1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
|
//===--- AccessEnforcementSelection.cpp - Select access enforcement -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This pass eliminates 'unknown' access enforcement by selecting either
/// static or dynamic enforcement.
///
/// TODO: This is currently a module transform so that it can process closures
/// after analyzing their parent scope. This isn't a big problem now because
/// AccessMarkerElimination is also a module pass that follows this pass, so all
/// markers will still be present when this pass runs. However, we would like to
/// mostly eliminate module transforms. This could be done by changing the
/// PassManager to follow ClosureScopeAnalysis. A new ClosureTransform type
/// would be pipelined just like FunctionTransform, but would have an entry
/// point that handled a parent closure scope and all its children in one
/// invocation. For function pipelining to be upheld, we would need to verify
/// that BasicCalleeAnalysis never conflicts with ClosureScopeAnalysis. i.e. we
/// could never create a caller->callee edge when the callee is passed as a
/// function argument. Normal FunctionTransforms would then be called on each
/// closure function and its parent scope before calling the ClosureTransform.
///
/// FIXME: handle boxes used by copy_value when neither copy is captured.
///
//===----------------------------------------------------------------------===//
#include "swift/SIL/SILInstruction.h"
#define DEBUG_TYPE "access-enforcement-selection"
#include "swift/Basic/Defer.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SILOptimizer/Analysis/ClosureScope.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
using namespace swift;
static void setStaticEnforcement(BeginAccessInst *access) {
// TODO: delete if we're not using static enforcement?
access->setEnforcement(SILAccessEnforcement::Static);
LLVM_DEBUG(llvm::dbgs() << "Static Access: " << *access);
}
static void setDynamicEnforcement(BeginAccessInst *access) {
// TODO: delete if we're not using dynamic enforcement?
access->setEnforcement(SILAccessEnforcement::Dynamic);
LLVM_DEBUG(llvm::dbgs() << "Dynamic Access: " << *access);
}
namespace {
// Information about an address-type closure capture.
// This is only valid for inout_aliasable parameters.
//
// TODO: Verify somewhere that we properly handle any non-inout_aliasable
// partial apply captures or that they never happen. Eventually @inout_aliasable
// should be simply replaced by @in or @out, once we don't have special aliasing
// rules.
struct AddressCapture {
ApplySite site;
unsigned calleeArgIdx;
AddressCapture(Operand &oper)
: site(oper.getUser()), calleeArgIdx(site.getCalleeArgIndex(oper)) {
if (site.getOrigCalleeConv().getSILArgumentConvention(calleeArgIdx)
!= SILArgumentConvention::Indirect_InoutAliasable) {
site = ApplySite();
calleeArgIdx = ~0U;
return;
}
assert(oper.get()->getType().isAddress());
}
bool isValid() const { return bool(site); }
};
LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &os, const AddressCapture &capture) {
os << *capture.site.getInstruction() << " captures Arg #"
<< capture.calleeArgIdx;
auto *F = capture.site.getCalleeFunction();
if (F)
os << " of " << F->getName();
os << '\n';
return os;
}
// For each non-escaping closure, record the indices of arguments that
// require dynamic enforcement.
//
// A note on closure cycles: local functions can be recursive, creating closure
// cycles. DynamicCaptures ignores such cycles, simply processing the call graph
// top-down. This relies on a simple rule: if a captured variable is passed as a
// box a local function (presumably because the function escapes), then it must
// also be passed as a box to any other local function called by the
// first. Therefore, if any capture escapes in a closure cycle, then it must be
// passed as a box in all closures within the cycle. DynamicCaptures does not
// care about boxes, because they are always dynamically enforced.
class DynamicCaptures {
// This only maps functions that have at least one inout_aliasable argument.
llvm::DenseMap<SILFunction *, SmallVector<unsigned, 4>> dynamicCaptureMap;
DynamicCaptures(DynamicCaptures &) = delete;
public:
DynamicCaptures() {}
void recordCapture(AddressCapture capture) {
LLVM_DEBUG(llvm::dbgs() << "Dynamic Capture: " << capture);
// *NOTE* For dynamically replaceable local functions, getCalleeFunction()
// returns nullptr. This assert verifies the assumption that a captured
// local variable can never be promoted to capture-by-address for
// dynamically replaceable local functions.
auto callee = capture.site.getCalleeFunction();
assert(callee && "cannot locate function ref for nonescaping closure");
auto &dynamicArgs = dynamicCaptureMap[callee];
if (!llvm::is_contained(dynamicArgs, capture.calleeArgIdx))
dynamicArgs.push_back(capture.calleeArgIdx);
}
bool isDynamic(SILFunctionArgument *arg) const {
// This closure may be the head of a closure cycle. That's ok, because we
// only care about whether this argument escapes in the calling function
// this is *not* part of the cycle. If the capture escapes anywhere in the
// cycle, then it is passed as a box to all closures in that cycle.
auto pos = dynamicCaptureMap.find(arg->getFunction());
if (pos == dynamicCaptureMap.end())
return false;
auto &dynamicArgs = pos->second;
return llvm::is_contained(dynamicArgs, arg->getIndex());
}
};
} // anonymous namespace
namespace {
class SelectEnforcement {
// Reference back to the known dynamically enforced non-escaping closure
// arguments in this module. Parent scopes are processed before the closures
// they reference.
DynamicCaptures &dynamicCaptures;
AllocBoxInst *Box;
/// A state for tracking escape information about a variable.
/// StateMap only has entries for blocks for which the variable
/// has potentially escaped at exit.
struct State {
bool IsInWorklist = false;
// At least one of the following must be true.
bool HasEscape = false;
bool HasPotentiallyEscapedAtEntry = false;
// In a more advanced problem, this could easily be passed a State.
bool adjustForEscapeInPredecessor() {
bool updateSuccessors = false;
if (!HasPotentiallyEscapedAtEntry) {
HasPotentiallyEscapedAtEntry = true;
updateSuccessors = !HasEscape;
}
return updateSuccessors;
}
};
llvm::DenseMap<SILBasicBlock*, State> StateMap;
/// All the accesses of Box in the function.
SmallVector<BeginAccessInst*, 8> Accesses;
/// All the non-escaping closure captures of the Boxed value in this function.
SmallVector<AddressCapture, 8> Captures;
/// All the escapes in the function.
SmallPtrSet<SILInstruction*, 8> Escapes;
/// A worklist we use for various purposes.
SmallVector<SILBasicBlock*, 8> Worklist;
public:
SelectEnforcement(DynamicCaptures &dc, AllocBoxInst *box)
: dynamicCaptures(dc), Box(box) {}
void run();
private:
void analyzeUsesOfBox(SingleValueInstruction *source);
// Used for project_box and mark_must_initialize.
void analyzeProjection(SingleValueInstruction *project);
/// Note that the given instruction is a use of the box (or a use of
/// a projection from it) in which the address escapes.
void noteEscapingUse(SILInstruction *inst);
void propagateEscapes();
void propagateEscapesFrom(SILBasicBlock *bb);
bool hasPotentiallyEscapedAt(SILInstruction *inst);
typedef llvm::SmallSetVector<SILBasicBlock*, 8> BlockSetVector;
void findBlocksAccessedAcross(EndAccessInst *endAccess,
BlockSetVector &blocksAccessedAcross);
bool hasPotentiallyEscapedAtAnyReachableBlock(
BeginAccessInst *access, BlockSetVector &blocksAccessedAcross);
void updateAccesses();
void updateAccess(BeginAccessInst *access);
void updateCapture(AddressCapture capture);
};
} // end anonymous namespace
void SelectEnforcement::run() {
LLVM_DEBUG(llvm::dbgs() << " Box: " << *Box);
// Set up the data-flow problem.
analyzeUsesOfBox(Box);
// Run the data-flow problem.
propagateEscapes();
// Update all the accesses.
updateAccesses();
}
// FIXME: This should cover a superset of AllocBoxToStack's findUnexpectedBoxUse
// to avoid perturbing codegen. They should be sharing the same analysis.
void SelectEnforcement::analyzeUsesOfBox(SingleValueInstruction *source) {
// Collect accesses rooted off of projections.
for (auto use : source->getUses()) {
auto user = use->getUser();
if (auto bbi = dyn_cast<BeginBorrowInst>(user)) {
analyzeUsesOfBox(bbi);
continue;
}
if (auto mui = dyn_cast<MarkUninitializedInst>(user)) {
analyzeUsesOfBox(mui);
continue;
}
if (auto projection = dyn_cast<ProjectBoxInst>(user)) {
analyzeProjection(projection);
continue;
}
// Ignore certain other uses that do not capture the value.
if (isa<StrongRetainInst>(user) || isa<StrongReleaseInst>(user) ||
isa<DestroyValueInst>(user) || isa<DeallocBoxInst>(user) ||
isa<EndBorrowInst>(user))
continue;
// Treat everything else as an escape.
// A Box typically escapes via copy_value.
noteEscapingUse(user);
}
// Accesses may still be empty if the user of the Box is a partial apply
// capture and, for some reason, the closure is dead.
}
// Verify that accesses are not nested before mandatory inlining.
// Closure captures should also not be nested within an access.
static void checkUsesOfAccess(BeginAccessInst *access) {
#ifndef NDEBUG
// These conditions are only true prior to mandatory inlining.
assert(!access->getFunction()->wasDeserializedCanonical());
for (auto *use : access->getUses()) {
auto user = use->getUser();
assert(!isa<BeginAccessInst>(user));
assert(!isa<PartialApplyInst>(user) ||
onlyUsedByAssignByWrapper(cast<PartialApplyInst>(user)) ||
onlyUsedByAssignOrInit(cast<PartialApplyInst>(user)));
}
#endif
}
void SelectEnforcement::analyzeProjection(SingleValueInstruction *projection) {
for (auto *use : projection->getUses()) {
auto user = use->getUser();
// Look through mark must check.
if (auto *mmi = dyn_cast<MarkUnresolvedNonCopyableValueInst>(user)) {
analyzeProjection(mmi);
continue;
}
// Collect accesses.
if (auto *access = dyn_cast<BeginAccessInst>(user)) {
if (access->getEnforcement() == SILAccessEnforcement::Unknown)
Accesses.push_back(access);
checkUsesOfAccess(access);
continue;
}
// Handle both partial applies and directly applied non-escaping closures.
if (ApplySite::isa(user)) {
AddressCapture capture(*use);
if (capture.isValid())
Captures.emplace_back(capture);
else
// Only full apply sites can have non-inout_aliasable address arguments,
// but those aren't actually captures.
assert(FullApplySite::isa(user));
}
}
}
void SelectEnforcement::noteEscapingUse(SILInstruction *inst) {
LLVM_DEBUG(llvm::dbgs() << " Escape: " << *inst);
// Add it to the escapes set.
Escapes.insert(inst);
// Record this point as escaping.
auto userBB = inst->getParent();
auto &state = StateMap[userBB];
if (!state.IsInWorklist) {
state.HasEscape = true;
state.IsInWorklist = true;
Worklist.push_back(userBB);
}
assert(state.HasEscape);
assert(state.IsInWorklist);
}
void SelectEnforcement::propagateEscapes() {
while (!Worklist.empty()) {
auto bb = Worklist.pop_back_val();
auto it = StateMap.find(bb);
assert(it != StateMap.end() &&
"block was in worklist but doesn't have a tracking state");
auto &state = it->second;
assert(state.HasEscape || state.HasPotentiallyEscapedAtEntry);
state.IsInWorklist = false;
propagateEscapesFrom(bb);
}
}
/// Given that the box potentially escaped before we exited the
/// given block, propagate that information to all of its successors.
void SelectEnforcement::propagateEscapesFrom(SILBasicBlock *bb) {
assert(StateMap.count(bb));
// Iterate over the successors of the block.
for (SILBasicBlock *succ : bb->getSuccessors()) {
auto &succState = StateMap[succ];
// If updating the successor changes it in a way that will
// require us to update its successors, add it to the worklist.
if (succState.adjustForEscapeInPredecessor()) {
if (!succState.IsInWorklist) {
succState.IsInWorklist = true;
Worklist.push_back(succ);
}
}
}
}
bool SelectEnforcement::hasPotentiallyEscapedAt(SILInstruction *point) {
auto bb = point->getParent();
// If we're not tracking anything for the whole block containing
// the instruction, we're done; it hasn't escaped here.
auto it = StateMap.find(bb);
if (it == StateMap.end())
return false;
// If the tracking information says there are escapes before entry,
// we're done; it has potentially escaped.
const auto &state = it->second;
if (state.HasPotentiallyEscapedAtEntry)
return true;
// Okay, there must be an escape within this block.
assert(state.HasEscape);
for (auto ii = point->getIterator(), ie = bb->begin(); ii != ie; ) {
auto inst = &*--ii;
// Maybe just record the first escape in the block and see if we
// come after it?
if (Escapes.count(inst))
return true;
}
return false;
}
/// Add all blocks to `Worklist` between the given `endAccess` and its
/// `begin_access` in which the access is active at the end of the block.
void SelectEnforcement::findBlocksAccessedAcross(
EndAccessInst *endAccess, BlockSetVector &blocksAccessedAcross) {
// Fast path: we're not tracking any escapes. (But the box should
// probably have been promoted to the stack in this case.)
if (StateMap.empty())
return;
SILBasicBlock *beginBB = endAccess->getBeginAccess()->getParent();
if (endAccess->getParent() == beginBB)
return;
assert(Worklist.empty());
Worklist.push_back(endAccess->getParent());
while (!Worklist.empty()) {
SILBasicBlock *bb = Worklist.pop_back_val();
for (auto *predBB : bb->getPredecessorBlocks()) {
if (!blocksAccessedAcross.insert(predBB)) continue;
if (predBB == beginBB) continue;
Worklist.push_back(predBB);
}
}
}
bool SelectEnforcement::hasPotentiallyEscapedAtAnyReachableBlock(
BeginAccessInst *access, BlockSetVector &blocksAccessedAcross) {
assert(Worklist.empty());
BasicBlockSet visited(access->getFunction());
// Don't follow any paths that lead to an end_access.
for (auto endAccess : access->getEndAccesses())
visited.insert(endAccess->getParent());
/// Initialize the worklist with all blocks that exit the access path.
for (SILBasicBlock *bb : blocksAccessedAcross) {
for (SILBasicBlock *succBB : bb->getSuccessorBlocks()) {
if (blocksAccessedAcross.count(succBB)) continue;
if (visited.insert(succBB))
Worklist.push_back(succBB);
}
}
while (!Worklist.empty()) {
SILBasicBlock *bb = Worklist.pop_back_val();
assert(visited.contains(bb));
// If we're tracking information for this block, there's an escape.
if (StateMap.count(bb))
return true;
// Add all reachable successors.
for (SILBasicBlock *succ : bb->getSuccessors()) {
if (visited.insert(succ))
Worklist.push_back(succ);
}
}
// No reachable block has an escape.
return false;
}
void SelectEnforcement::updateAccesses() {
for (auto *access : Accesses) {
LLVM_DEBUG(llvm::dbgs() << " Access: " << *access);
updateAccess(access);
}
for (AddressCapture &capture : Captures) {
LLVM_DEBUG(llvm::dbgs() << " Capture: " << capture);
updateCapture(capture);
}
}
void SelectEnforcement::updateAccess(BeginAccessInst *access) {
assert(access->getEnforcement() == SILAccessEnforcement::Unknown);
// Check whether the variable escaped before any of the end_accesses.
BlockSetVector blocksAccessedAcross;
for (auto endAccess : access->getEndAccesses()) {
if (hasPotentiallyEscapedAt(endAccess))
return setDynamicEnforcement(access);
// Add all blocks to blocksAccessedAcross between begin_access and this
// end_access.
findBlocksAccessedAcross(endAccess, blocksAccessedAcross);
}
assert(blocksAccessedAcross.empty()
|| blocksAccessedAcross.count(access->getParent()));
// For every path through this access that doesn't reach an end_access, check
// if any block reachable from that path can see an escaped value.
if (hasPotentiallyEscapedAtAnyReachableBlock(access, blocksAccessedAcross)) {
setDynamicEnforcement(access);
return;
}
// Otherwise, use static enforcement.
setStaticEnforcement(access);
}
void SelectEnforcement::updateCapture(AddressCapture capture) {
auto captureIfEscaped = [&](SILInstruction *user) {
if (hasPotentiallyEscapedAt(user))
dynamicCaptures.recordCapture(capture);
};
SingleValueInstruction *PAIUser = dyn_cast<PartialApplyInst>(capture.site);
if (!PAIUser) {
// This is a full apply site. Immediately record the capture and return.
captureIfEscaped(capture.site.getInstruction());
return;
}
// For partial applies, check all use points of the closure.
llvm::SmallSetVector<SingleValueInstruction *, 8> worklist;
auto visitUse = [&](Operand *oper) {
auto *user = oper->getUser();
if (FullApplySite::isa(user)) {
// A call is considered a closure access regardless of whether it calls
// the closure or accepts the closure as an argument.
captureIfEscaped(user);
return;
}
switch (user->getKind()) {
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::CopyValueInst:
case SILInstructionKind::EnumInst:
case SILInstructionKind::StructInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::PartialApplyInst:
// Propagate the closure.
worklist.insert(cast<SingleValueInstruction>(user));
return;
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::EndBorrowInst:
// partial_apply [stack] is matched with dealloc_stack.
case SILInstructionKind::DeallocStackInst:
// Benign use.
return;
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::AssignInst:
case SILInstructionKind::BranchInst:
case SILInstructionKind::CondBranchInst:
case SILInstructionKind::ReturnInst:
case SILInstructionKind::StoreInst:
// These are all valid partial_apply users, however we don't expect them
// to occur with non-escaping closures. Handle them conservatively just in
// case they occur.
LLVM_FALLTHROUGH;
default:
LLVM_DEBUG(llvm::dbgs() << " Unrecognized partial_apply user: "
<< *user);
// Handle unknown uses conservatively by assuming a capture.
captureIfEscaped(user);
}
};
while (true) {
for (auto *oper : PAIUser->getUses())
visitUse(oper);
if (worklist.empty())
break;
PAIUser = worklist.pop_back_val();
}
}
namespace {
// Model the kind of access needed based on analyzing the access's source.
// This is either determined to be static or dynamic, or requires further
// analysis of a boxed variable.
struct SourceAccess {
enum { StaticAccess, DynamicAccess, BoxAccess } kind;
AllocBoxInst *allocBox;
static SourceAccess getStaticAccess() { return {StaticAccess, nullptr}; }
static SourceAccess getDynamicAccess() { return {DynamicAccess, nullptr}; }
static SourceAccess getBoxedAccess(AllocBoxInst *inst) {
return {BoxAccess, inst};
}
};
/// The pass.
///
/// This can't be a SILFunctionTransform because DynamicCaptures need to be
/// recorded while analyzing a closure's parent scopes before processing the
/// closures.
///
/// TODO: Make this a "ClosureTransform". See the file-level comments above.
class AccessEnforcementSelection : public SILModuleTransform {
// Track the known dynamically enforced non-escaping closure
// arguments in this module. Parent scopes are processed before the closures
// they reference.
std::unique_ptr<DynamicCaptures> dynamicCaptures;
#ifndef NDEBUG
// Per-function book-keeping to verify that a box is processed before all of
// its accesses and captures are seen.
llvm::DenseSet<AllocBoxInst *> handledBoxes;
#endif
public:
void run() override;
protected:
void processFunction(SILFunction *F);
SourceAccess getAccessKindForBox(SILValue boxOperand);
SourceAccess getSourceAccess(SILValue address);
void handleApply(ApplySite apply);
void handleAccess(BeginAccessInst *access);
};
void AccessEnforcementSelection::run() {
auto *CSA = getAnalysis<ClosureScopeAnalysis>();
ClosureFunctionOrder closureOrder(CSA);
closureOrder.compute();
dynamicCaptures = std::make_unique<DynamicCaptures>();
SWIFT_DEFER { dynamicCaptures.reset(); };
for (SILFunction *function : closureOrder.getTopDownFunctions()) {
this->processFunction(function);
}
}
void AccessEnforcementSelection::
processFunction(SILFunction *F) {
if (F->isExternalDeclaration())
return;
LLVM_DEBUG(llvm::dbgs() << "Access Enforcement Selection in " << F->getName()
<< "\n");
// Deserialized functions, which have been mandatory inlined, no longer meet
// the structural requirements on access markers required by this pass.
if (F->wasDeserializedCanonical())
return;
// Perform an RPO walk so that boxes are always processed before their access.
auto *PO = getAnalysis<PostOrderAnalysis>()->get(F);
for (SILBasicBlock *bb : PO->getReversePostOrder()) {
for (auto ii = bb->begin(), ie = bb->end(); ii != ie;) {
SILInstruction *inst = &*ii;
++ii;
// Analyze all boxes. Even if they aren't accessed in this function, they
// may still have captures that require dynamic enforcement because the
// box has escaped prior to the capture.
if (auto box = dyn_cast<AllocBoxInst>(inst)) {
SelectEnforcement(*dynamicCaptures, box).run();
assert(handledBoxes.insert(box).second);
} else if (auto access = dyn_cast<BeginAccessInst>(inst))
handleAccess(access);
else if (auto access = dyn_cast<BeginUnpairedAccessInst>(inst))
assert(access->getEnforcement() == SILAccessEnforcement::Dynamic);
// Check for unboxed captures in both partial_applies and direct
// applications of non-escaping closures.
else if (auto apply = ApplySite::isa(inst))
handleApply(apply);
}
}
invalidateAnalysis(F, SILAnalysis::InvalidationKind::Instructions);
#ifndef NDEBUG
// There's no need to track handled boxes across functions.
handledBoxes.clear();
#endif
}
SourceAccess AccessEnforcementSelection::getAccessKindForBox(SILValue source) {
if (auto *BBI = dyn_cast<BeginBorrowInst>(source))
source = BBI->getOperand();
if (auto *MUI = dyn_cast<MarkUninitializedInst>(source))
source = MUI->getOperand();
// If we didn't allocate the box, assume that we need to use
// dynamic enforcement.
// TODO: use static enforcement in certain provable cases.
auto box = dyn_cast<AllocBoxInst>(source);
if (!box)
return SourceAccess::getDynamicAccess();
return SourceAccess::getBoxedAccess(box);
}
SourceAccess AccessEnforcementSelection::getSourceAccess(SILValue address) {
// Recurse through MarkUninitializedInst.
if (auto *mui = dyn_cast<MarkUninitializedInst>(address))
return getSourceAccess(mui->getOperand());
// Recurse through mark must check.
if (auto *mmci = dyn_cast<MarkUnresolvedNonCopyableValueInst>(address))
return getSourceAccess(mmci->getOperand());
// Recur through moveonlywrapper_to_copyable_addr or vice versa.
if (auto *m = dyn_cast<MoveOnlyWrapperToCopyableAddrInst>(address))
return getSourceAccess(m->getOperand());
if (auto *c = dyn_cast<CopyableToMoveOnlyWrapperAddrInst>(address))
return getSourceAccess(c->getOperand());
// Recurse through drop_deinit.
if (auto *ddi = dyn_cast<DropDeinitInst>(address))
return getSourceAccess(ddi->getOperand());
// Recurse through moveonlywrapper_to_copyable_box.
if (auto *m = dyn_cast<MoveOnlyWrapperToCopyableBoxInst>(address))
return getAccessKindForBox(m->getOperand());
if (auto box = dyn_cast<ProjectBoxInst>(address))
return getAccessKindForBox(box->getOperand());
if (auto arg = dyn_cast<SILFunctionArgument>(address)) {
switch (arg->getArgumentConvention()) {
case SILArgumentConvention::Indirect_Inout:
// `inout` arguments are checked on the caller side, either statically
// or dynamically if necessary. The @inout does not alias and cannot
// escape within the callee, so static enforcement is always sufficient.
return SourceAccess::getStaticAccess();
case SILArgumentConvention::Indirect_InoutAliasable:
if (dynamicCaptures->isDynamic(arg))
return SourceAccess::getDynamicAccess();
return SourceAccess::getStaticAccess();
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_In_Guaranteed:
// @in/@in_guaranteed cannot be mutably accessed, mutably captured, or
// passed as inout. @in/@in_guaranteed may be captured @inout_aliasable.
// (This is fairly horrible, but presumably Sema/SILGen made sure a copy
// wasn't needed?)
//
// FIXME: When we have borrowed arguments, a "read" needs to be enforced
// on the caller side.
return SourceAccess::getStaticAccess();
case SILArgumentConvention::Indirect_Out:
// We use an initialized 'out' argument as a parameter.
return SourceAccess::getStaticAccess();
default:
llvm_unreachable("Expecting an inout argument.");
}
}
// If we're not accessing a box or argument, we must've lowered to a stack
// element. Other sources of access are either outright dynamic (GlobalAddr,
// RefElementAddr), or only exposed after mandatory inlining (nested
// dependent BeginAccess).
//
// Running before diagnostic constant propagation requires handling 'undef'.
assert(isa<AllocStackInst>(address) || isa<SILUndef>(address));
return SourceAccess::getStaticAccess();
}
void AccessEnforcementSelection::handleApply(ApplySite apply) {
auto calleeTy = apply.getOrigCalleeType();
SILFunctionConventions calleeConv(calleeTy, *getModule());
for (Operand &oper : apply.getArgumentOperands()) {
AddressCapture capture(oper);
if (!capture.isValid())
continue;
// This is a non-escaping closure argument. If the argument requires dynamic
// access, record that in dynamicCaptures.
auto sourceAccess = getSourceAccess(oper.get());
switch (sourceAccess.kind) {
case SourceAccess::StaticAccess:
// If the captured variable does not require dynamic enforcement, then
// there's no need to track it.
break;
case SourceAccess::DynamicAccess: {
dynamicCaptures->recordCapture(capture);
break;
}
case SourceAccess::BoxAccess:
// Captures of box projections are handled during SelectEnforcement, which
// determines the access enforcement for all users of a box. Within
// SelectEnforcement, we know whether the box has escaped before the
// capture. Here there's just nothing to do.
assert(handledBoxes.count(sourceAccess.allocBox));
break;
}
}
}
void AccessEnforcementSelection::handleAccess(BeginAccessInst *access) {
if (access->getEnforcement() != SILAccessEnforcement::Unknown)
return;
auto sourceAccess = getSourceAccess(access->getOperand());
switch (sourceAccess.kind) {
case SourceAccess::StaticAccess:
setStaticEnforcement(access);
break;
case SourceAccess::DynamicAccess:
setDynamicEnforcement(access);
break;
case SourceAccess::BoxAccess:
llvm_unreachable("All boxes must have already been selected.");
}
}
} // end anonymous namespace
SILTransform *swift::createAccessEnforcementSelection() {
return new AccessEnforcementSelection();
}
|