1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
|
//===--- ArrayPropertyOpt.cpp - Optimize Array Properties -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Optimize array property access by specializing loop bodies.
///
/// This optimization specializes loops with calls to
/// "array.props.isNative/needsElementTypeCheck".
///
/// The "array.props.isNative/needsElementTypeCheck" predicate has the property
/// that if it is true/false respectively for the array struct it is true/false
/// respectively until somebody writes a new array struct over the memory
/// location. Less abstractly, a fast native swift array does not transition to
/// a slow array (be it a cocoa array, or be it an array that needs type
/// checking) except if we store a new array to the variable that holds it.
///
/// Using this property we can hoist the predicate above a region where no such
/// store can take place.
///
/// func f(a : A[AClass]) {
/// for i in 0..a.count {
/// let b = a.props.isNative()
/// .. += _getElement(i, b)
/// }
/// }
///
/// ==>
///
/// func f(a : A[AClass]) {
/// let b = a.props.isNative
/// if (b) {
/// for i in 0..a.count {
/// .. += _getElement(i, false)
/// }
/// } else {
/// for i in 0..a.count {
/// let a = a.props.isNative
/// .. += _getElement(i, a)
/// }
/// }
/// }
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "array-property-opt"
#include "ArrayOpt.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/LoopUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
namespace {
/// Analysis whether it is safe to specialize this loop nest based on the
/// array.props function calls it contains. It is safe to hoist array.props
/// calls if the array does not escape such that the array container could be
/// overwritten in the hoisted region.
/// This analysis also checks if we can clone the instructions in the loop nest.
class ArrayPropertiesAnalysis {
using UserList = StructUseCollector::UserList;
using UserOperList = StructUseCollector::UserOperList;
SILFunction *Fun;
SILLoop *Loop;
SILBasicBlock *Preheader;
DominanceInfo *DomTree;
SinkAddressProjections sinkProj;
llvm::DenseMap<SILFunction *, uint32_t> InstCountCache;
llvm::SmallSet<SILValue, 16> HoistableArray;
BasicBlockSet ReachingBlocks;
SmallVector<SILBasicBlock *, 16> CachedExitingBlocks;
// This controls the max instructions the analysis can scan before giving up
const uint32_t AnalysisThreshold = 5000;
// This controls the max threshold for instruction count in the loop
const uint32_t LoopInstCountThreshold = 500;
bool reachingBlocksComputed = false;
public:
ArrayPropertiesAnalysis(SILLoop *L, DominanceAnalysis *DA)
: Fun(L->getHeader()->getParent()), Loop(L), Preheader(nullptr),
DomTree(DA->get(Fun)), ReachingBlocks(Fun) {}
/// Check if it is profitable to specialize a loop when you see an apply
/// instruction. We consider it is not profitable to specialize the loop when:
/// 1. The callee is not found in the module, or cannot be determined
/// 2. The number of instructions the analysis scans has exceeded the
/// AnalysisThreshold
uint32_t checkProfitabilityRecursively(SILFunction *Callee) {
if (!Callee)
return AnalysisThreshold;
auto CacheEntry = InstCountCache.find(Callee);
if (CacheEntry != InstCountCache.end())
return CacheEntry->second;
InstCountCache.insert(std::make_pair(Callee, 0));
uint32_t InstCount = 0;
for (auto &BB : *Callee) {
for (auto &I : BB) {
if (InstCount++ >= AnalysisThreshold) {
LLVM_DEBUG(llvm::dbgs() << "ArrayPropertyOpt: Disabled Reason - "
"Exceeded Analysis Threshold in "
<< BB.getParent()->getName() << "\n");
InstCountCache[Callee] = AnalysisThreshold;
return AnalysisThreshold;
}
if (auto Apply = FullApplySite::isa(&I)) {
auto Callee = Apply.getReferencedFunctionOrNull();
if (!Callee) {
LLVM_DEBUG(
llvm::dbgs()
<< "ArrayPropertyOpt: Disabled Reason - Found opaque code in "
<< BB.getParent()->getName() << "\n");
LLVM_DEBUG(Apply.dump());
LLVM_DEBUG(I.getOperand(0)->dump());
}
const auto CalleeInstCount = checkProfitabilityRecursively(Callee);
InstCount += CalleeInstCount;
}
}
}
InstCountCache[Callee] = InstCount;
return InstCount;
}
bool run() {
Preheader = Loop->getLoopPreheader();
if (!Preheader) {
LLVM_DEBUG(llvm::dbgs() << "ArrayPropertiesAnalysis: "
"Missing preheader for "
<< *Loop);
return false;
}
// Check whether this is a 'array.props' instruction and whether we
// can hoist it. Heuristic: We only want to hoist array.props instructions
// if we can hoist all of them - only then can we get rid of all the
// control-flow if we specialize. Hoisting some but not others is not as
// beneficial. This heuristic also simplifies which regions we want to
// specialize on. We will specialize the outermost loopnest that has
// 'array.props' instructions in its preheader.
bool FoundHoistable = false;
uint32_t LoopInstCount = 0;
for (auto *BB : Loop->getBlocks()) {
for (auto &Inst : *BB) {
// Can't clone alloc_stack instructions whose dealloc_stack is outside
// the loop.
if (!canDuplicateLoopInstruction(Loop, &Inst))
return false;
if (!sinkProj.analyzeAddressProjections(&Inst)) {
return false;
}
ArraySemanticsCall ArrayPropsInst(&Inst, "array.props", true);
if (!ArrayPropsInst)
continue;
if (!canHoistArrayPropsInst(ArrayPropsInst))
return false;
++LoopInstCount;
FoundHoistable = true;
}
}
if (!FoundHoistable)
return false;
// If the LoopInstCount exceeds the threshold, we will disable the
// optimization on this loop For loops of deeper nesting we increase the
// threshold by an additional 10%
if (LoopInstCount >
LoopInstCountThreshold * (1 + (Loop->getLoopDepth() - 1) / 10)) {
LLVM_DEBUG(llvm::dbgs() << "Exceeded LoopInstCountThreshold\n");
return false;
}
// Additionally, we don't specialize the loop if we find opaque code or
// the analysis scans instructions greater than a threshold
// Since only few loops qualify as hoistable, and the profitability check
// can run long in cases of large thresholds, these checks are not folded
// along with the legality checks above.
for (auto *BB : Loop->getBlocks()) {
for (auto &Inst : *BB) {
if (auto Apply = FullApplySite::isa(&Inst)) {
const auto Callee = Apply.getReferencedFunctionOrNull();
auto CalleeInstCount = checkProfitabilityRecursively(Callee);
if (CalleeInstCount >= AnalysisThreshold)
return false;
}
}
}
LLVM_DEBUG(llvm::dbgs()
<< "Profitable ArrayPropertyOpt in "
<< Loop->getLoopPreheader()->getParent()->getName() << "\n");
LLVM_DEBUG(Loop->dump());
return true;
}
private:
/// Strip the struct load and the address projection to the location
/// holding the array struct.
SILValue stripArrayStructLoad(SILValue V) {
if (auto LI = dyn_cast<LoadInst>(lookThroughCopyValueInsts(V))) {
auto Val = LI->getOperand();
// We could have two arrays in a surrounding container so we can only
// strip off the 'array struct' project.
// struct Container {
// var a1 : [ClassA]
// var a2 : [ClassA]
// }
// 'a1' and 'a2' are different arrays.
if (auto SEAI = dyn_cast<StructElementAddrInst>(Val))
Val = SEAI->getOperand();
return Val;
}
return V;
}
BasicBlockSet &getReachingBlocks() {
if (!reachingBlocksComputed) {
SmallVector<SILBasicBlock *, 8> Worklist;
ReachingBlocks.insert(Preheader);
Worklist.push_back(Preheader);
while (!Worklist.empty()) {
SILBasicBlock *BB = Worklist.pop_back_val();
for (auto PI = BB->pred_begin(), PE = BB->pred_end(); PI != PE; ++PI) {
if (ReachingBlocks.insert(*PI))
Worklist.push_back(*PI);
}
}
reachingBlocksComputed = true;
}
return ReachingBlocks;
}
/// Array address uses are safe if they don't store to the array struct. We
/// could for example store an NSArray array struct on top of the array. For
/// example, an opaque function that uses the array's address could store a
/// new array onto it.
bool checkSafeArrayAddressUses(UserList &AddressUsers) {
for (auto *UseInst : AddressUsers) {
if (UseInst->isDebugInstruction())
continue;
if (isa<DeallocStackInst>(UseInst)) {
// Handle destruction of a local array.
continue;
}
if (isa<LoadInst>(UseInst)) {
continue;
}
if (auto *AI = dyn_cast<ApplyInst>(UseInst)) {
if (ArraySemanticsCall(AI))
continue;
// Check if this escape can reach the current loop.
if (!Loop->contains(UseInst->getParent()) &&
!getReachingBlocks().contains(UseInst->getParent())) {
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< " Skipping Array: may escape through call!\n"
<< " " << *UseInst);
return false;
}
if (auto *StInst = dyn_cast<StoreInst>(UseInst)) {
// Allow a local array to be initialized outside the loop via a by-value
// argument or return value. The array value may be returned by its
// initializer or some other factory function.
if (Loop->contains(StInst->getParent())) {
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: store inside loop!\n"
<< " " << *StInst);
return false;
}
SILValue InitArray = StInst->getSrc();
if (isa<SILArgument>(InitArray) || isa<ApplyInst>(InitArray))
continue;
return false;
}
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: unknown Array use!\n"
<< " " << *UseInst);
// Found an unsafe or unknown user. The Array may escape here.
return false;
}
// Otherwise, all of our users are sound. The array does not escape.
return true;
}
/// Value uses are generally safe. We can't change the state of an array
/// through a value use.
bool checkSafeArrayValueUses(UserList &ValueUsers) {
return true;
}
bool checkSafeElementValueUses(UserOperList &ElementValueUsers) {
return true;
}
// We have a safe container if the array container is passed as a function
// argument by-value or by inout reference. In either case there can't be an
// alias of the container. Alternatively, we can have a local variable. We
// will check in checkSafeArrayAddressUses that all initialization stores to
// this variable are safe (i.e the store dominates the loop etc).
bool isSafeArrayContainer(SILValue V) {
if (auto *Arg = dyn_cast<SILArgument>(V)) {
// Check that the argument is passed as an inout or by value type. This
// means there are no aliases accessible within this function scope.
auto Params = Fun->getLoweredFunctionType()->getParameters();
ArrayRef<SILArgument *> FunctionArgs = Fun->begin()->getArguments();
for (unsigned ArgIdx = 0, ArgEnd = Params.size(); ArgIdx != ArgEnd;
++ArgIdx) {
if (FunctionArgs[ArgIdx] != Arg)
continue;
if (!Params[ArgIdx].isIndirectInOut()
&& Params[ArgIdx].isFormalIndirect()) {
LLVM_DEBUG(llvm::dbgs() << " Skipping Array: Not an inout or "
"by val argument!\n");
return false;
}
}
return true;
} else if (isa<AllocStackInst>(V))
return true;
LLVM_DEBUG(llvm::dbgs()
<< " Skipping Array: Not a know array container type!\n");
return false;
}
SmallVectorImpl<SILBasicBlock *> &getLoopExitingBlocks() {
if (!CachedExitingBlocks.empty())
return CachedExitingBlocks;
Loop->getExitingBlocks(CachedExitingBlocks);
return CachedExitingBlocks;
}
bool isConditionallyExecuted(ArraySemanticsCall Call) {
auto CallBB = (*Call).getParent();
for (auto *ExitingBlk : getLoopExitingBlocks())
if (!DomTree->dominates(CallBB, ExitingBlk))
return true;
return false;
}
bool isClassElementTypeArray(SILValue Arr) {
auto Ty = Arr->getType();
if (auto BGT = Ty.getAs<BoundGenericStructType>()) {
// Check the array element type parameter.
bool isClass = false;
for (auto EltTy : BGT->getGenericArgs()) {
if (!EltTy->hasReferenceSemantics())
return false;
isClass = true;
}
return isClass;
}
return false;
}
bool canHoistArrayPropsInst(ArraySemanticsCall Call) {
// TODO: This is way conservative. If there is an unconditionally
// executed call to the same array we can still hoist it.
if (isConditionallyExecuted(Call))
return false;
SILValue Arr = Call.getSelf();
// We don't attempt to hoist non-class element type arrays.
if (!isClassElementTypeArray(Arr))
return false;
// We can strip the load that might even occur in the loop because we make
// sure that no unsafe store to the array's address takes place.
Arr = stripArrayStructLoad(Arr);
// Have we already seen this array and deemed it safe?
if (HoistableArray.count(Arr))
return true;
// Do we know how to hoist the arguments of this call.
if (!Call.canHoist(Preheader->getTerminator(), DomTree))
return false;
SmallVector<int, 4> AccessPath;
SILValue ArrayContainer =
StructUseCollector::getAccessPath(Arr, AccessPath);
if (!isSafeArrayContainer(ArrayContainer))
return false;
StructUseCollector StructUses;
StructUses.collectUses(ArrayContainer, AccessPath);
if (!checkSafeArrayAddressUses(StructUses.AggregateAddressUsers) ||
!checkSafeArrayAddressUses(StructUses.StructAddressUsers) ||
!checkSafeArrayValueUses(StructUses.StructValueUsers) ||
!checkSafeElementValueUses(StructUses.ElementValueUsers) ||
!StructUses.ElementAddressUsers.empty())
return false;
HoistableArray.insert(Arr);
return true;
}
};
} // end anonymous namespace
namespace {
/// Clone a single exit multiple exit region starting at basic block and ending
/// in a set of basic blocks. Updates the dominator tree with the cloned blocks.
/// However, the client needs to update the dominator of the exit blocks.
///
/// FIXME: All functionality for generating valid SIL (including the DomTree)
/// should be handled by the common SILCloner. Currently, SILCloner only updates
/// the DomTree for original (non-cloned) blocks when splitting edges. The
/// cloned blocks won't be mapped to dominator nodes until fixDomTree()
/// runs. However, since SILCloner always handles single-entry regions,
/// fixDomTree() could be part of SILCloner itself.
class RegionCloner : public SILCloner<RegionCloner> {
SILBasicBlock *StartBB;
friend class SILInstructionVisitor<RegionCloner>;
friend class SILCloner<RegionCloner>;
public:
RegionCloner(SILBasicBlock *EntryBB, DominanceInfo &DT)
: SILCloner<RegionCloner>(*EntryBB->getParent(), &DT), StartBB(EntryBB) {}
SILBasicBlock *cloneRegion(ArrayRef<SILBasicBlock *> exitBBs) {
assert(DomTree->getNode(StartBB) != nullptr && "Can't cloned dead code");
cloneReachableBlocks(StartBB, exitBBs);
// Add dominator tree nodes for the new basic blocks.
fixDomTree();
// Update SSA form for values used outside of the copied region.
updateSSAForm();
return getOpBasicBlock(StartBB);
}
protected:
/// Clone the dominator tree from the original region to the cloned region.
void fixDomTree() {
for (auto *BB : originalPreorderBlocks()) {
auto *ClonedBB = getOpBasicBlock(BB);
auto *OrigDomBB = DomTree->getNode(BB)->getIDom()->getBlock();
if (BB == StartBB) {
// The cloned start node shares the same dominator as the original node.
auto *ClonedNode = DomTree->addNewBlock(ClonedBB, OrigDomBB);
(void)ClonedNode;
assert(ClonedNode);
continue;
}
// Otherwise, map the dominator structure using the mapped block.
DomTree->addNewBlock(ClonedBB, getOpBasicBlock(OrigDomBB));
}
}
SILValue getMappedValue(SILValue V) {
if (auto *BB = V->getParentBlock()) {
if (!DomTree->dominates(StartBB, BB)) {
// Must be a value that dominates the start basic block.
assert(DomTree->dominates(BB, StartBB)
&& "Must dominated the start of the cloned region");
return V;
}
}
return SILCloner<RegionCloner>::getMappedValue(V);
}
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
SILCloner<RegionCloner>::postProcess(Orig, Cloned);
}
/// Update SSA form for values that are used outside the region.
void updateSSAForValue(SILBasicBlock *OrigBB, SILValue V,
SILSSAUpdater &SSAUp) {
// Collect outside uses.
SmallVector<UseWrapper, 16> UseList;
for (auto Use : V->getUses()) {
if (!isBlockCloned(Use->getUser()->getParent())) {
UseList.push_back(UseWrapper(Use));
}
}
if (UseList.empty())
return;
// Update SSA form.
SSAUp.initialize(V->getFunction(), V->getType(), V->getOwnershipKind());
SSAUp.addAvailableValue(OrigBB, V);
SILValue NewVal = getMappedValue(V);
SSAUp.addAvailableValue(getOpBasicBlock(OrigBB), NewVal);
for (auto U : UseList) {
Operand *Use = U;
SSAUp.rewriteUse(*Use);
}
}
void updateSSAForm() {
SILSSAUpdater SSAUp;
SmallVector<SingleValueInstruction *, 4> newProjections;
SinkAddressProjections sinkProj(&newProjections);
for (auto *origBB : originalPreorderBlocks()) {
// Update outside used phi values.
for (auto *arg : origBB->getArguments()) {
updateSSAForValue(origBB, arg, SSAUp);
}
// Update outside used instruction values.
for (auto &inst : *origBB) {
for (auto result : inst.getResults()) {
bool success = sinkProj.analyzeAddressProjections(&inst);
assert(success);
// Sink address projections by cloning to avoid address phis.
sinkProj.cloneProjections();
// If no new projections were created, update ssa for the result only.
if (newProjections.empty()) {
updateSSAForValue(origBB, result, SSAUp);
continue;
}
for (auto *newProj : newProjections) {
// Operand values of new projections may need ssa update.
for (auto opVal : newProj->getOperandValues()) {
if (!isBlockCloned(opVal->getParentBlock())) {
continue;
}
updateSSAForValue(origBB, opVal, SSAUp);
}
}
newProjections.clear();
}
}
}
}
};
} // end anonymous namespace
namespace {
/// This class transforms a hoistable loop nest into a speculatively specialized
/// loop based on array.props calls.
class ArrayPropertiesSpecializer {
DominanceInfo *DomTree;
SILLoopAnalysis *LoopAnalysis;
SILBasicBlock *HoistableLoopPreheader;
public:
ArrayPropertiesSpecializer(DominanceInfo *DT, SILLoopAnalysis *LA,
SILBasicBlock *Hoistable)
: DomTree(DT), LoopAnalysis(LA), HoistableLoopPreheader(Hoistable) {}
void run() {
specializeLoopNest();
}
SILLoop *getLoop() {
auto *LoopInfo = LoopAnalysis->get(HoistableLoopPreheader->getParent());
return LoopInfo->getLoopFor(
HoistableLoopPreheader->getSingleSuccessorBlock());
}
protected:
void specializeLoopNest();
};
} // end anonymous namespace
static SILValue createStructExtract(SILBuilder &B, SILLocation Loc,
SILValue Opd, unsigned FieldNo) {
SILType Ty = Opd->getType();
auto SD = Ty.getStructOrBoundGenericStruct();
auto Properties = SD->getStoredProperties();
unsigned Counter = 0;
for (auto *D : Properties)
if (Counter++ == FieldNo)
return B.createStructExtract(Loc, Opd, D);
llvm_unreachable("Wrong field number");
}
static Identifier getBinaryFunction(StringRef Name, SILType IntSILTy,
ASTContext &C) {
auto IntTy = IntSILTy.castTo<BuiltinIntegerType>();
unsigned NumBits = IntTy->getWidth().getFixedWidth();
// Name is something like: add_Int64
std::string NameStr(Name);
NameStr += "_Int" + llvm::utostr(NumBits);
return C.getIdentifier(NameStr);
}
/// Create a binary and function.
static SILValue createAnd(SILBuilder &B, SILLocation Loc, SILValue Opd1,
SILValue Opd2) {
auto AndFn = getBinaryFunction("and", Opd1->getType(), B.getASTContext());
SILValue Args[] = {Opd1, Opd2};
return B.createBuiltin(Loc, AndFn, Opd1->getType(), {}, Args);
}
/// Create a check over all array.props calls that they have the 'fast native
/// swift' array value: isNative && !needsElementTypeCheck must be true.
static SILValue
createFastNativeArraysCheck(SmallVectorImpl<ArraySemanticsCall> &ArrayProps,
SILBuilder &B) {
assert(!ArrayProps.empty() && "Must have array.pros calls");
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
SILValue Result =
B.createIntegerLiteral((*ArrayProps[0]).getLoc(), IntBoolTy, 1);
for (auto Call : ArrayProps) {
auto Loc = (*Call).getLoc();
auto CallKind = Call.getKind();
if (CallKind == ArrayCallKind::kArrayPropsIsNativeTypeChecked) {
auto Val = createStructExtract(B, Loc, SILValue(Call), 0);
Result = createAnd(B, Loc, Result, Val);
}
}
return Result;
}
/// Collect all array.props calls in the cloned basic blocks stored in the map,
/// asserting that we found at least one.
static void collectArrayPropsCalls(RegionCloner &Cloner,
SmallVectorImpl<SILBasicBlock *> &ExitBlocks,
SmallVectorImpl<ArraySemanticsCall> &Calls) {
for (auto *origBB : Cloner.originalPreorderBlocks()) {
auto clonedBB = Cloner.getOpBasicBlock(origBB);
for (auto &Inst : *clonedBB) {
ArraySemanticsCall ArrayProps(&Inst, "array.props", true);
if (!ArrayProps)
continue;
Calls.push_back(ArrayProps);
}
}
assert(!Calls.empty() && "Should have a least one array.props call");
}
/// Replace an array.props call by the 'fast swift array' value.
///
/// This is true for array.props.isNative and false for
/// array.props.needsElementTypeCheck.
static void replaceArrayPropsCall(SILBuilder &B, ArraySemanticsCall C) {
assert(C.getKind() == ArrayCallKind::kArrayPropsIsNativeTypeChecked);
ApplyInst *AI = C;
SILType IntBoolTy = SILType::getBuiltinIntegerType(1, B.getASTContext());
auto BoolTy = AI->getType();
auto C0 = B.createIntegerLiteral(AI->getLoc(), IntBoolTy, 1);
auto BoolVal = B.createStruct(AI->getLoc(), BoolTy, {C0});
(*C).replaceAllUsesWith(BoolVal);
// Remove call to array.props.read/write.
C.removeCall();
}
/// Collects all loop dominated blocks outside the loop that are immediately
/// dominated by the loop.
static void
collectImmediateLoopDominatedBlocks(const SILLoop *Lp, DominanceInfoNode *Node,
SmallVectorImpl<SILBasicBlock *> &Blocks) {
SILBasicBlock *BB = Node->getBlock();
// Base case: First loop dominated block outside of loop.
if (!Lp->contains(BB)) {
Blocks.push_back(BB);
return;
}
// Loop contains the basic block. Look at immediately dominated nodes.
for (auto *Child : *Node)
collectImmediateLoopDominatedBlocks(Lp, Child, Blocks);
}
void ArrayPropertiesSpecializer::specializeLoopNest() {
auto *Lp = getLoop();
assert(Lp);
// Split of a new empty preheader. We don't want to duplicate the whole
// original preheader it might contain instructions that we can't clone.
// This will be block that will contain the check whether to execute the
// 'native swift array' loop or the original loop.
SILBuilder B(HoistableLoopPreheader);
auto *CheckBlock = splitBasicBlockAndBranch(B,
HoistableLoopPreheader->getTerminator(), DomTree, nullptr);
auto *Header = CheckBlock->getSingleSuccessorBlock();
assert(Header);
// Collect all loop dominated blocks (e.g exit blocks could be among them). We
// need to update their dominator.
SmallVector<SILBasicBlock *, 16> LoopDominatedBlocks;
collectImmediateLoopDominatedBlocks(Lp, DomTree->getNode(Header),
LoopDominatedBlocks);
// Collect all exit blocks.
SmallVector<SILBasicBlock *, 16> ExitBlocks;
Lp->getExitBlocks(ExitBlocks);
// Split the preheader before the first instruction.
SILBasicBlock *NewPreheader =
splitBasicBlockAndBranch(B, &*CheckBlock->begin(), DomTree, nullptr);
// Clone the region from the new preheader up to (not including) the exit
// blocks. This creates a second loop nest.
RegionCloner Cloner(NewPreheader, *DomTree);
auto *ClonedPreheader = Cloner.cloneRegion(ExitBlocks);
// Collect the array.props call that we will specialize on that we have
// cloned in the cloned loop.
SmallVector<ArraySemanticsCall, 16> ArrayPropCalls;
collectArrayPropsCalls(Cloner, ExitBlocks, ArrayPropCalls);
// Move them to the check block.
SmallVector<ArraySemanticsCall, 16> HoistedArrayPropCalls;
for (auto C: ArrayPropCalls)
HoistedArrayPropCalls.push_back(
ArraySemanticsCall(C.copyTo(CheckBlock->getTerminator(), DomTree)));
// Create a conditional branch on the fast condition being true.
B.setInsertionPoint(CheckBlock->getTerminator());
auto IsFastNativeArray =
createFastNativeArraysCheck(HoistedArrayPropCalls, B);
B.createCondBranch(CheckBlock->getTerminator()->getLoc(),
IsFastNativeArray, ClonedPreheader, NewPreheader);
CheckBlock->getTerminator()->eraseFromParent();
// Fixup the loop dominated blocks. They are now dominated by the check block.
for (auto *BB : LoopDominatedBlocks)
DomTree->changeImmediateDominator(DomTree->getNode(BB),
DomTree->getNode(CheckBlock));
// Replace the array.props calls uses in the cloned loop by their 'fast'
// value.
SILBuilder B2(ClonedPreheader->getTerminator());
for (auto C : ArrayPropCalls)
replaceArrayPropsCall(B2, C);
// We have potentially cloned a loop - invalidate loop info.
LoopAnalysis->invalidate(Header->getParent(),
SILAnalysis::InvalidationKind::FunctionBody);
}
namespace {
class SwiftArrayPropertyOptPass : public SILFunctionTransform {
void run() override {
auto *Fn = getFunction();
// Don't hoist array property calls at Osize.
if (Fn->optimizeForSize())
return;
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
SILLoopInfo *LI = LA->get(Fn);
bool HasChanged = false;
// Check whether we can hoist 'array.props' calls out of loops, collecting
// the preheader we can hoist to. We only hoist out of loops if 'all'
// array.props call can be hoisted for a given loop nest.
// We process the loop tree preorder (top-down) to hoist over the biggest
// possible loop-nest.
SmallVector<SILBasicBlock *, 16> HoistableLoopNests;
std::function<void(SILLoop *)> processChildren = [&](SILLoop *L) {
ArrayPropertiesAnalysis Analysis(L, DA);
if (Analysis.run()) {
// Hoist in the current loop nest.
HasChanged = true;
HoistableLoopNests.push_back(L->getLoopPreheader());
} else {
// Otherwise, try hoisting sub-loops.
for (auto *SubLoop : *L)
processChildren(SubLoop);
}
};
for (auto *L : *LI)
processChildren(L);
// Specialize the identified loop nest based on the 'array.props' calls.
if (HasChanged) {
DominanceInfo *DT = DA->get(getFunction());
// Process specialized loop-nests in loop-tree post-order (bottom-up).
std::reverse(HoistableLoopNests.begin(), HoistableLoopNests.end());
// Hoist the loop nests.
for (auto &HoistableLoopNest : HoistableLoopNests)
ArrayPropertiesSpecializer(DT, LA, HoistableLoopNest).run();
// Verify that no illegal critical edges were created.
if (getFunction()->getModule().getOptions().VerifyAll)
getFunction()->verifyCriticalEdges();
// We preserve the dominator tree. Let's invalidate everything
// else.
DA->lockInvalidation();
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
DA->unlockInvalidation();
}
}
};
} // end anonymous namespace
SILTransform *swift::createSwiftArrayPropertyOpt() {
return new SwiftArrayPropertyOptPass();
}
|