being passed to PAUser.
/// \arg ClosureIndex The index of the partial apply in PAUser's function
/// signature.
/// \arg ClonedName The name of the cloned function that we will create.
SILFunction *
ClosureSpecCloner::initCloned(SILOptFunctionBuilder &FunctionBuilder,
const CallSiteDescriptor &CallSiteDesc,
StringRef ClonedName) {
SILFunction *ClosureUser = CallSiteDesc.getApplyCallee();
// This is the list of new interface parameters of the cloned function.
llvm::SmallVector<SILParameterInfo, 4> NewParameterInfoList;
// First add to NewParameterInfoList all of the SILParameterInfo in the
// original function except for the closure.
CanSILFunctionType ClosureUserFunTy = ClosureUser->getLoweredFunctionType();
auto ClosureUserConv = ClosureUser->getConventions();
unsigned Index = ClosureUserConv.getSILArgIndexOfFirstParam();
for (auto ¶m : ClosureUserConv.getParameters()) {
if (Index != CallSiteDesc.getClosureIndex())
NewParameterInfoList.push_back(param);
++Index;
}
// Then add any arguments that are captured in the closure to the function's
// argument type. Since they are captured, we need to pass them directly into
// the new specialized function.
SILFunction *ClosedOverFun = CallSiteDesc.getClosureCallee();
auto ClosedOverFunConv = ClosedOverFun->getConventions();
SILModule &M = ClosureUser->getModule();
// Captured parameters are always appended to the function signature. If the
// type of the captured argument is:
// - direct and trivial, pass the argument as Direct_Unowned.
// - direct and non-trivial, pass the argument as Direct_Owned.
// - indirect, pass the argument using the same parameter convention as in the
// original closure.
//
// We use the type of the closure here since we allow for the closure to be an
// external declaration.
unsigned NumTotalParams = ClosedOverFunConv.getNumParameters();
unsigned NumNotCaptured = NumTotalParams - CallSiteDesc.getNumArguments();
for (auto &PInfo : ClosedOverFunConv.getParameters().slice(NumNotCaptured)) {
ParameterConvention ParamConv;
if (PInfo.isFormalIndirect()) {
ParamConv = PInfo.getConvention();
assert(!SILModuleConventions(M).useLoweredAddresses()
|| ParamConv == ParameterConvention::Indirect_Inout
|| ParamConv == ParameterConvention::Indirect_InoutAliasable);
} else {
ParamConv = ClosedOverFunConv
.getSILType(PInfo, CallSiteDesc.getApplyInst()
.getFunction()
->getTypeExpansionContext())
.isTrivial(*ClosureUser)
? ParameterConvention::Direct_Unowned
: ParameterConvention::Direct_Owned;
}
SILParameterInfo NewPInfo(PInfo.getInterfaceType(), ParamConv);
NewParameterInfoList.push_back(NewPInfo);
}
// The specialized function is always a thin function. This is important
// because we may add additional parameters after the Self parameter of
// witness methods. In this case the new function is not a method anymore.
auto ExtInfo = ClosureUserFunTy->getExtInfo();
ExtInfo = ExtInfo.withRepresentation(SILFunctionTypeRepresentation::Thin);
auto ClonedTy = SILFunctionType::get(
ClosureUserFunTy->getInvocationGenericSignature(), ExtInfo,
ClosureUserFunTy->getCoroutineKind(),
ClosureUserFunTy->getCalleeConvention(), NewParameterInfoList,
ClosureUserFunTy->getYields(), ClosureUserFunTy->getResults(),
ClosureUserFunTy->getOptionalErrorResult(),
ClosureUserFunTy->getPatternSubstitutions(),
ClosureUserFunTy->getInvocationSubstitutions(),
M.getASTContext());
// We make this function bare so we don't have to worry about decls in the
// SILArgument.
auto *Fn = FunctionBuilder.createFunction(
// It's important to use a shared linkage for the specialized function
// and not the original linkage.
// Otherwise the new function could have an external linkage (in case the
// original function was de-serialized) and would not be code-gen'd.
// It's also important to disconnect this specialized function from any
// classes (the classSubclassScope), because that may incorrectly
// influence the linkage.
getSpecializedLinkage(ClosureUser, ClosureUser->getLinkage()), ClonedName,
ClonedTy, ClosureUser->getGenericEnvironment(),
ClosureUser->getLocation(), IsBare, ClosureUser->isTransparent(),
CallSiteDesc.getSerializedKind(), IsNotDynamic, IsNotDistributed,
IsNotRuntimeAccessible, ClosureUser->getEntryCount(),
ClosureUser->isThunk(),
/*classSubclassScope=*/SubclassScope::NotApplicable,
ClosureUser->getInlineStrategy(), ClosureUser->getEffectsKind(),
ClosureUser, ClosureUser->getDebugScope());
if (!ClosureUser->hasOwnership()) {
Fn->setOwnershipEliminated();
}
for (auto &Attr : ClosureUser->getSemanticsAttrs())
Fn->addSemanticsAttr(Attr);
return Fn;
}
// Clone a chain of ConvertFunctionInsts.
SILValue ClosureSpecCloner::cloneCalleeConversion(
SILValue calleeValue, SILValue NewClosure, SILBuilder &Builder,
SmallVectorImpl<PartialApplyInst *> &NeedsRelease,
llvm::DenseMap<SILValue, SILValue> &CapturedMap) {
// There might be a mark dependence on a previous closure value. Therefore, we
// add all closure values to the map.
auto addToOldToNewClosureMap = [&](SILValue origValue,
SILValue newValue) -> SILValue {
assert(!CapturedMap.count(origValue));
CapturedMap[origValue] = newValue;
return newValue;
};
if (calleeValue == CallSiteDesc.getClosure())
return addToOldToNewClosureMap(calleeValue, NewClosure);
if (auto *CFI = dyn_cast<ConvertFunctionInst>(calleeValue)) {
SILValue origCalleeValue = calleeValue;
calleeValue = cloneCalleeConversion(CFI->getOperand(), NewClosure, Builder,
NeedsRelease, CapturedMap);
return addToOldToNewClosureMap(
origCalleeValue, Builder.createConvertFunction(
CallSiteDesc.getLoc(), calleeValue, CFI->getType(),
CFI->withoutActuallyEscaping()));
}
if (auto *PAI = dyn_cast<PartialApplyInst>(calleeValue)) {
assert(isPartialApplyOfReabstractionThunk(PAI) && isSupportedClosure(PAI) &&
PAI->getArgument(0)
->getType()
.getAs<SILFunctionType>()
->isTrivialNoEscape());
SILValue origCalleeValue = calleeValue;
calleeValue = cloneCalleeConversion(PAI->getArgument(0), NewClosure,
Builder, NeedsRelease, CapturedMap);
auto origRef = PAI->getReferencedFunctionOrNull();
assert(origRef);
auto FunRef = Builder.createFunctionRef(CallSiteDesc.getLoc(), origRef);
auto NewPA = Builder.createPartialApply(
CallSiteDesc.getLoc(), FunRef, {}, {calleeValue},
PAI->getCalleeConvention(), PAI->getResultIsolation(),
PAI->isOnStack());
// If the partial_apply is on stack we will emit a dealloc_stack in the
// epilog.
NeedsRelease.push_back(NewPA);
return addToOldToNewClosureMap(origCalleeValue, NewPA);
}
if (auto *MD = dyn_cast<MarkDependenceInst>(calleeValue)) {
SILValue origCalleeValue = calleeValue;
calleeValue = cloneCalleeConversion(MD->getValue(), NewClosure, Builder,
NeedsRelease, CapturedMap);
if (!CapturedMap.count(MD->getBase())) {
CallSiteDesc.getClosure()->dump();
MD->dump();
MD->getFunction()->dump();
}
assert(CapturedMap.count(MD->getBase()));
return addToOldToNewClosureMap(
origCalleeValue,
Builder.createMarkDependence(CallSiteDesc.getLoc(), calleeValue,
CapturedMap[MD->getBase()],
MarkDependenceKind::Escaping));
}
auto *Cvt = cast<ConvertEscapeToNoEscapeInst>(calleeValue);
SILValue origCalleeValue = calleeValue;
calleeValue = cloneCalleeConversion(Cvt->getOperand(), NewClosure, Builder,
NeedsRelease, CapturedMap);
return addToOldToNewClosureMap(
origCalleeValue,
Builder.createConvertEscapeToNoEscape(CallSiteDesc.getLoc(), calleeValue,
Cvt->getType(), true));
}
/// Populate the body of the cloned closure, modifying instructions as
/// necessary. This is where we create the actual specialized BB Arguments
void ClosureSpecCloner::populateCloned() {
bool invalidatedStackNesting = false;
SILFunction *Cloned = getCloned();
SILFunction *ClosureUser = CallSiteDesc.getApplyCallee();
// Create arguments for the entry block.
SILBasicBlock *ClosureUserEntryBB = &*ClosureUser->begin();
SILBasicBlock *ClonedEntryBB = Cloned->createBasicBlock();
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(ClosureUserEntryBB->getArguments().size());
// Remove the closure argument.
for (size_t i = 0, e = ClosureUserEntryBB->args_size(); i != e; ++i) {
SILArgument *Arg = ClosureUserEntryBB->getArgument(i);
if (i == CallSiteDesc.getClosureIndex()) {
entryArgs.push_back(SILValue());
continue;
}
// Otherwise, create a new argument which copies the original argument
auto typeInContext = Cloned->getLoweredType(Arg->getType());
auto *MappedValue =
ClonedEntryBB->createFunctionArgument(typeInContext, Arg->getDecl());
MappedValue->copyFlags(cast<SILFunctionArgument>(Arg));
entryArgs.push_back(MappedValue);
}
// Next we need to add in any arguments that are not captured as arguments to
// the cloned function.
//
// We do not insert the new mapped arguments into the value map since there by
// definition is nothing in the partial apply user function that references
// such arguments. After this pass is done the only thing that will reference
// the arguments is the partial apply that we will create.
SILFunction *ClosedOverFun = CallSiteDesc.getClosureCallee();
SILBuilder &Builder = getBuilder();
auto ClosedOverFunConv = ClosedOverFun->getConventions();
unsigned NumTotalParams = ClosedOverFunConv.getNumParameters();
unsigned NumNotCaptured = NumTotalParams - CallSiteDesc.getNumArguments();
llvm::SmallVector<SILValue, 4> NewPAIArgs;
llvm::DenseMap<SILValue, SILValue> CapturedMap;
unsigned idx = 0;
for (auto &PInfo : ClosedOverFunConv.getParameters().slice(NumNotCaptured)) {
auto paramTy =
ClosedOverFunConv.getSILType(PInfo, Builder.getTypeExpansionContext());
// Get the type in context of the new function.
paramTy = Cloned->getLoweredType(paramTy);
SILValue MappedValue = ClonedEntryBB->createFunctionArgument(paramTy);
NewPAIArgs.push_back(MappedValue);
auto CapturedVal =
cast<PartialApplyInst>(CallSiteDesc.getClosure())->getArgument(idx++);
CapturedMap[CapturedVal] = MappedValue;
}
Builder.setInsertionPoint(ClonedEntryBB);
// Clone FRI and PAI, and replace usage of the removed closure argument
// with result of cloned PAI.
SILValue FnVal =
Builder.createFunctionRef(CallSiteDesc.getLoc(), ClosedOverFun);
auto *NewClosure = CallSiteDesc.createNewClosure(Builder, FnVal, NewPAIArgs);
// Clone a chain of ConvertFunctionInsts. This can create further
// reabstraction partial_apply instructions.
SmallVector<PartialApplyInst*, 4> NeedsRelease;
SILValue ConvertedCallee =
cloneCalleeConversion(CallSiteDesc.getClosureCallerArg(), NewClosure,
Builder, NeedsRelease, CapturedMap);
// Make sure that we actually emit the releases for reabstraction thunks. We
// have guaranteed earlier that we only allow reabstraction thunks if the
// closure was passed trivial.
assert(NeedsRelease.empty() || CallSiteDesc.isTrivialNoEscapeParameter());
entryArgs[CallSiteDesc.getClosureIndex()] = ConvertedCallee;
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
cloneFunctionBody(ClosureUser, ClonedEntryBB, entryArgs);
// Then insert a release in all non failure exit BBs if our partial apply was
// guaranteed. This is b/c it was passed at +0 originally and we need to
// balance the initial increment of the newly created closure(s).
bool ClosureHasRefSemantics = CallSiteDesc.closureHasRefSemanticContext();
if ((CallSiteDesc.isClosureGuaranteed() ||
CallSiteDesc.isTrivialNoEscapeParameter()) &&
(ClosureHasRefSemantics || !NeedsRelease.empty() ||
CallSiteDesc.isClosureOnStack())) {
for (SILBasicBlock *BB : CallSiteDesc.getNonFailureExitBBs()) {
SILBasicBlock *OpBB = getOpBasicBlock(BB);
TermInst *TI = OpBB->getTerminator();
auto Loc = CleanupLocation(NewClosure->getLoc());
// If we have an exit, we place the release right before it so we know
// that it will be executed at the end of the epilogue.
if (TI->isFunctionExiting()) {
Builder.setInsertionPoint(TI);
if (ClosureHasRefSemantics)
Builder.createReleaseValue(Loc, SILValue(NewClosure),
Builder.getDefaultAtomicity());
else
invalidatedStackNesting |=
CallSiteDesc.destroyIfPartialApplyStack(Builder, NewClosure);
for (auto PAI : NeedsRelease) {
if (PAI->isOnStack())
invalidatedStackNesting |=
CallSiteDesc.destroyIfPartialApplyStack(Builder, PAI);
else
Builder.createReleaseValue(Loc, SILValue(PAI),
Builder.getDefaultAtomicity());
}
continue;
}
// We use casts where findAllNonFailureExitBBs should have made sure that
// this is true. This will ensure that the code is updated when we hit the
// cast failure in debug builds.
auto *Unreachable = cast<UnreachableInst>(TI);
auto PrevIter = std::prev(SILBasicBlock::iterator(Unreachable));
auto NoReturnApply = FullApplySite::isa(&*PrevIter);
// We insert the release value right before the no return apply so that if
// the partial apply is passed into the no-return function as an @owned
// value, we will retain the partial apply before we release it and
// potentially eliminate it.
Builder.setInsertionPoint(NoReturnApply.getInstruction());
if (ClosureHasRefSemantics)
Builder.createReleaseValue(Loc, SILValue(NewClosure),
Builder.getDefaultAtomicity());
else
invalidatedStackNesting |=
CallSiteDesc.destroyIfPartialApplyStack(Builder, NewClosure);
for (auto PAI : NeedsRelease) {
if (PAI->isOnStack())
invalidatedStackNesting |=
CallSiteDesc.destroyIfPartialApplyStack(Builder, PAI);
else
Builder.createReleaseValue(Loc, SILValue(PAI),
Builder.getDefaultAtomicity());
}
}
}
if (invalidatedStackNesting) {
StackNesting::fixNesting(Cloned);
}
}
//===----------------------------------------------------------------------===//
// Closure Specializer
//===----------------------------------------------------------------------===//
namespace {
class SILClosureSpecializerTransform : public SILFunctionTransform {
bool gatherCallSites(
SILFunction *Caller,
llvm::SmallVectorImpl<std::unique_ptr<ClosureInfo>> &ClosureCandidates,
llvm::DenseSet<FullApplySite> &MultipleClosureAI);
bool specialize(SILFunction *Caller,
std::vector<SingleValueInstruction *> &PropagatedClosures);
public:
SILClosureSpecializerTransform() {}
void run() override;
};
void SILClosureSpecializerTransform::run() {
SILFunction *F = getFunction();
// Don't optimize functions that are marked with the opt.never
// attribute.
if (!F->shouldOptimize())
return;
// If F is an external declaration, there is nothing to specialize.
if (F->isExternalDeclaration())
return;
std::vector<SingleValueInstruction *> PropagatedClosures;
if (!specialize(F, PropagatedClosures))
return;
// If for testing purposes we were asked to not eliminate dead closures,
// return.
if (EliminateDeadClosures) {
// Otherwise, remove any local dead closures that are now dead since we
// specialized all of their uses.
LLVM_DEBUG(llvm::dbgs() << "Trying to remove dead closures!\n");
sortUnique(PropagatedClosures);
bool invalidatedStackNesting = false;
for (auto *Closure : PropagatedClosures) {
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << *Closure);
if (!tryDeleteDeadClosure(Closure)) {
LLVM_DEBUG(llvm::dbgs() << " Failed to delete closure!\n");
++NumPropagatedClosuresNotEliminated;
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Deleted closure!\n");
++NumPropagatedClosuresEliminated;
invalidatedStackNesting = true;
}
if (invalidatedStackNesting) {
StackNesting::fixNesting(F);
}
}
// Invalidate everything since we delete calls as well as add new
// calls and branches.
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
static void markReabstractionPartialApplyAsUsed(
SILValue FirstClosure, SILValue Current,
llvm::DenseSet<SingleValueInstruction *> &UsedReabstractionClosure) {
if (Current == FirstClosure)
return;
if (auto PA = dyn_cast<PartialApplyInst>(Current)) {
UsedReabstractionClosure.insert(PA);
return markReabstractionPartialApplyAsUsed(FirstClosure, PA->getArgument(0),
UsedReabstractionClosure);
}
if (auto Cvt = dyn_cast<ConvertFunctionInst>(Current)) {
return markReabstractionPartialApplyAsUsed(FirstClosure, Cvt->getOperand(),
UsedReabstractionClosure);
}
if (auto Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(Current)) {
return markReabstractionPartialApplyAsUsed(FirstClosure, Cvt->getOperand(),
UsedReabstractionClosure);
}
if (auto MD = dyn_cast<MarkDependenceInst>(Current)) {
return markReabstractionPartialApplyAsUsed(FirstClosure, MD->getValue(),
UsedReabstractionClosure);
}
llvm_unreachable("Unexpect instruction");
}
/// Returns true if the \p closureArgIdx argument of \p callee is called in
/// \p callee or any function called by callee.
static bool isClosureAppliedIn(SILFunction *Callee, unsigned closureArgIdx,
SmallPtrSetImpl<SILFunction *> &HandledFuncs) {
// Limit the number of recursive calls to not go into exponential behavior in
// corner cases.
const int RecursionBudget = 8;
SILValue Arg = Callee->getArgument(closureArgIdx);
for (Operand *ArgUse : Arg->getUses()) {
if (auto UserAI = FullApplySite::isa(ArgUse->getUser())) {
if (UserAI.getCallee() == Arg)
return true;
assert(UserAI.isArgumentOperand(*ArgUse) &&
"any other non-argument operands than the callee?");
SILFunction *ApplyCallee = UserAI.getReferencedFunctionOrNull();
if (ApplyCallee && !ApplyCallee->isExternalDeclaration() &&
HandledFuncs.count(ApplyCallee) == 0 &&
HandledFuncs.size() < RecursionBudget) {
HandledFuncs.insert(ApplyCallee);
if (isClosureAppliedIn(UserAI.getReferencedFunctionOrNull(),
UserAI.getCalleeArgIndex(*ArgUse), HandledFuncs))
return true;
}
}
}
return false;
}
static bool canSpecializeFullApplySite(FullApplySiteKind kind) {
switch (kind) {
case FullApplySiteKind::TryApplyInst:
case FullApplySiteKind::ApplyInst:
return true;
case FullApplySiteKind::BeginApplyInst:
return false;
}
llvm_unreachable("covered switch");
}
const int SpecializationLevelLimit = 2;
static int getSpecializationLevelRecursive(StringRef funcName, Demangler &parent) {
using namespace Demangle;
Demangler demangler;
demangler.providePreallocatedMemory(parent);
// Check for this kind of node tree:
//
// kind=Global
// kind=FunctionSignatureSpecialization
// kind=SpecializationPassID, index=1
// kind=FunctionSignatureSpecializationParam
// kind=FunctionSignatureSpecializationParamKind, index=5
// kind=FunctionSignatureSpecializationParamPayload, text="..."
//
Node *root = demangler.demangleSymbol(funcName);
if (!root)
return 0;
if (root->getKind() != Node::Kind::Global)
return 0;
Node *funcSpec = root->getFirstChild();
if (!funcSpec || funcSpec->getNumChildren() < 2)
return 0;
if (funcSpec->getKind() != Node::Kind::FunctionSignatureSpecialization)
return 0;
// Match any function specialization. We check for constant propagation at the
// parameter level.
Node *param = funcSpec->getChild(0);
if (param->getKind() != Node::Kind::SpecializationPassID)
return SpecializationLevelLimit + 1; // unrecognized format
unsigned maxParamLevel = 0;
for (unsigned paramIdx = 1; paramIdx < funcSpec->getNumChildren();
++paramIdx) {
Node *param = funcSpec->getChild(paramIdx);
if (param->getKind() != Node::Kind::FunctionSignatureSpecializationParam)
return SpecializationLevelLimit + 1; // unrecognized format
// A parameter is recursive if it has a kind with index and type payload
if (param->getNumChildren() < 2)
continue;
Node *kindNd = param->getChild(0);
if (kindNd->getKind()
!= Node::Kind::FunctionSignatureSpecializationParamKind) {
return SpecializationLevelLimit + 1; // unrecognized format
}
auto kind = FunctionSigSpecializationParamKind(kindNd->getIndex());
if (kind != FunctionSigSpecializationParamKind::ConstantPropFunction)
continue;
Node *payload = param->getChild(1);
if (payload->getKind()
!= Node::Kind::FunctionSignatureSpecializationParamPayload) {
return SpecializationLevelLimit + 1; // unrecognized format
}
// Check if the specialized function is a specialization itself.
unsigned paramLevel =
1 + getSpecializationLevelRecursive(payload->getText(), demangler);
if (paramLevel > maxParamLevel)
maxParamLevel = paramLevel;
}
return maxParamLevel;
}
/// If \p function is a function-signature specialization for a constant-
/// propagated function argument, returns 1.
/// If \p function is a specialization of such a specialization, returns 2.
/// And so on.
static int getSpecializationLevel(SILFunction *f) {
Demangle::StackAllocatedDemangler<1024> demangler;
return getSpecializationLevelRecursive(f->getName(), demangler);
}
bool SILClosureSpecializerTransform::gatherCallSites(
SILFunction *Caller,
llvm::SmallVectorImpl<std::unique_ptr<ClosureInfo>> &ClosureCandidates,
llvm::DenseSet<FullApplySite> &MultipleClosureAI) {
// A set of apply inst that we have associated with a closure. We use this to
// make sure that we do not handle call sites with multiple closure arguments.
llvm::DenseSet<FullApplySite> VisitedAI;
// We should not look at reabstraction closure twice who we ultimately ended
// up using as an argument that we specialize on.
llvm::DenseSet<SingleValueInstruction *> UsedReabstractionClosure;
bool CFGChanged = false;
// For each basic block BB in Caller...
for (auto &BB : *Caller) {
// For each instruction II in BB...
for (auto &II : BB) {
// If II is not a closure that we support specializing, skip it...
if (!isSupportedClosure(&II))
continue;
auto ClosureInst = cast<SingleValueInstruction>(&II);
if (UsedReabstractionClosure.count(ClosureInst))
continue;
std::unique_ptr<ClosureInfo> CInfo;
// Go through all uses of our closure.
// Worklist of operands.
SmallVector<Operand *, 8> Uses(ClosureInst->getUses());
// Live range end points.
SmallVector<SILInstruction *, 8> UsePoints;
// Set of possible arguments for mark_dependence. The base of a
// mark_dependence we copy must be available in the specialized function.
llvm::SmallSet<SILValue, 16> PossibleMarkDependenceBases;
if (auto *PA = dyn_cast<PartialApplyInst>(ClosureInst)) {
for (auto Opd : PA->getArguments())
PossibleMarkDependenceBases.insert(Opd);
}
bool HaveUsedReabstraction = false;
// Uses may grow in this loop.
for (size_t UseIndex = 0; UseIndex < Uses.size(); ++UseIndex) {
auto *Use = Uses[UseIndex];
UsePoints.push_back(Use->getUser());
// Recurse through conversions.
if (auto *CFI = dyn_cast<ConvertFunctionInst>(Use->getUser())) {
// Push Uses in reverse order so they are visited in forward order.
Uses.append(CFI->getUses().begin(), CFI->getUses().end());
PossibleMarkDependenceBases.insert(CFI);
continue;
}
if (auto *Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(Use->getUser())) {
Uses.append(Cvt->getUses().begin(), Cvt->getUses().end());
PossibleMarkDependenceBases.insert(Cvt);
continue;
}
// Look through reabstraction thunks.
if (auto *PA = dyn_cast<PartialApplyInst>(Use->getUser())) {
// Reabstraction can cause series of partial_apply to be emitted. It
// is okay to treat these like conversion instructions. Current
// restriction: if the partial_apply does not take ownership of its
// argument we don't need to analyze which partial_apply to emit
// release for (its all of them).
if (isPartialApplyOfReabstractionThunk(PA) &&
isSupportedClosure(PA) &&
PA->getArgument(0)
->getType()
.getAs<SILFunctionType>()
->isTrivialNoEscape()) {
Uses.append(PA->getUses().begin(), PA->getUses().end());
PossibleMarkDependenceBases.insert(PA);
HaveUsedReabstraction = true;
}
continue;
}
// Look through mark_dependence on partial_apply [stack].
if (auto *MD = dyn_cast<MarkDependenceInst>(Use->getUser())) {
// We can't copy a closure if the mark_dependence base is not
// available in the specialized function.
if (!PossibleMarkDependenceBases.count(MD->getBase()))
continue;
if (MD->getValue() == Use->get() &&
MD->getValue()->getType().is<SILFunctionType>() &&
MD->getValue()
->getType()
.castTo<SILFunctionType>()
->isTrivialNoEscape()) {
Uses.append(MD->getUses().begin(), MD->getUses().end());
continue;
}
}
// If this use is not a full apply site that we can process or an apply
// inst with substitutions, there is nothing interesting for us to do,
// so continue...
auto AI = FullApplySite::isa(Use->getUser());
if (!AI || AI.hasSubstitutions() ||
!canSpecializeFullApplySite(AI.getKind()) ||
!AI.canOptimize())
continue;
// Check if we have already associated this apply inst with a closure to
// be specialized. We do not handle applies that take in multiple
// closures at this time.
if (!VisitedAI.insert(AI).second) {
MultipleClosureAI.insert(AI);
continue;
}
// If AI does not have a function_ref definition as its callee, we can
// not do anything here... so continue...
SILFunction *ApplyCallee = AI.getReferencedFunctionOrNull();
if (!ApplyCallee || ApplyCallee->isExternalDeclaration())
continue;
// Don't specialize non-fragile callees if the caller is fragile;
// the specialized callee will have shared linkage, and thus cannot
// be referenced from the fragile caller.
if (!ApplyCallee->canBeInlinedIntoCaller(Caller->getSerializedKind()))
continue;
// If the callee uses a dynamic Self, we cannot specialize it,
// since the resulting specialization might longer has 'self' as the
// last parameter.
//
// We could fix this by inserting new arguments more carefully, or
// changing how we model dynamic Self altogether.
if (mayBindDynamicSelf(ApplyCallee))
return CFGChanged;
// Check if the closure is passed as an argument (and not called).
if (!AI.isArgumentOperand(*Use))
continue;
unsigned ClosureIndex = AI.getCalleeArgIndex(*Use);
// Ok, we know that we can perform the optimization but not whether or
// not the optimization is profitable. Check if the closure is actually
// called in the callee (or in a function called by the callee).
SmallPtrSet<SILFunction *, 8> HandledFuncs;
if (!isClosureAppliedIn(ApplyCallee, ClosureIndex, HandledFuncs))
continue;
unsigned firstParamArgIdx =
AI.getSubstCalleeConv().getSILArgIndexOfFirstParam();
assert(ClosureIndex >= firstParamArgIdx);
auto ClosureParamIndex = ClosureIndex - firstParamArgIdx;
auto ParamInfo = AI.getSubstCalleeType()->getParameters();
SILParameterInfo ClosureParamInfo = ParamInfo[ClosureParamIndex];
// We currently only support copying intermediate reabstraction
// closures if the closure is ultimately passed trivially.
bool IsClosurePassedTrivially = ClosureParamInfo.getInterfaceType()
->castTo<SILFunctionType>()
->isTrivialNoEscape();
if (HaveUsedReabstraction && !IsClosurePassedTrivially)
continue;
// Get all non-failure exit BBs in the Apply Callee if our partial apply
// is guaranteed. If we do not understand one of the exit BBs, bail.
//
// We need this to make sure that we insert a release in the appropriate
// locations to balance the +1 from the creation of the partial apply.
//
// However, thin_to_thick_function closures don't have a context and
// don't need to be released.
bool OnlyHaveThinToThickClosure =
isa<ThinToThickFunctionInst>(ClosureInst) && !HaveUsedReabstraction;
llvm::TinyPtrVector<SILBasicBlock *> NonFailureExitBBs;
if ((ClosureParamInfo.isGuaranteed() || IsClosurePassedTrivially) &&
!OnlyHaveThinToThickClosure &&
!findAllNonFailureExitBBs(ApplyCallee, NonFailureExitBBs)) {
continue;
}
// Specializing a readnone, readonly, releasenone function with a
// nontrivial context is illegal. Inserting a release in such a function
// results in miscompilation after other optimizations.
// For now, the specialization is disabled.
//
// TODO: A @noescape closure should never be converted to an @owned
// argument regardless of the function attribute.
if (!OnlyHaveThinToThickClosure
&& ApplyCallee->getEffectsKind() <= EffectsKind::ReleaseNone) {
continue;
}
// Avoid an infinite specialization loop caused by repeated runs of
// ClosureSpecializer and CapturePropagation.
// CapturePropagation propagates constant function-literals. Such
// function specializations can then be optimized again by the
// ClosureSpecializer and so on.
// This happens if a closure argument is called _and_ referenced in
// another closure, which is passed to a recursive call. E.g.
//
// func foo(_ c: @escaping () -> ()) {
// c()
// foo({ c() })
// }
//
// A limit of 2 is good enough and will not be exceeded in "regular"
// optimization scenarios.
if (getSpecializationLevel(getClosureCallee(ClosureInst))
> SpecializationLevelLimit) {
continue;
}
// Compute the final release points of the closure. We will insert
// release of the captured arguments here.
if (!CInfo)
CInfo.reset(new ClosureInfo(ClosureInst));
// Mark the reabstraction closures as used.
if (HaveUsedReabstraction)
markReabstractionPartialApplyAsUsed(ClosureInst, Use->get(),
UsedReabstractionClosure);
// Now we know that CSDesc is profitable to specialize. Add it to our
// call site list.
CInfo->CallSites.push_back(
CallSiteDescriptor(CInfo.get(), AI, ClosureIndex,
ClosureParamInfo, std::move(NonFailureExitBBs)));
}
if (CInfo) {
ValueLifetimeAnalysis VLA(CInfo->Closure, UsePoints);
if (!VLA.computeFrontier(CInfo->LifetimeFrontier,
ValueLifetimeAnalysis::AllowToModifyCFG)) {
CFGChanged = true;
}
ClosureCandidates.push_back(std::move(CInfo));
}
}
}
return CFGChanged;
}
bool SILClosureSpecializerTransform::specialize(SILFunction *Caller,
std::vector<SingleValueInstruction *> &PropagatedClosures) {
LLVM_DEBUG(llvm::dbgs() << "Optimizing callsites that take closure "
"argument in "
<< Caller->getName() << '\n');
// Collect all of the PartialApplyInsts that are used as arguments to
// ApplyInsts. Check the profitability of specializing the closure argument.
llvm::SmallVector<std::unique_ptr<ClosureInfo>, 8> ClosureCandidates;
llvm::DenseSet<FullApplySite> MultipleClosureAI;
if (gatherCallSites(Caller, ClosureCandidates, MultipleClosureAI)) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Branches);
}
SILOptFunctionBuilder FuncBuilder(*this);
bool Changed = false;
for (const auto &CInfo : ClosureCandidates) {
for (auto &CSDesc : CInfo->CallSites) {
// Do not specialize apply insts that take in multiple closures. This pass
// does not know how to do this yet.
if (MultipleClosureAI.count(CSDesc.getApplyInst()))
continue;
auto NewFName = CSDesc.createName();
LLVM_DEBUG(llvm::dbgs() << " Perform optimizations with new name "
<< NewFName << '\n');
// Then see if we already have a specialized version of this function in
// our module.
SILFunction *NewF = CInfo->Closure->getModule().lookUpFunction(NewFName);
// If not, create a specialized version of ApplyCallee calling the closure
// directly.
if (!NewF) {
NewF = ClosureSpecCloner::cloneFunction(FuncBuilder, CSDesc, NewFName);
addFunctionToPassManagerWorklist(NewF, CSDesc.getApplyCallee());
LLVM_DEBUG(llvm::dbgs() << "\nThe rewritten callee is:\n";
NewF->dump());
}
// Rewrite the call
rewriteApplyInst(CSDesc, NewF);
PropagatedClosures.push_back(CSDesc.getClosure());
Changed = true;
}
}
LLVM_DEBUG(if (Changed) {
llvm::dbgs() << "\nThe rewritten caller is:\n";
Caller->dump();
});
return Changed;
}
} // end anonymous namespace
SILTransform *swift::createClosureSpecializer() {
return new SILClosureSpecializerTransform();
}
|