1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
//===--- GlobalPropertyOpt.cpp - Optimizes global array properties --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "globalpropertyopt"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumPropertiesReplaced, "Number of array property calls replaced");
namespace {
/// The GlobalPropertyOpt performs an analysis on the whole module to determine
/// the values of high-level properties.
///
/// Currently only one property is handled and that's the isNativeTypeChecked
/// property for arrays. If the property can be proved to be true, the
/// corresponding semantics-call is replaced by a true-literal.
class GlobalPropertyOpt {
/// An entry in the dependency graph. An entry can represent
/// *) a value of type Array,
/// *) a value of type tuple, which contains an Array,
/// *) an AllocStack instruction which allocates an Array or
/// *) a struct or class field of type Array.
struct Entry {
Entry(SILValue Value, VarDecl *Field) :
Value(Value), Field(Field), isNativeTypeChecked(true) {
}
/// Non-null if the entry represents an array value, a tuple with an array
/// or an AllocStack of an array.
SILValue Value;
/// Non-null if the entry represents a struct or class field.
VarDecl *Field;
/// The property which we want to track: is the value/field a native swift
/// array which doesn't need deferred type check.
bool isNativeTypeChecked;
/// The edges in the dependency graph, i.e. entries, which depend on this
/// entry.
SmallVector<Entry *, 8> Dependencies;
#ifndef NDEBUG
friend raw_ostream &operator<<(raw_ostream &os, const Entry &entry) {
if (entry.Field)
return os << "field " << entry.Field->getName() << '\n';
if (!entry.Value)
return os << "unknown-address\n";
if (auto *Inst = entry.Value->getDefiningInstruction())
return os << Inst->getFunction()->getName() << ": " << entry.Value;
if (auto *Arg = dyn_cast<SILArgument>(entry.Value))
return os << Arg->getFunction()->getName() << ": " << entry.Value;
return os << entry.Value;
}
#endif
};
/// The module that we are optimizing.
SILModule &M;
NominalTypeDecl *ArrayType;
/// All entries of the dependency graph, which represent values or AllocStack.
llvm::DenseMap<SILValue, Entry *> ValueEntries;
/// All entries of the dependency graph, which represent fields.
llvm::DenseMap<VarDecl *, Entry *> FieldEntries;
llvm::SpecificBumpPtrAllocator<Entry> EntryAllocator;
/// Represents an address of an unknown array.
Entry unknownAddressEntry = Entry(SILValue(), nullptr);
/// All found calls to get-property semantic functions.
std::vector<ApplyInst *> propertyCalls;
llvm::SetVector<SILFunction *> ChangedFunctions;
/// Contains entries with a false property value, which must be propagated
/// to their dependencies.
llvm::SmallVector<Entry *, 32> WorkList;
bool isArrayType(SILType type) {
return type.getNominalOrBoundGenericNominal() == ArrayType &&
!type.isAddress();
}
bool isArrayAddressType(SILType type) {
return type.getNominalOrBoundGenericNominal() == ArrayType &&
type.isAddress();
}
/// Returns true if the type is a tuple which contains at least one array
/// (we don't check for arrays in nested tuples).
bool isTupleWithArray(CanType type) {
if (auto tuple = dyn_cast<TupleType>(type)) {
for (Type subType : tuple->getElementTypes()) {
if (CanType(subType).getNominalOrBoundGenericNominal() == ArrayType)
return true;
}
}
return false;
}
static bool canAddressEscape(SILValue V, bool acceptStore);
/// Gets the entry for a struct or class field.
Entry *getFieldEntry(VarDecl *Field) {
Entry * &entry = FieldEntries[Field];
if (!entry) {
entry = new (EntryAllocator.Allocate()) Entry(SILValue(), Field);
if (M.isVisibleExternally(Field))
setAddressEscapes(entry);
}
return entry;
}
/// Gets the entry for a value at an address, e.g. a struct/class field or
/// an alloc_stack.
Entry *getAddrEntry(SILValue value) {
ValueBase *def = value;
if (auto *MDI = dyn_cast<MarkDependenceInst>(def)) {
return getAddrEntry(MDI->getOperand(0));
}
if (auto *RAI = dyn_cast<RefElementAddrInst>(def)) {
return getFieldEntry(RAI->getField());
}
if (auto *SEI = dyn_cast<StructElementAddrInst>(def)) {
return getFieldEntry(SEI->getField());
}
if (isa<AllocStackInst>(def)) {
Entry * &entry = ValueEntries[value];
if (!entry) {
entry = new (EntryAllocator.Allocate()) Entry(value, nullptr);
if (canAddressEscape(value, true))
setAddressEscapes(entry);
}
return entry;
}
return &unknownAddressEntry;
}
/// Gets the entry for a SIL value, e.g. an array-value or a tuple containing
/// an array.
Entry *getValueEntry(SILValue value) {
Entry * &entry = ValueEntries[value];
if (!entry) {
entry = new (EntryAllocator.Allocate()) Entry(value, nullptr);
}
return entry;
}
void setAddressEscapes(Entry *entry) {
LLVM_DEBUG(llvm::dbgs() << " address escapes: " << *entry);
setNotNative(entry);
}
void setNotNative(Entry *entry) {
if (entry->isNativeTypeChecked) {
LLVM_DEBUG(llvm::dbgs() << " set not-native: " << *entry);
entry->isNativeTypeChecked = false;
WorkList.push_back(entry);
}
}
void addDependency(Entry *from, Entry *to) {
LLVM_DEBUG(llvm::dbgs() << " add dependency from: " << *from
<< " to: " << *to);
from->Dependencies.push_back(to);
}
void scanInstruction(swift::SILInstruction *Inst);
void scanInstructions();
void propagatePropertiesInGraph();
void replacePropertyCalls();
public:
GlobalPropertyOpt(SILModule &Module) :
M(Module), ArrayType(nullptr) {}
void run(SILModuleTransform *T);
};
/// Checks if an address value does escape. If \p acceptStore is false, then
/// we handle a store to the address like if the address would escape.
bool GlobalPropertyOpt::canAddressEscape(SILValue V, bool acceptStore) {
for (auto UI : V->getUses()) {
auto *User = UI->getUser();
// These instructions do not cause the address to escape.
if (isa<LoadInst>(User) ||
isa<DebugValueInst>(User) ||
isa<StrongReleaseInst>(User) ||
isa<StrongRetainInst>(User) ||
isa<DeallocBoxInst>(User) ||
isa<DeallocStackInst>(User))
continue;
if (acceptStore) {
if (auto *Store = dyn_cast<StoreInst>(User)) {
if (Store->getDest() == UI->get())
continue;
}
}
// These instructions only cause the value to escape if they are used in
// a way that escapes. Recursively check that the uses of the instruction
// don't escape.
if (isa<StructElementAddrInst>(User) || isa<TupleElementAddrInst>(User) ||
isa<AddressToPointerInst>(User) || isa<PointerToAddressInst>(User)) {
// We don't handle these instructions if we see them in store addresses.
// So going through them lets stores be as bad as if the address would
// escape.
auto value = cast<SingleValueInstruction>(User);
if (canAddressEscape(value, false))
return true;
continue;
}
if (auto markDependence = dyn_cast<MarkDependenceInst>(User)) {
unsigned opNum = UI->getOperandNumber();
if (opNum == 0 && canAddressEscape(markDependence, acceptStore))
return true;
continue;
}
if (auto apply = dyn_cast<ApplyInst>(User)) {
// Check if the value is the this-argument of the array method.
ArraySemanticsCall Call(apply);
if (Call && Call.hasSelf() && &Call.getSelfOperand() == UI)
continue;
}
return true;
}
return false;
}
/// Scan an instruction and build dependencies for it.
void GlobalPropertyOpt::scanInstruction(swift::SILInstruction *Inst) {
if (auto *AI = dyn_cast<ApplyInst>(Inst)) {
ArraySemanticsCall semCall(AI);
switch (semCall.getKind()) {
case ArrayCallKind::kArrayInit:
case ArrayCallKind::kArrayInitEmpty:
case ArrayCallKind::kArrayUninitialized:
case ArrayCallKind::kMutateUnknown:
case ArrayCallKind::kMakeMutable:
// The return value of those calls (if any) do not return a non-native
// swift array.
LLVM_DEBUG(llvm::dbgs() << " array semantics call: " << *AI);
return;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
// Remember the property-calls for later.
LLVM_DEBUG(llvm::dbgs() << " property check: " << *AI);
propertyCalls.push_back(AI);
break;
default:
break;
}
} else if (auto *LI = dyn_cast<LoadInst>(Inst)) {
if (isArrayType(LI->getType())) {
// Add a dependency from the value at the address to the loaded value.
SILValue loadAddr = LI->getOperand();
assert(loadAddr->getType().isAddress());
addDependency(getAddrEntry(loadAddr), getValueEntry(LI));
return;
}
} else if (auto *SI = dyn_cast<StoreInst>(Inst)) {
SILValue src = SI->getSrc();
if (isArrayType(src->getType())) {
// Add a dependency from the operand to the value at the store-address.
//
SILValue dst = SI->getDest();
assert(dst->getType().isAddress());
addDependency(getValueEntry(src), getAddrEntry(dst));
return;
}
} else if (isa<RefElementAddrInst>(Inst) || isa<StructElementAddrInst>(Inst)) {
auto projection = cast<SingleValueInstruction>(Inst);
if (isArrayAddressType(projection->getType())) {
// If the address of an array-field escapes, we give up for that field.
if (canAddressEscape(projection, true)) {
setAddressEscapes(getAddrEntry(projection));
LLVM_DEBUG(llvm::dbgs() << " field address escapes: "
<< *projection);
}
return;
}
} else if (auto *SEI = dyn_cast<StructExtractInst>(Inst)) {
if (isArrayType(SEI->getType())) {
// Add a dependency from the field to the extracted value.
VarDecl *Field = SEI->getField();
addDependency(getFieldEntry(Field), getValueEntry(SEI));
return;
}
} else if (auto *TEI = dyn_cast<TupleExtractInst>(Inst)) {
if (isArrayType(TEI->getType())) {
// Add a dependency from the tuple itself to the extracted element.
SILValue tuple = TEI->getOperand();
addDependency(getValueEntry(tuple), getValueEntry(TEI));
return;
}
} else if (auto *TI = dyn_cast<TupleInst>(Inst)) {
if (isTupleWithArray(TI->getType().getASTType())) {
// Add dependencies from array elements to the tuple itself.
for (Operand &Op : TI->getAllOperands()) {
SILValue V = Op.get();
if (isArrayType(V->getType())) {
addDependency(getValueEntry(V), getValueEntry(TI));
}
}
return;
}
} else if (auto *SI = dyn_cast<StructInst>(Inst)) {
// Add dependencies from the array operands to the struct array-fields.
StructDecl *S = SI->getStructDecl();
auto Props = S->getStoredProperties();
auto Operands = SI->getAllOperands();
for (unsigned I = 0, E = Props.size(); I < E; ++I) {
VarDecl *VD = Props[I];
const Operand &Op = Operands[I];
if (isArrayType(Op.get()->getType())) {
addDependency(getValueEntry(Op.get()), getFieldEntry(VD));
}
}
} else if (isa<AllocStackInst>(Inst)) {
// An alloc_stack itself does not introduce any non-native swift arrays.
return;
}
// TODO: handle enums with array data.
// For everything else which we didn't handle above: we set the property of
// the instruction value to false.
for (auto result : Inst->getResults()) {
SILType Type = result->getType();
if (isArrayType(Type) || isTupleWithArray(Type.getASTType())) {
LLVM_DEBUG(llvm::dbgs() << " value could be non-native array: "
<< *result);
setNotNative(getValueEntry(result));
}
}
}
/// Scans all instructions of the module and builds the dependency graph.
void GlobalPropertyOpt::scanInstructions() {
for (auto &F : M) {
LLVM_DEBUG(llvm::dbgs() << " scan function " << F.getName() << "\n");
for (auto &BB : F) {
LLVM_DEBUG(llvm::dbgs() << " scan basic block " << BB.getDebugID()
<< "\n");
// Add dependencies from predecessor's terminator operands to the block
// arguments.
int argIdx = 0;
for (auto *BBArg : BB.getArguments()) {
bool hasPreds = false;
SILType Type = BBArg->getType();
if (isArrayType(Type) || isTupleWithArray(Type.getASTType())) {
for (auto *Pred : BB.getPredecessorBlocks()) {
hasPreds = true;
auto *Term = Pred->getTerminator();
SILValue PredArg;
if (auto *BI = dyn_cast<BranchInst>(Term)) {
PredArg = BI->getArg(argIdx);
} else if (auto *CBI = dyn_cast<CondBranchInst>(Term)) {
PredArg = CBI->getArgForDestBB(&BB, BBArg);
}
if (PredArg) {
addDependency(getValueEntry(PredArg), getValueEntry(BBArg));
} else {
// Some unknown terminator instruction.
setNotNative(getValueEntry(BBArg));
break;
}
}
if (!hasPreds) {
// This is the case for the function entry block.
setNotNative(getValueEntry(BBArg));
LLVM_DEBUG(llvm::dbgs() << " unknown entry argument " << *BBArg);
}
}
++argIdx;
}
// Go through all instructions of the block.
for (auto &Inst : BB) {
scanInstruction(&Inst);
}
}
}
}
/// Propagates the properties through the graph.
void GlobalPropertyOpt::propagatePropertiesInGraph() {
LLVM_DEBUG(llvm::dbgs() << " propagate properties\n");
setAddressEscapes(&unknownAddressEntry);
while (!WorkList.empty()) {
Entry *entry = WorkList.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << " handle non-native entry: " << *entry);
assert(!entry->isNativeTypeChecked);
// Propagate the false-value to the dependent entries.
for (Entry *depEntry : entry->Dependencies) {
setNotNative(depEntry);
}
}
}
/// Replaces all get-property calls, which we can prove to be true, with
/// true-literals.
void GlobalPropertyOpt::replacePropertyCalls() {
for (ApplyInst *AI : propertyCalls) {
SILFunction *F = AI->getFunction();
// Don't optimize functions that are marked with the opt.never attribute.
if (!F->shouldOptimize())
continue;
ChangedFunctions.insert(F);
SILValue array = AI->getArgument(0);
// Is the argument a native swift array?
if (ValueEntries.count(array) != 0 &&
getValueEntry(array)->isNativeTypeChecked) {
ArraySemanticsCall semCall(AI);
assert(
(semCall.getKind() == ArrayCallKind::kArrayPropsIsNativeTypeChecked) &&
"invalid semantics type");
LLVM_DEBUG(llvm::dbgs() << " remove property check in function "
<< AI->getParent()->getParent()->getName()
<< ": " << *AI);
SILBuilder B(AI);
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
auto C1 = B.createIntegerLiteral(AI->getLoc(), IntBoolTy, 1);
auto TrueStruct = B.createStruct(AI->getLoc(), AI->getType(), {C1});
AI->replaceAllUsesWith(TrueStruct);
semCall.removeCall();
++NumPropertiesReplaced;
}
}
}
/// The main entry point to the optimization.
void GlobalPropertyOpt::run(SILModuleTransform *T) {
assert(WorkList.empty());
assert(FieldEntries.empty() && ValueEntries.empty());
ArrayType = M.getASTContext().getArrayDecl();
// Step 1: scan the whole module and build the dependency graph.
scanInstructions();
// Step 2: propagate the flags through the dependency graph.
propagatePropertiesInGraph();
// Step 3: replace get-property calls with literals.
replacePropertyCalls();
for (SILFunction *ChangedFn : ChangedFunctions) {
T->invalidateAnalysis(ChangedFn,
SILAnalysis::InvalidationKind::CallsAndInstructions);
}
}
/// The module pass, which runs the optimization.
class GlobalPropertyOptPass : public SILModuleTransform {
void run() override {
SILModule *M = getModule();
LLVM_DEBUG(llvm::dbgs() << "** GlobalPropertyOpt **\n");
GlobalPropertyOpt(*M).run(this);
}
};
} // end anonymous namespace
SILTransform *swift::createGlobalPropertyOpt() {
return new GlobalPropertyOptPass();
}
|