File: LICM.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1575 lines) | stat: -rw-r--r-- 57,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
//===--- LICM.cpp - Loop invariant code motion ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sil-licm"

#include "swift/SIL/Dominance.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SILOptimizer/Analysis/AccessStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"

#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"

#include "llvm/Support/CommandLine.h"

using namespace swift;

namespace {

/// Instructions which can be hoisted:
/// loads, function calls without side effects and (some) exclusivity checks
using InstSet = llvm::SmallPtrSet<SILInstruction *, 8>;

using InstVector = llvm::SmallVector<SILInstruction *, 8>;

/// Returns true if the \p SideEffectInsts set contains any memory writes which
/// may alias with the memory addressed by \a LI.
template <SILInstructionKind K, typename T>
static bool mayWriteTo(AliasAnalysis *AA, InstSet &SideEffectInsts,
                       UnaryInstructionBase<K, T> *Inst) {
  for (auto *I : SideEffectInsts)
    if (AA->mayWriteToMemory(I, Inst->getOperand())) {
      LLVM_DEBUG(llvm::dbgs() << "  mayWriteTo\n" << *I << " to "
                              << *Inst << "\n");
      return true;
    }
  return false;
}

/// Returns a non-null StoreInst if \p I is a store to \p accessPath.
static StoreInst *isStoreToAccess(SILInstruction *I, AccessPath accessPath) {
  auto *SI = dyn_cast<StoreInst>(I);
  if (!SI)
    return nullptr;

  // TODO: handle StoreOwnershipQualifier::Init
  if (SI->getOwnershipQualifier() == StoreOwnershipQualifier::Init)
    return nullptr;

  auto storeAccessPath = AccessPath::compute(SI->getDest());
  if (accessPath != storeAccessPath)
    return nullptr;

  return SI;
}

struct LoadWithAccess {
  LoadInst *li = nullptr;
  AccessPath accessPath;

  operator bool() { return li != nullptr; }
};

static LoadWithAccess doesLoadOverlapAccess(SILInstruction *I,
                                            AccessPath accessPath) {
  auto *LI = dyn_cast_or_null<LoadInst>(I);
  if (!LI)
    return LoadWithAccess();

  // TODO: handle LoadOwnershipQualifier::Take
  if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take)
    return LoadWithAccess();

  AccessPath loadAccessPath = AccessPath::compute(LI->getOperand());
  if (!loadAccessPath.isValid())
    return LoadWithAccess();

  // Don't use AccessPath::mayOverlap. We only want definite overlap.
  if (loadAccessPath.contains(accessPath)
      || accessPath.contains(loadAccessPath)) {
    return {LI, loadAccessPath};
  }
  return LoadWithAccess();
}

/// Returns a valid LoadWithAccess if \p I is a load from \p accessPath or a
/// projected address from \p accessPath.
static LoadWithAccess isLoadWithinAccess(SILInstruction *I,
                                         AccessPath accessPath) {
  auto loadWithAccess = doesLoadOverlapAccess(I, accessPath);
  if (!loadWithAccess)
    return loadWithAccess;

  // Make sure that any additional path components beyond the store's access
  // path can be converted to value projections during projectLoadValue (it
  // currently only supports StructElementAddr and TupleElementAddr).
  auto storePathNode = accessPath.getPathNode();
  auto loadPathNode = loadWithAccess.accessPath.getPathNode();
  SILValue loadAddr = loadWithAccess.li->getOperand();
  while (loadPathNode != storePathNode) {
    if (!isa<StructElementAddrInst>(loadAddr)
        && !isa<TupleElementAddrInst>(loadAddr)) {
      return LoadWithAccess();
    }
    loadAddr = cast<SingleValueInstruction>(loadAddr)->getOperand(0);
    loadPathNode = loadPathNode.getParent();
  }
  return loadWithAccess;
}

/// Returns true if all instructions in \p SideEffectInsts which may alias with
/// \p access are either loads or stores from \p access.
///
/// \p storeAddr is only needed for AliasAnalysis until we have an interface
/// that supports AccessPath.
static bool isOnlyLoadedAndStored(AliasAnalysis *AA, InstSet &SideEffectInsts,
                                  ArrayRef<LoadInst *> Loads,
                                  ArrayRef<StoreInst *> Stores,
                                  SILValue storeAddr, AccessPath accessPath) {
  for (auto *I : SideEffectInsts) {
    // Pass the original address value until we can fix AA
    if (AA->mayReadOrWriteMemory(I, storeAddr)
        && !isStoreToAccess(I, accessPath)
        && !isLoadWithinAccess(I, accessPath)) {
      return false;
    }
  }
  for (auto *LI : Loads) {
    if (AA->mayReadFromMemory(LI, storeAddr)
        && !doesLoadOverlapAccess(LI, accessPath))
      return false;
  }
  for (auto *SI : Stores) {
    if (AA->mayWriteToMemory(SI, storeAddr) && !isStoreToAccess(SI, accessPath))
      return false;
  }
  return true;
}

/// Returns true if the \p SideEffectInsts set contains any memory writes which
/// may alias with any memory which is read by \p AI.
/// Note: This function should only be called on a read-only apply!
static bool mayWriteTo(AliasAnalysis *AA, BasicCalleeAnalysis *BCA,
                       InstSet &SideEffectInsts, ApplyInst *AI) {

  if (BCA->getMemoryBehavior(FullApplySite::isa(AI), /*observeRetains*/true) ==
      MemoryBehavior::None) {
    return false;
  }

  // Check if the memory addressed by the argument may alias any writes.
  for (auto *inst : SideEffectInsts) {
    switch (inst->getKind()) {
      case SILInstructionKind::StoreInst: {
        auto *si = cast<StoreInst>(inst);
        if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign)
          return true;
        if (AA->mayReadFromMemory(AI, si->getDest()))
          return true;
        break;
      }
      case SILInstructionKind::CopyAddrInst: {
        auto *ca = cast<CopyAddrInst>(inst);
        if (!ca->isInitializationOfDest())
          return true;
        if (AA->mayReadFromMemory(AI, ca->getDest()))
          return true;
        break;
      }
      case SILInstructionKind::ApplyInst:
      case SILInstructionKind::BeginApplyInst:
      case SILInstructionKind::TryApplyInst: {
        if (BCA->getMemoryBehavior(FullApplySite::isa(inst), /*observeRetains*/false) >
            MemoryBehavior::MayRead)
          return true;
        break;
      }
      case SILInstructionKind::CondFailInst:
      case SILInstructionKind::StrongRetainInst:
      case SILInstructionKind::UnmanagedRetainValueInst:
      case SILInstructionKind::RetainValueInst:
      case SILInstructionKind::StrongRetainUnownedInst:
      case SILInstructionKind::FixLifetimeInst:
      case SILInstructionKind::KeyPathInst:
      case SILInstructionKind::DeallocStackInst:
      case SILInstructionKind::DeallocStackRefInst:
      case SILInstructionKind::DeallocRefInst:
        break;
      default:
        if (inst->mayWriteToMemory())
          return true;
        break;
    }
  }
  return false;
}

/// Returns true if \p sideEffectInst cannot be reordered with a call to a
/// global initializer.
static bool mayConflictWithGlobalInit(AliasAnalysis *AA,
                    SILInstruction *sideEffectInst, SILInstruction *globalInitCall) {
  if (auto *SI = dyn_cast<StoreInst>(sideEffectInst)) {
    return AA->mayReadOrWriteMemory(globalInitCall, SI->getDest());
  }
  if (auto *LI = dyn_cast<LoadInst>(sideEffectInst)) {
    return AA->mayWriteToMemory(globalInitCall, LI->getOperand());
  }
  if (isa<CondFailInst>(sideEffectInst))
    return false;
  return true;
}

/// Returns true if any of the instructions in \p sideEffectInsts which are
/// post-dominated by a call to a global initializer cannot be reordered with
/// the call.
static bool mayConflictWithGlobalInit(AliasAnalysis *AA,
                       InstSet &sideEffectInsts,
                       SILInstruction *globalInitCall,
                       SILBasicBlock *preHeader, PostDominanceInfo *PD) {
  if (!PD->dominates(globalInitCall->getParent(), preHeader))
    return true;

  SILBasicBlock *globalInitBlock = globalInitCall->getParent();
  for (auto *seInst : sideEffectInsts) {
    // Only check instructions in blocks which are "before" (i.e. post-dominated
    // by) the block which contains the init-call.
    // Instructions which are before the call in the same block have already
    // been checked.
    if (PD->properlyDominates(globalInitBlock, seInst->getParent())) {
      if (mayConflictWithGlobalInit(AA, seInst, globalInitCall))
        return true;
    }
  }
  return false;
}

/// Returns true if any of the instructions in \p sideEffectInsts cannot be
/// reordered with a call to a global initializer (which is in the same basic
/// block).
static bool mayConflictWithGlobalInit(AliasAnalysis *AA,
                       ArrayRef<SILInstruction *> sideEffectInsts,
                       SILInstruction *globalInitCall) {
  for (auto *seInst : sideEffectInsts) {
    assert(seInst->getParent() == globalInitCall->getParent());
    if (mayConflictWithGlobalInit(AA, seInst, globalInitCall))
      return true;
  }
  return false;
}

// When Hoisting / Sinking,
// Don't descend into control-dependent code.
// Only traverse into basic blocks that dominate all exits.
static void getDominatingBlocks(SmallVectorImpl<SILBasicBlock *> &domBlocks,
                                SILLoop *Loop, DominanceInfo *DT) {
  auto HeaderBB = Loop->getHeader();
  auto DTRoot = DT->getNode(HeaderBB);
  SmallVector<SILBasicBlock *, 8> ExitingAndLatchBBs;
  Loop->getExitingAndLatchBlocks(ExitingAndLatchBBs);
  for (llvm::df_iterator<DominanceInfoNode *> It = llvm::df_begin(DTRoot),
                                              E = llvm::df_end(DTRoot);
       It != E;) {
    auto *CurBB = It->getBlock();

    // Don't decent into control-dependent code. Only traverse into basic blocks
    // that dominate all exits.
    if (!std::all_of(ExitingAndLatchBBs.begin(), ExitingAndLatchBBs.end(),
                     [=](SILBasicBlock *ExitBB) {
          return DT->dominates(CurBB, ExitBB);
        })) {
      LLVM_DEBUG(llvm::dbgs() << "  skipping conditional block "
                              << *CurBB << "\n");
      It.skipChildren();
      continue;
    }
    domBlocks.push_back(CurBB);
    // Next block in dominator tree.
    ++It;
  }
}

/// Returns true if \p v is loop invariant in \p L.
static bool isLoopInvariant(SILValue v, SILLoop *L) {
  if (SILBasicBlock *parent = v->getParentBlock())
    return !L->contains(parent);
  return false;
}

static bool hoistInstruction(DominanceInfo *DT, SILInstruction *Inst,
                             SILLoop *Loop, SILBasicBlock *&Preheader) {
  auto Operands = Inst->getAllOperands();
  if (!std::all_of(Operands.begin(), Operands.end(), [=](Operand &Op) {
        return isLoopInvariant(Op.get(), Loop);
      })) {
    LLVM_DEBUG(llvm::dbgs() << "   loop variant operands\n");
    return false;
  }

  auto mvBefore = Preheader->getTerminator();
  ArraySemanticsCall semCall(Inst);
  if (semCall.canHoist(mvBefore, DT)) {
    semCall.hoist(mvBefore, DT);
  } else {
    Inst->moveBefore(mvBefore);
  }
  return true;
}

static bool hoistInstructions(SILLoop *Loop, DominanceInfo *DT,
                              InstSet &HoistUpSet) {
  LLVM_DEBUG(llvm::dbgs() << " Hoisting instructions.\n");
  auto Preheader = Loop->getLoopPreheader();
  assert(Preheader && "Expected a preheader");
  bool Changed = false;
  SmallVector<SILBasicBlock *, 8> domBlocks;
  getDominatingBlocks(domBlocks, Loop, DT);

  for (auto *CurBB : domBlocks) {
    // We know that the block is guaranteed to be executed. Hoist if we can.
    for (auto InstIt = CurBB->begin(), E = CurBB->end(); InstIt != E;) {
      SILInstruction *Inst = &*InstIt;
      ++InstIt;
      LLVM_DEBUG(llvm::dbgs() << "  looking at " << *Inst);
      if (!HoistUpSet.count(Inst)) {
        continue;
      }
      if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
        continue;
      }
      LLVM_DEBUG(llvm::dbgs() << "Hoisted " << *Inst);
      Changed = true;
    }
  }

  return Changed;
}

/// Summary of side effect instructions occurring in the loop tree rooted at \p
/// Loop. This includes all writes of the sub loops and the loop itself.
struct LoopNestSummary {
  SILLoop *Loop;
  InstSet SideEffectInsts;

  LoopNestSummary(SILLoop *Curr) : Loop(Curr) {}


  void copySummary(LoopNestSummary &Other) {
    SideEffectInsts.insert(Other.SideEffectInsts.begin(), Other.SideEffectInsts.end());
  }

  LoopNestSummary(const LoopNestSummary &) = delete;
  LoopNestSummary &operator=(const LoopNestSummary &) = delete;
  LoopNestSummary(LoopNestSummary &&) = delete;
};

static unsigned getEdgeIndex(SILBasicBlock *BB, SILBasicBlock *ExitingBB) {
  auto Succs = ExitingBB->getSuccessors();
  for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
    SILBasicBlock *CurrBB = Succs[EdgeIdx];
    if (CurrBB == BB) {
      return EdgeIdx;
    }
  }
  llvm_unreachable("BB is not a Successor");
}

static bool sinkInstruction(DominanceInfo *DT,
                            std::unique_ptr<LoopNestSummary> &LoopSummary,
                            SILInstruction *Inst, SILLoopInfo *LI) {
  auto *Loop = LoopSummary->Loop;
  SmallVector<SILBasicBlock *, 8> ExitBBs;
  Loop->getExitBlocks(ExitBBs);
  SmallVector<SILBasicBlock *, 8> NewExitBBs;
  SmallVector<SILBasicBlock *, 8> ExitingBBs;
  Loop->getExitingBlocks(ExitingBBs);
  auto *ExitBB = Loop->getExitBlock();

  bool Changed = false;
  for (auto *ExitingBB : ExitingBBs) {
    SmallVector<SILBasicBlock *, 8> BBSuccessors;
    auto Succs = ExitingBB->getSuccessors();
    for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
      SILBasicBlock *BB = Succs[EdgeIdx];
      BBSuccessors.push_back(BB);
    }
    while (!BBSuccessors.empty()) {
      SILBasicBlock *BB = BBSuccessors.pop_back_val();
      if (std::find(NewExitBBs.begin(), NewExitBBs.end(), BB) !=
          NewExitBBs.end()) {
        // Already got a copy there
        continue;
      }
      auto EdgeIdx = getEdgeIndex(BB, ExitingBB);
      SILBasicBlock *OutsideBB = nullptr;
      if (std::find(ExitBBs.begin(), ExitBBs.end(), BB) != ExitBBs.end()) {
        auto *SplitBB =
            splitCriticalEdge(ExitingBB->getTerminator(), EdgeIdx, DT, LI);
        OutsideBB = SplitBB ? SplitBB : BB;
        NewExitBBs.push_back(OutsideBB);
      }
      if (!OutsideBB) {
        continue;
      }
      // If OutsideBB already contains Inst -> skip
      // This might happen if we have a conditional control flow
      // And a pair
      // We hoisted the first part, we can safely ignore sinking
      auto matchPred = [&](SILInstruction &CurrIns) {
        return Inst->isIdenticalTo(&CurrIns);
      };
      if (std::find_if(OutsideBB->begin(), OutsideBB->end(), matchPred) !=
          OutsideBB->end()) {
        LLVM_DEBUG(llvm::errs() << "  instruction already at exit BB "
                                << *Inst);
        ExitBB = nullptr;
      } else if (ExitBB) {
        // easy case
        LLVM_DEBUG(llvm::errs() << "  moving instruction to exit BB " << *Inst);
        Inst->moveBefore(&*OutsideBB->begin());
      } else {
        LLVM_DEBUG(llvm::errs() << "  cloning instruction to exit BB "
                                << *Inst);
        Inst->clone(&*OutsideBB->begin());
      }
      Changed = true;
    }
  }
  if (Changed && !ExitBB) {
    // Created clones of instruction
    // Remove it from the side-effect set - dangling pointer
    LoopSummary->SideEffectInsts.erase(Inst);
    Inst->getParent()->erase(Inst);
  }
  return Changed;
}

static bool sinkInstructions(std::unique_ptr<LoopNestSummary> &LoopSummary,
                             DominanceInfo *DT, SILLoopInfo *LI,
                             InstVector &SinkDownSet) {
  auto *Loop = LoopSummary->Loop;
  LLVM_DEBUG(llvm::errs() << " Sink instructions attempt\n");
  SmallVector<SILBasicBlock *, 8> domBlocks;
  getDominatingBlocks(domBlocks, Loop, DT);

  bool Changed = false;
  for (auto *Inst : SinkDownSet) {
    // only sink if the block is guaranteed to be executed.
    if (std::find(domBlocks.begin(), domBlocks.end(), Inst->getParent()) ==
        domBlocks.end()) {
      continue;
    }
    Changed |= sinkInstruction(DT, LoopSummary, Inst, LI);
  }

  return Changed;
}

static void getEndAccesses(BeginAccessInst *BI,
                           SmallVectorImpl<EndAccessInst *> &EndAccesses) {
  for (auto Use : BI->getUses()) {
    auto *User = Use->getUser();
    auto *EI = dyn_cast<EndAccessInst>(User);
    if (!EI) {
      continue;
    }
    EndAccesses.push_back(EI);
  }
}

static bool
hoistSpecialInstruction(std::unique_ptr<LoopNestSummary> &LoopSummary,
                        DominanceInfo *DT, SILLoopInfo *LI, InstVector &Special) {
  auto *Loop = LoopSummary->Loop;
  LLVM_DEBUG(llvm::errs() << " Hoist and Sink pairs attempt\n");
  auto Preheader = Loop->getLoopPreheader();
  assert(Preheader && "Expected a preheader");

  bool Changed = false;

  for (auto *Inst : Special) {
    if (isa<BeginAccessInst>(Inst) && LoopSummary->Loop->hasNoExitBlocks()) {
      // If no exit block, don't try to hoist BeginAccess because
      // sinking EndAccess would fail later.
      continue;
    }
    if (!hoistInstruction(DT, Inst, Loop, Preheader)) {
      continue;
    }
    if (auto *BI = dyn_cast<BeginAccessInst>(Inst)) {
      SmallVector<EndAccessInst *, 2> Ends;
      getEndAccesses(BI, Ends);
      LLVM_DEBUG(llvm::dbgs() << "Hoisted BeginAccess " << *BI);
      for (auto *instSink : Ends) {
        if (!sinkInstruction(DT, LoopSummary, instSink, LI)) {
          llvm_unreachable("LICM: Could not perform must-sink instruction");
        }
      }
      LLVM_DEBUG(llvm::errs() << " Successfully hoisted and sank pair\n");
    } else {
      LLVM_DEBUG(llvm::dbgs() << "Hoisted RefElementAddr "
                              << *static_cast<RefElementAddrInst *>(Inst));
    }
    Changed = true;
  }

  return Changed;
}

/// Optimize the loop tree bottom up propagating loop's summaries up the
/// loop tree.
class LoopTreeOptimization {
  llvm::DenseMap<SILLoop *, std::unique_ptr<LoopNestSummary>>
      LoopNestSummaryMap;
  SmallVector<SILLoop *, 8> BotUpWorkList;
  InstSet toDelete;
  SILLoopInfo *LoopInfo;
  AliasAnalysis *AA;
  BasicCalleeAnalysis *BCA;
  DominanceInfo *DomTree;
  PostDominanceAnalysis *PDA;
  PostDominanceInfo *postDomTree = nullptr;
  AccessStorageAnalysis *ASA;
  bool Changed;

  /// True if LICM is done on high-level SIL, i.e. semantic calls are not
  /// inlined yet. In this case some semantic calls can be hoisted.
  bool RunsOnHighLevelSIL;

  /// Instructions that we may be able to hoist up
  InstSet HoistUp;

  /// Instructions that we may be able to sink down
  InstVector SinkDown;

  /// Load and store instructions that we may be able to move out of the loop.
  /// All loads and stores within a block must be in instruction order to
  /// simplify replacement of values after SSA update.
  InstVector LoadsAndStores;

  /// All access paths of the \p LoadsAndStores instructions.
  llvm::SetVector<AccessPath> LoadAndStoreAddrs;

  /// Hoistable Instructions that need special treatment
  /// e.g. begin_access
  InstVector SpecialHoist;

public:
  LoopTreeOptimization(SILLoop *TopLevelLoop, SILLoopInfo *LI,
                       AliasAnalysis *AA, BasicCalleeAnalysis *BCA,
                       DominanceInfo *DT, PostDominanceAnalysis *PDA,
                       AccessStorageAnalysis *ASA,
                       bool RunsOnHighLevelSil)
      : LoopInfo(LI), AA(AA), BCA(BCA), DomTree(DT), PDA(PDA), ASA(ASA),
        Changed(false), RunsOnHighLevelSIL(RunsOnHighLevelSil) {
    // Collect loops for a recursive bottom-up traversal in the loop tree.
    BotUpWorkList.push_back(TopLevelLoop);
    for (unsigned i = 0; i < BotUpWorkList.size(); ++i) {
      auto *L = BotUpWorkList[i];
      for (auto *SubLoop : *L)
        BotUpWorkList.push_back(SubLoop);
    }
  }

  /// Optimize this loop tree.
  bool optimize();

protected:
  /// Propagate the sub-loops' summaries up to the current loop.
  void propagateSummaries(std::unique_ptr<LoopNestSummary> &CurrSummary);

  bool isSafeReadOnlyApply(BasicCalleeAnalysis *BCA, ApplyInst *AI);

  /// Collect a set of instructions that can be hoisted
  void analyzeCurrentLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);

  SingleValueInstruction *splitLoad(SILValue splitAddress,
                                    ArrayRef<AccessPath::Index> remainingPath,
                                    SILBuilder &builder,
                                    SmallVectorImpl<LoadInst *> &Loads,
                                    unsigned ldStIdx);

  /// Given an \p accessPath that is only loaded and stored, split loads that
  /// are wider than \p accessPath.
  bool splitLoads(SmallVectorImpl<LoadInst *> &Loads, AccessPath accessPath,
                  SILValue storeAddr);

  /// Optimize the current loop nest.
  bool optimizeLoop(std::unique_ptr<LoopNestSummary> &CurrSummary);

  /// Move all loads and stores from/to \p accessPath out of the \p loop.
  void hoistLoadsAndStores(AccessPath accessPath, SILLoop *loop);

  /// Move all loads and stores from all addresses in LoadAndStoreAddrs out of
  /// the \p loop.
  ///
  /// This is a combination of load hoisting and store sinking, e.g.
  /// \code
  ///   preheader:
  ///     br header_block
  ///   header_block:
  ///     %x = load %not_aliased_addr
  ///     // use %x and define %y
  ///     store %y to %not_aliased_addr
  ///     ...
  ///   exit_block:
  /// \endcode
  /// is transformed to:
  /// \code
  ///   preheader:
  ///     %x = load %not_aliased_addr
  ///     br header_block
  ///   header_block:
  ///     // use %x and define %y
  ///     ...
  ///   exit_block:
  ///     store %y to %not_aliased_addr
  /// \endcode
  bool hoistAllLoadsAndStores(SILLoop *loop);
};
} // end anonymous namespace

bool LoopTreeOptimization::optimize() {
  // Process loops bottom up in the loop tree.
  while (!BotUpWorkList.empty()) {
    SILLoop *CurrentLoop = BotUpWorkList.pop_back_val();
    LLVM_DEBUG(llvm::dbgs() << "Processing loop " << *CurrentLoop);

    // Collect all summary of all sub loops of the current loop. Since we
    // process the loop tree bottom up they are guaranteed to be available in
    // the map.
    auto CurrLoopSummary = std::make_unique<LoopNestSummary>(CurrentLoop);
    propagateSummaries(CurrLoopSummary);

    // If the current loop changed, then we might reveal more instr to hoist
    // For example, a fix_lifetime's operand, if hoisted outside,
    // Might allow us to sink the instruction out of the loop
    bool currChanged = false;
    do {
      // Analyze the current loop for instructions that can be hoisted.
      analyzeCurrentLoop(CurrLoopSummary);

      currChanged = optimizeLoop(CurrLoopSummary);
      if (currChanged) {
        CurrLoopSummary->SideEffectInsts.clear();
        Changed = true;
      }

      // Reset the data structures for next loop in the list
      HoistUp.clear();
      SinkDown.clear();
      SpecialHoist.clear();
    } while (currChanged);

    // Store the summary for parent loops to use.
    LoopNestSummaryMap[CurrentLoop] = std::move(CurrLoopSummary);
  }
  return Changed;
}

void LoopTreeOptimization::propagateSummaries(
    std::unique_ptr<LoopNestSummary> &CurrSummary) {
  for (auto *SubLoop : *CurrSummary->Loop) {
    assert(LoopNestSummaryMap.count(SubLoop) && "Must have data for sub loops");
    CurrSummary->copySummary(*LoopNestSummaryMap[SubLoop]);
    LoopNestSummaryMap.erase(SubLoop);
  }
}

bool LoopTreeOptimization::isSafeReadOnlyApply(BasicCalleeAnalysis *BCA, ApplyInst *AI) {
  if (auto ri = AI->getSingleResult()) {
    // We don't balance CSE'd apply results which return an owned value.
    if (ri.value().getConvention() != ResultConvention::Unowned)
      return false;
  }

  if (RunsOnHighLevelSIL) {
    // The array-property-opt needs this semantic call inside the loop.
    // After high-level SIL we can hoist it (if it's not inlined already).
    if (ArraySemanticsCall(AI, "array.props.isNativeTypeChecked"))
      return false;
  }

  return BCA->getMemoryBehavior(AI, /*observeRetains*/false) <=
         MemoryBehavior::MayRead;
}

static void checkSideEffects(swift::SILInstruction &Inst,
                      InstSet &SideEffectInsts,
                      SmallVectorImpl<SILInstruction *> &sideEffectsInBlock) {
  if (Inst.mayHaveSideEffects()) {
    SideEffectInsts.insert(&Inst);
    sideEffectsInBlock.push_back(&Inst);
  }
}

/// Returns true if the \p Inst follows the default hoisting heuristic
static bool canHoistUpDefault(SILInstruction *inst, SILLoop *Loop,
                              DominanceInfo *DT, bool RunsOnHighLevelSil) {
  auto Preheader = Loop->getLoopPreheader();
  if (!Preheader) {
    return false;
  }

  if (isa<TermInst>(inst) || isa<AllocationInst>(inst) ||
      isa<DeallocationInst>(inst)) {
    return false;
  }

  // We can’t hoist everything that is hoist-able
  // The canHoist method does not do all the required analysis
  // Some of the work is done at COW Array Opt
  // TODO: Refactor COW Array Opt + canHoist - radar 41601468
  ArraySemanticsCall semCall(inst);
  switch (semCall.getKind()) {
    case ArrayCallKind::kGetCount:
    case ArrayCallKind::kGetCapacity:
      if (RunsOnHighLevelSil && semCall.canHoist(Preheader->getTerminator(), DT))
        return true;
      break;
    case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
      // The array-property-opt needs this semantic call inside the loop.
      // After high-level SIL we can hoist it (if it's not inlined already).
      if (RunsOnHighLevelSil)
        return false;
      break;
    default:
      break;
  }

  if (inst->getMemoryBehavior() == MemoryBehavior::None) {
    return true;
  }
  return false;
}

// Check If all the end accesses of the given begin do not prevent hoisting
// There are only two legal placements for the end access instructions:
// 1) Inside the same loop (sink to loop exists)
// Potential TODO: At loop exit block
static bool handledEndAccesses(BeginAccessInst *BI, SILLoop *Loop) {
  SmallVector<EndAccessInst *, 2> AllEnds;
  getEndAccesses(BI, AllEnds);
  if (AllEnds.empty()) {
    return false;
  }
  for (auto *User : AllEnds) {
    auto *BB = User->getParent();
    if (Loop->getBlocksSet().count(BB) != 0) {
      continue;
    }
    return false;
  }
  return true;
}

static bool isCoveredByScope(BeginAccessInst *BI, DominanceInfo *DT,
                             SILInstruction *applyInstr) {
  if (!DT->dominates(BI, applyInstr))
    return false;
  for (auto *EI : BI->getEndAccesses()) {
    if (!DT->dominates(applyInstr, EI))
      return false;
  }
  return true;
}

static bool analyzeBeginAccess(BeginAccessInst *BI,
                               SmallVector<BeginAccessInst *, 8> &BeginAccesses,
                               SmallVector<FullApplySite, 8> &fullApplies,
                               InstSet &SideEffectInsts,
                               AccessStorageAnalysis *ASA,
                               DominanceInfo *DT) {
  auto storage = AccessStorage::compute(BI->getSource());
  if (!storage) {
    return false;
  }

  auto BIAccessStorageNonNested = AccessStorage::compute(BI);
  auto safeBeginPred = [&](BeginAccessInst *OtherBI) {
    if (BI == OtherBI) {
      return true;
    }
    return BIAccessStorageNonNested.isDistinctFrom(
        AccessStorage::compute(OtherBI));
  };

  if (!std::all_of(BeginAccesses.begin(), BeginAccesses.end(), safeBeginPred))
    return false;

  for (auto fullApply : fullApplies) {
    FunctionAccessStorage callSiteAccesses;
    ASA->getCallSiteEffects(callSiteAccesses, fullApply);
    SILAccessKind accessKind = BI->getAccessKind();
    if (!callSiteAccesses.mayConflictWith(accessKind, storage))
      continue;
    // Check if we can ignore this conflict:
    // If the apply is “sandwiched” between the begin and end access,
    // there’s no reason we can’t hoist out of the loop.
    auto *applyInstr = fullApply.getInstruction();
    if (!isCoveredByScope(BI, DT, applyInstr))
      return false;
  }

  // Check may releases
  // Only class and global access that may alias would conflict
  const AccessStorage::Kind kind = storage.getKind();
  if (kind != AccessStorage::Class && kind != AccessStorage::Global) {
    return true;
  }
  // TODO Introduce "Pure Swift" deinitializers
  // We can then make use of alias information for instr's operands
  // If they don't alias - we might get away with not recording a conflict
  for (SILInstruction *I : SideEffectInsts) {
    // we actually compute all SideEffectInsts in analyzeCurrentLoop
    if (!I->mayRelease()) {
      continue;
    }
    if (!isCoveredByScope(BI, DT, I))
      return false;
  }

  return true;
}

// Analyzes current loop for hosting/sinking potential:
// Computes set of instructions we may be able to move out of the loop
// Important Note:
// We can't bail out of this method! we have to run it on all loops.
// We *need* to discover all SideEffectInsts -
// even if the loop is otherwise skipped!
// This is because outer loops will depend on the inner loop's writes.
//
// This may split some loads into smaller loads.
void LoopTreeOptimization::analyzeCurrentLoop(
    std::unique_ptr<LoopNestSummary> &CurrSummary) {
  InstSet &sideEffects = CurrSummary->SideEffectInsts;
  SILLoop *Loop = CurrSummary->Loop;
  LLVM_DEBUG(llvm::dbgs() << " Analyzing accesses.\n");

  auto *Preheader = Loop->getLoopPreheader();
  if (!Preheader) {
    // Can't hoist/sink instructions
    return;
  }

  // Interesting instructions in the loop:
  SmallVector<ApplyInst *, 8> ReadOnlyApplies;

  // Contains either:
  // * an apply to the addressor of the global
  // * a builtin "once" of the global initializer
  SmallVector<SILInstruction *, 8> globalInitCalls;

  SmallVector<LoadInst *, 8> Loads;
  SmallVector<StoreInst *, 8> Stores;
  SmallVector<FixLifetimeInst *, 8> FixLifetimes;
  SmallVector<BeginAccessInst *, 8> BeginAccesses;
  SmallVector<FullApplySite, 8> fullApplies;

  for (auto *BB : Loop->getBlocks()) {
    SmallVector<SILInstruction *, 8> sideEffectsInBlock;
    for (auto &Inst : *BB) {
      switch (Inst.getKind()) {
      case SILInstructionKind::FixLifetimeInst: {
        auto *FL = cast<FixLifetimeInst>(&Inst);
        if (DomTree->dominates(FL->getOperand()->getParentBlock(), Preheader))
          FixLifetimes.push_back(FL);
        // We can ignore the side effects of FixLifetimes
        break;
      }
      case SILInstructionKind::LoadInst:
        Loads.push_back(cast<LoadInst>(&Inst));
        LoadsAndStores.push_back(&Inst);
        break;
      case SILInstructionKind::StoreInst: {
        Stores.push_back(cast<StoreInst>(&Inst));
        LoadsAndStores.push_back(&Inst);
        checkSideEffects(Inst, sideEffects, sideEffectsInBlock);
        break;
      }
      case SILInstructionKind::BeginAccessInst:
        BeginAccesses.push_back(cast<BeginAccessInst>(&Inst));
        checkSideEffects(Inst, sideEffects, sideEffectsInBlock);
        break;
      case SILInstructionKind::RefElementAddrInst:
        SpecialHoist.push_back(cast<RefElementAddrInst>(&Inst));
        break;
      case swift::SILInstructionKind::CondFailInst:
        // We can (and must) hoist cond_fail instructions if the operand is
        // invariant. We must hoist them so that we preserve memory safety. A
        // cond_fail that would have protected (executed before) a memory access
        // must - after hoisting - also be executed before said access.
        HoistUp.insert(&Inst);
        checkSideEffects(Inst, sideEffects, sideEffectsInBlock);
        break;
      case SILInstructionKind::ApplyInst: {
        auto *AI = cast<ApplyInst>(&Inst);
        if (isSafeReadOnlyApply(BCA, AI)) {
          ReadOnlyApplies.push_back(AI);
        } else if (SILFunction *callee = AI->getReferencedFunctionOrNull()) {
          // Calls to global inits are different because we don't care about
          // side effects which are "after" the call in the loop.
          if (callee->isGlobalInit() &&
              // Check against side-effects within the same block.
              // Side-effects in other blocks are checked later (after we
              // scanned all blocks of the loop).
              !mayConflictWithGlobalInit(AA, sideEffectsInBlock, &Inst))
            globalInitCalls.push_back(&Inst);
        }
        // check for array semantics and side effects - same as default
        LLVM_FALLTHROUGH;
      }
      default:
        if (auto fullApply = FullApplySite::isa(&Inst)) {
          fullApplies.push_back(fullApply);
        } else if (auto *bi = dyn_cast<BuiltinInst>(&Inst)) {
          switch (bi->getBuiltinInfo().ID) {
            case BuiltinValueKind::Once:
            case BuiltinValueKind::OnceWithContext:
              if (!mayConflictWithGlobalInit(AA, sideEffectsInBlock, &Inst))
                globalInitCalls.push_back(&Inst);
              break;
            default:
              break;
          }
        }

        checkSideEffects(Inst, sideEffects, sideEffectsInBlock);
        if (canHoistUpDefault(&Inst, Loop, DomTree, RunsOnHighLevelSIL)) {
          HoistUp.insert(&Inst);
        }
        break;
      }
    }
  }

  // Avoid quadratic complexity in corner cases. Usually, this limit will not be exceeded.
  if (ReadOnlyApplies.size() * sideEffects.size() < 8000) {
    for (auto *AI : ReadOnlyApplies) {
      if (!mayWriteTo(AA, BCA, sideEffects, AI)) {
        HoistUp.insert(AI);
      }
    }
  }
  // Avoid quadratic complexity in corner cases. Usually, this limit will not be exceeded.
  if (Loads.size() * sideEffects.size() < 8000) {
    for (auto *LI : Loads) {
      if (!mayWriteTo(AA, sideEffects, LI)) {
        HoistUp.insert(LI);
      }
    }
  }

  if (!globalInitCalls.empty()) {
    if (!postDomTree) {
      postDomTree = PDA->get(Preheader->getParent());
    }
    if (postDomTree->getRootNode()) {
      for (SILInstruction *ginitCall : globalInitCalls) {
        // Check against side effects which are "before" (i.e. post-dominated
        // by) the global initializer call.
        if (!mayConflictWithGlobalInit(AA, sideEffects, ginitCall, Preheader,
             postDomTree)) {
          HoistUp.insert(ginitCall);
        }
      }
    }
  }

  // Collect memory locations for which we can move all loads and stores out
  // of the loop.
  //
  // Note: The Loads set and LoadsAndStores set may mutate during this loop.
  for (StoreInst *SI : Stores) {
    // Use AccessPathWithBase to recover a base address that can be used for
    // newly inserted memory operations. If we instead teach hoistLoadsAndStores
    // how to rematerialize global_addr, then we don't need this base.
    auto access = AccessPathWithBase::compute(SI->getDest());
    auto accessPath = access.accessPath;
    if (accessPath.isValid() &&
        (access.base && isLoopInvariant(access.base, Loop))) {
      if (isOnlyLoadedAndStored(AA, sideEffects, Loads, Stores, SI->getDest(),
                                accessPath)) {
        if (!LoadAndStoreAddrs.count(accessPath)) {
          if (splitLoads(Loads, accessPath, SI->getDest())) {
            LoadAndStoreAddrs.insert(accessPath);
          }
        }
      }
    }
  }
  if (!FixLifetimes.empty()) {
    bool sideEffectsMayRelease =
        std::any_of(sideEffects.begin(), sideEffects.end(),
                    [&](SILInstruction *W) { return W->mayRelease(); });
    for (auto *FL : FixLifetimes) {
      if (!sideEffectsMayRelease || !mayWriteTo(AA, sideEffects, FL)) {
        SinkDown.push_back(FL);
      }
    }
  }
  for (auto *BI : BeginAccesses) {
    if (!handledEndAccesses(BI, Loop)) {
      LLVM_DEBUG(llvm::dbgs() << "Skipping: " << *BI);
      LLVM_DEBUG(llvm::dbgs() << "Some end accesses can't be handled\n");
      continue;
    }
    if (analyzeBeginAccess(BI, BeginAccesses, fullApplies, sideEffects, ASA,
                           DomTree)) {
      SpecialHoist.push_back(BI);
    }
  }
}

// Recursively determine whether the innerAddress is a direct tuple or struct
// projection chain from outerPath. Populate \p reversePathIndices with the path
// difference.
static bool
computeInnerAccessPath(AccessPath::PathNode outerPath,
                       AccessPath::PathNode innerPath, SILValue innerAddress,
                       SmallVectorImpl<AccessPath::Index> &reversePathIndices) {
  if (outerPath == innerPath)
    return true;

  auto *sea = dyn_cast<StructElementAddrInst>(innerAddress);

  if (sea && sea->getStructDecl()->hasUnreferenceableStorage()) {
    return false;
  }

  if (!sea && !isa<TupleElementAddrInst>(innerAddress)) {
    return false;
  }
  assert(ProjectionIndex(innerAddress).Index
         == innerPath.getIndex().getSubObjectIndex());

  reversePathIndices.push_back(innerPath.getIndex());
  SILValue srcAddr = cast<SingleValueInstruction>(innerAddress)->getOperand(0);
  if (!computeInnerAccessPath(outerPath, innerPath.getParent(), srcAddr,
                              reversePathIndices)) {
    return false;
  }
  return true;
}

/// Split a load from \p outerAddress recursively following remainingPath.
///
/// Creates a load with identical \p accessPath and a set of
/// non-overlapping loads. Add the new non-overlapping loads to HoistUp.
///
/// \p ldstIdx is the index into LoadsAndStores of the original outer load.
///
/// Return the aggregate produced by merging the loads.
SingleValueInstruction *LoopTreeOptimization::splitLoad(
    SILValue splitAddress, ArrayRef<AccessPath::Index> remainingPath,
    SILBuilder &builder, SmallVectorImpl<LoadInst *> &Loads, unsigned ldstIdx) {
  auto loc = LoadsAndStores[ldstIdx]->getLoc();
  // Recurse until we have a load that matches accessPath.
  if (remainingPath.empty()) {
    // Create a load that matches the stored access path.
    LoadInst *load = builder.createLoad(loc, splitAddress,
                                        LoadOwnershipQualifier::Unqualified);
    Loads.push_back(load);
    // Replace the outer load in the list of loads and stores to hoist and
    // sink. LoadsAndStores must remain in instruction order.
    LoadsAndStores[ldstIdx] = load;
    LLVM_DEBUG(llvm::dbgs() << "Created load from stored path: " << *load);
    return load;
  }
  auto recordDisjointLoad = [&](LoadInst *newLoad) {
    Loads.push_back(newLoad);
    LoadsAndStores.insert(LoadsAndStores.begin() + ldstIdx + 1, newLoad);
  };
  auto subIndex = remainingPath.back().getSubObjectIndex();
  SILType loadTy = splitAddress->getType();
  if (CanTupleType tupleTy = loadTy.getAs<TupleType>()) {
    SmallVector<SILValue, 4> elements;
    for (int tupleIdx : range(tupleTy->getNumElements())) {
      auto *projection = builder.createTupleElementAddr(
          loc, splitAddress, tupleIdx, loadTy.getTupleElementType(tupleIdx));
      SILValue elementVal;
      if (tupleIdx == subIndex) {
        elementVal = splitLoad(projection, remainingPath.drop_back(), builder,
                               Loads, ldstIdx);
      } else {
        elementVal = builder.createLoad(loc, projection,
                                        LoadOwnershipQualifier::Unqualified);
        recordDisjointLoad(cast<LoadInst>(elementVal));
      }
      elements.push_back(elementVal);
    }
    return builder.createTuple(loc, elements);
  }
  auto structTy = loadTy.getStructOrBoundGenericStruct();
  assert(structTy && "tuple and struct elements are checked earlier");
  auto &module = builder.getModule();
  auto expansionContext = builder.getFunction().getTypeExpansionContext();

  SmallVector<SILValue, 4> elements;
  int fieldIdx = 0;
  for (auto *field : structTy->getStoredProperties()) {
    SILType fieldTy = loadTy.getFieldType(field, module, expansionContext);
    auto *projection =
        builder.createStructElementAddr(loc, splitAddress, field, fieldTy);
    SILValue fieldVal;
    if (fieldIdx++ == subIndex)
      fieldVal = splitLoad(projection, remainingPath.drop_back(), builder,
                           Loads, ldstIdx);
    else {
      fieldVal = builder.createLoad(loc, projection,
                                    LoadOwnershipQualifier::Unqualified);
      recordDisjointLoad(cast<LoadInst>(fieldVal));
    }
    elements.push_back(fieldVal);
  }
  return builder.createStruct(loc, loadTy.getObjectType(), elements);
}

/// Find all loads that contain \p accessPath. Split them into a load with
/// identical accessPath and a set of non-overlapping loads. Add the new
/// non-overlapping loads to LoadsAndStores and HoistUp.
///
/// TODO: The \p storeAddr parameter is only needed until we have an
/// AliasAnalysis interface that handles AccessPath.
bool LoopTreeOptimization::splitLoads(SmallVectorImpl<LoadInst *> &Loads,
                                      AccessPath accessPath,
                                      SILValue storeAddr) {
  // The Loads set may mutate during this loop, but we only want to visit the
  // original set.
  for (unsigned loadsIdx = 0, endIdx = Loads.size(); loadsIdx != endIdx;
       ++loadsIdx) {
    auto *load = Loads[loadsIdx];
    if (toDelete.count(load))
      continue;

    if (!AA->mayReadFromMemory(load, storeAddr))
      continue;

    AccessPath loadAccessPath = AccessPath::compute(load->getOperand());
    if (accessPath.contains(loadAccessPath))
      continue;

    assert(loadAccessPath.contains(accessPath));
    LLVM_DEBUG(llvm::dbgs() << "Overlaps with loop stores: " << *load);
    SmallVector<AccessPath::Index, 4> reversePathIndices;
    if (!computeInnerAccessPath(loadAccessPath.getPathNode(),
                                accessPath.getPathNode(), storeAddr,
                                reversePathIndices)) {
      return false;
    }
    // Found a load wider than the store to accessPath.
    //
    // SplitLoads is called for each unique access path in the loop that is
    // only loaded from and stored to and this loop takes time proportional to:
    //   num-wide-loads x num-fields x num-loop-memops
    //
    // For each load wider than the store, it creates a new load for each field
    // in that type. Each new load is inserted in the LoadsAndStores vector.  To
    // avoid super-linear behavior for large types (e.g. giant tuples), limit
    // growth of new loads to an arbitrary constant factor per access path.
    if (Loads.size() >= endIdx + 6) {
      LLVM_DEBUG(llvm::dbgs() << "...Refusing to split more loads\n");
      return false;
    }
    LLVM_DEBUG(llvm::dbgs() << "...Splitting load\n");

    unsigned ldstIdx = [this, load]() {
      auto ldstIter = llvm::find(LoadsAndStores, load);
      assert(ldstIter != LoadsAndStores.end() && "outerLoad missing");
      return std::distance(LoadsAndStores.begin(), ldstIter);
    }();

    SILBuilderWithScope builder(load);

    SILValue aggregateVal = splitLoad(load->getOperand(), reversePathIndices,
                                      builder, Loads, ldstIdx);

    load->replaceAllUsesWith(aggregateVal);
    auto iterAndInserted = toDelete.insert(load);
    (void)iterAndInserted;
    assert(iterAndInserted.second && "the same load should only be split once");
  }
  return true;
}

bool LoopTreeOptimization::optimizeLoop(
    std::unique_ptr<LoopNestSummary> &CurrSummary) {
  auto *CurrentLoop = CurrSummary->Loop;
  // We only support Loops with a preheader
  if (!CurrentLoop->getLoopPreheader())
    return false;
  bool currChanged = false;
  if (hoistAllLoadsAndStores(CurrentLoop))
    return true;

  currChanged |= hoistInstructions(CurrentLoop, DomTree, HoistUp);
  currChanged |= sinkInstructions(CurrSummary, DomTree, LoopInfo, SinkDown);
  currChanged |=
      hoistSpecialInstruction(CurrSummary, DomTree, LoopInfo, SpecialHoist);

  assert(toDelete.empty() && "only hostAllLoadsAndStores deletes");
  return currChanged;
}

/// Creates a value projection from \p rootVal based on the address projection
/// from \a rootVal to \a addr.
static SILValue projectLoadValue(SILValue addr, AccessPath accessPath,
                                 SILValue rootVal, AccessPath rootAccessPath,
                                 SILInstruction *beforeInst) {
  if (accessPath == rootAccessPath)
    return rootVal;

  auto pathNode = accessPath.getPathNode();
  int elementIdx = pathNode.getIndex().getSubObjectIndex();
  if (auto *SEI = dyn_cast<StructElementAddrInst>(addr)) {
    assert(ProjectionIndex(SEI).Index == elementIdx);
    SILValue val = projectLoadValue(
        SEI->getOperand(),
        AccessPath(accessPath.getStorage(), pathNode.getParent(),
                   accessPath.getOffset()),
        rootVal, rootAccessPath, beforeInst);
    SILBuilder B(beforeInst);
    return B.createStructExtract(beforeInst->getLoc(), val, SEI->getField(),
                                 SEI->getType().getObjectType());
  }
  if (auto *TEI = dyn_cast<TupleElementAddrInst>(addr)) {
    assert(ProjectionIndex(TEI).Index == elementIdx);
    SILValue val = projectLoadValue(
        TEI->getOperand(),
        AccessPath(accessPath.getStorage(), pathNode.getParent(),
                   accessPath.getOffset()),
        rootVal, rootAccessPath, beforeInst);
    SILBuilder B(beforeInst);
    return B.createTupleExtract(beforeInst->getLoc(), val, TEI->getFieldIndex(),
                                TEI->getType().getObjectType());
  }
  llvm_unreachable("unknown projection");
}

/// Returns true if all stores to \p addr commonly dominate the loop exits.
static bool
storesCommonlyDominateLoopExits(AccessPath accessPath,
                                SILLoop *loop,
                                ArrayRef<SILBasicBlock *> exitingBlocks) {
  BasicBlockSet stores(loop->getHeader()->getParent());
  SmallVector<Operand *, 8> uses;
  // Collect as many recognizable stores as possible. It's ok if not all stores
  // are collected.
  accessPath.collectUses(uses, AccessUseType::Exact, loop->getFunction());
  for (Operand *use : uses) {
    SILInstruction *user = use->getUser();
    if (isa<StoreInst>(user))
      stores.insert(user->getParent());
  }
  SILBasicBlock *header = loop->getHeader();
  // If a store is in the loop header, we already know that it's dominating all
  // loop exits.
  if (stores.contains(header))
    return true;

  // Also a store in the pre-header dominates all exists. Although the situation
  // is a bit different here: the store in the pre-header remains - it's not
  // (re)moved by the LICM transformation.
  // But even if the loop-stores are not dominating the loop exits, it
  // makes sense to move them out of the loop if this case. When this is done,
  // dead-store-elimination can then most likely eliminate the store in the
  // pre-header.
  //
  //   pre_header:
  //     store %v1 to %addr
  //   header:
  //     cond_br %cond, then, tail
  //   then:
  //     store %v2 to %addr    // a conditional store in the loop
  //     br tail
  //   tail:
  //     cond_br %loop_cond, header, exit
  //   exit:
  //
  //  will be transformed to
  //
  //   pre_header:
  //     store %v1 to %addr    // <- can be removed by DSE afterwards
  //   header:
  //     cond_br %cond, then, tail
  //   then:
  //     br tail
  //   tail(%phi):
  //     cond_br %loop_cond, header, exit
  //   exit:
  //     store %phi to %addr
  //
  if (stores.contains(loop->getLoopPreheader()))
    return true;

  // Propagate the store-is-not-alive flag through the control flow in the loop,
  // starting at the header.
  BasicBlockSet storesNotAlive(loop->getHeader()->getParent());
  storesNotAlive.insert(header);
  bool changed = false;
  do {
    changed = false;
    for (SILBasicBlock *block : loop->blocks()) {
      bool storeAlive = !storesNotAlive.contains(block);
      if (storeAlive && !stores.contains(block) &&
          std::any_of(block->pred_begin(), block->pred_end(),
            [&](SILBasicBlock *b) { return storesNotAlive.contains(b); })) {
        storesNotAlive.insert(block);
        changed = true;
      }
    }
  } while (changed);

  auto isUnreachableBlock = [](SILBasicBlock *succ) {
    return isa<UnreachableInst>(succ->getTerminator());
  };

  // Check if the store-is-not-alive flag reaches any of the exits.
  for (SILBasicBlock *eb : exitingBlocks) {
    // Ignore loop exits to blocks which end in an unreachable.
    if (!std::any_of(eb->succ_begin(), eb->succ_end(), isUnreachableBlock) &&
        storesNotAlive.contains(eb)) {
      return false;
    }
  }
  return true;
}

void LoopTreeOptimization::
hoistLoadsAndStores(AccessPath accessPath, SILLoop *loop) {
  SmallVector<SILBasicBlock *, 4> exitingAndLatchBlocks;
  loop->getExitingAndLatchBlocks(exitingAndLatchBlocks);

  // This is not a requirement for functional correctness, but we don't want to
  // _speculatively_ load and store the value (outside of the loop).
  if (!storesCommonlyDominateLoopExits(accessPath, loop,
                                       exitingAndLatchBlocks))
    return;

  // Inserting the stores requires the exit edges to be not critical.
  for (SILBasicBlock *exitingOrLatchBlock : exitingAndLatchBlocks) {
    for (unsigned idx = 0, e = exitingOrLatchBlock->getSuccessors().size();
         idx != e; ++idx) {
      // exitingBlock->getSuccessors() must not be moved out of this loop,
      // because the successor list is invalidated by splitCriticalEdge.
      if (!loop->contains(exitingOrLatchBlock->getSuccessors()[idx])) {
        splitCriticalEdge(exitingOrLatchBlock->getTerminator(), idx, DomTree,
                          LoopInfo);
      }
    }
  }

  SILBasicBlock *preheader = loop->getLoopPreheader();
  assert(preheader && "Expected a preheader");

  // Initially load the value in the loop pre header.
  SILBuilder B(preheader->getTerminator());
  SILValue storeAddr;
  SILSSAUpdater ssaUpdater;

  // Set all stored values as available values in the ssaUpdater.
  // If there are multiple stores in a block, only the last one counts.
  std::optional<SILLocation> loc;
  for (SILInstruction *I : LoadsAndStores) {
    if (auto *SI = isStoreToAccess(I, accessPath)) {
      loc = SI->getLoc();

      // If a store just stores the loaded value, bail. The operand (= the load)
      // will be removed later, so it cannot be used as available value.
      // This corner case is surprisingly hard to handle, so we just give up.
      if (isLoadWithinAccess(dyn_cast<LoadInst>(SI->getSrc()), accessPath))
        return;

      if (!storeAddr) {
        storeAddr = SI->getDest();
        ssaUpdater.initialize(storeAddr->getFunction(),
                              storeAddr->getType().getObjectType(),
                              storeAddr->getOwnershipKind());
      } else if (SI->getDest()->getType() != storeAddr->getType()) {
        // This transformation assumes that the values of all stores in the loop
        // must be interchangeable. It won't work if stores different types
        // because of casting or payload extraction even though they have the
        // same access path.
        return;
      }
      ssaUpdater.addAvailableValue(SI->getParent(), SI->getSrc());
    }
  }
  assert(storeAddr && "hoistLoadsAndStores requires a store in the loop");
  auto checkBase = [&](SILValue srcAddr) {
    // Clone projections until the address dominates preheader.
    if (DomTree->dominates(srcAddr->getParentBlock(), preheader))
      return srcAddr;

    // return an invalid SILValue to continue cloning.
    return SILValue();
  };
  SILValue initialAddr =
      cloneUseDefChain(storeAddr, preheader->getTerminator(), checkBase);
  // cloneUseDefChain may currently fail if a begin_borrow or mark_dependence is
  // in the chain.
  if (!initialAddr)
    return;

  LoadInst *initialLoad =
      B.createLoad(preheader->getTerminator()->getLoc(), initialAddr,
                   LoadOwnershipQualifier::Unqualified);
  LLVM_DEBUG(llvm::dbgs() << "Creating preload " << *initialLoad);
  ssaUpdater.addAvailableValue(preheader, initialLoad);

  // Remove all stores and replace the loads with the current value.
  SILBasicBlock *currentBlock = nullptr;
  SILValue currentVal;
  for (SILInstruction *I : LoadsAndStores) {
    SILBasicBlock *block = I->getParent();
    if (block != currentBlock) {
      currentBlock = block;
      currentVal = SILValue();
    }
    if (auto *SI = isStoreToAccess(I, accessPath)) {
      LLVM_DEBUG(llvm::dbgs() << "Deleting reloaded store " << *SI);
      currentVal = SI->getSrc();
      toDelete.insert(SI);
      continue;
    }
    auto loadWithAccess = isLoadWithinAccess(I, accessPath);
    if (!loadWithAccess) {
      continue;
    }
    // If we didn't see a store in this block yet, get the current value from
    // the ssaUpdater.
    if (!currentVal)
      currentVal = ssaUpdater.getValueInMiddleOfBlock(block);

    LoadInst *load = loadWithAccess.li;
    auto loadAddress = load->getOperand();
    SILValue projectedValue = projectLoadValue(
        loadAddress, loadWithAccess.accessPath, currentVal, accessPath, load);
    LLVM_DEBUG(llvm::dbgs() << "Replacing stored load " << *load << " with "
                            << projectedValue);
    load->replaceAllUsesWith(projectedValue);
    toDelete.insert(load);
  }

  // Store back the value at all loop exits.
  for (SILBasicBlock *exitingOrLatchBlock : exitingAndLatchBlocks) {
    for (SILBasicBlock *succ : exitingOrLatchBlock->getSuccessors()) {
      if (loop->contains(succ))
        continue;

      assert(succ->getSinglePredecessorBlock()
             && "should have split critical edges");
      SILBuilder B(succ->begin());
      auto *SI = B.createStore(
          loc.value(), ssaUpdater.getValueInMiddleOfBlock(succ), initialAddr,
          StoreOwnershipQualifier::Unqualified);
      (void)SI;
      LLVM_DEBUG(llvm::dbgs() << "Creating loop-exit store " << *SI);
    }
  }

  // In case the value is only stored but never loaded in the loop.
  eliminateDeadInstruction(initialLoad);
}

bool LoopTreeOptimization::hoistAllLoadsAndStores(SILLoop *loop) {
  for (AccessPath accessPath : LoadAndStoreAddrs) {
    hoistLoadsAndStores(accessPath, loop);
  }
  LoadsAndStores.clear();
  LoadAndStoreAddrs.clear();

  if (toDelete.empty())
    return false;

  for (SILInstruction *I : toDelete) {
    recursivelyDeleteTriviallyDeadInstructions(I, /*force*/ true);
  }
  toDelete.clear();
  return true;
}

namespace {
/// Hoist loop invariant code out of innermost loops.
///
/// Transforms are identified by type, not instance. Split this
/// Into two types: "High-level Loop Invariant Code Motion"
/// and "Loop Invariant Code Motion".
class LICM : public SILFunctionTransform {

public:
  LICM(bool RunsOnHighLevelSil) : RunsOnHighLevelSil(RunsOnHighLevelSil) {}

  /// True if LICM is done on high-level SIL, i.e. semantic calls are not
  /// inlined yet. In this case some semantic calls can be hoisted.
  /// We only hoist semantic calls on high-level SIL because we can be sure that
  /// e.g. an Array as SILValue is really immutable (including its content).
  bool RunsOnHighLevelSil;

  void run() override {
    SILFunction *F = getFunction();

    // If our function has ownership, skip it.
    if (F->hasOwnership())
      return;

    SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
    SILLoopInfo *LoopInfo = LA->get(F);

    if (LoopInfo->empty()) {
      LLVM_DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
      return;
    }

    DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
    PostDominanceAnalysis *PDA = PM->getAnalysis<PostDominanceAnalysis>();
    AliasAnalysis *AA = PM->getAnalysis<AliasAnalysis>(F);
    BasicCalleeAnalysis *BCA = PM->getAnalysis<BasicCalleeAnalysis>();
    AccessStorageAnalysis *ASA = getAnalysis<AccessStorageAnalysis>();
    DominanceInfo *DomTree = nullptr;

    LLVM_DEBUG(llvm::dbgs() << "Processing loops in " << F->getName() << "\n");
    bool Changed = false;

    for (auto *TopLevelLoop : *LoopInfo) {
      if (!DomTree) DomTree = DA->get(F);
      LoopTreeOptimization Opt(TopLevelLoop, LoopInfo, AA, BCA, DomTree, PDA,
                               ASA, RunsOnHighLevelSil);
      Changed |= Opt.optimize();
    }

    if (Changed) {
      LA->lockInvalidation();
      DA->lockInvalidation();
      PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::FunctionBody);
      LA->unlockInvalidation();
      DA->unlockInvalidation();
    }
  }
};
} // end anonymous namespace

SILTransform *swift::createLICM() {
  return new LICM(false);
}

SILTransform *swift::createHighLevelLICM() {
  return new LICM(true);
}