1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
//===--- AddressLowering.h - Lower SIL address-only types. ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/LLVM.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
namespace llvm {
class raw_ostream;
}
namespace swift {
/// Track an opaque value's storage. An opaque value is a SILValue with
/// address-only type. Stages in the storage life-cycle:
///
/// 1. Unallocated
///
/// 2. Allocated. Either (a) it is a root value where 'storageAddress' is an
/// alloc_stack, or (b) it is a projection where 'projectedStorageID' refers to
/// the parent ValueStorage, which recursively leads to a root value with a
/// valid 'storageAddress'.
///
/// 3. Materialized. 'storageAddress' is valid. Address projections have been
/// emitted at the point that this value is defined.
///
/// 4. Rewritten. The definition of this opaque value is fully translated
/// into lowered SIL. Instructions are typically materialized and rewritten at
/// the same time. An indirect result, however, is materialized as soon as its
/// alloc_stack is emitted, but only rewritten once the call itself is
/// rewritten.
///
/// A projection may project out of an operand's definition (def-projection).
/// After allocation, before materialization or rewriting, we may have:
///
/// %result_addr = alloc_stack // storage for %result
/// %result = apply : $() -> @out T
/// %extract = struct_extract %result // def-projection of %result
///
/// Or, a projection may project into a composing use (use-projection):
///
/// %struct_addr = alloc_stack // storage for %struct
/// %result = apply : $() -> @out T // use-projection of %struct at operand #0
/// %struct = struct (%result)
///
/// A phi-projection is a use projection that projects its entire value
/// through a phi rather than into a composing use. It has an invalid
/// 'projectedOperandNum':
///
/// %result = apply : $() -> @out T // use-projection of %phi
/// br bb1(%result)
/// bb1(%phi : @owned $T)
///
/// Operations that destructively reuse storage (open_existential_value,
/// unchecked_enum_data, and switch_enum), are not considered storage
/// projections. Instead, these values have no ValueStorage but are rewritten to
/// directly reuse their operand's storage.
///
/// To materialize projections, address lowering follows the original def-use
/// edges for opaque values. Consequently, values that have storage cannot
/// be removed from SIL or from the storage map until rewriting is
/// complete. Mapped values can, however, be substituted on-the-fly by emitting
/// a place-holder value and updating the map entry. This works because the
/// value storage map holds no direct references to any SIL entities, such as
/// Operands or SILValues.
///
/// An opaque value's storage will be a def-projection if it's the result of
/// some disaggregation. If %o = disaggregate %p then %o's storage will be
/// a def-projection out of %p's storage.
///
/// An opaque value's storage _may_ be a use-projection if it's an operand of
/// some aggregation. If %p = aggregate %o, then %o's storage may be a
/// use-projection out of %p's storage.
///
/// Projections naturally form chains. A value's storage may be a projection
/// out of the storage of some other value's storage which is itself a
/// projection out of a third value's storage. This can happen in three ways:
///
/// (1) %o -def-> %p -def-> %q
/// %p = disaggregate %q
/// %o = disaggregate %p
/// (2) %o -use-> %p -use-> %q
/// %p = aggregate %o
/// %q = aggregate %p
/// (3) %o -def-> %p -use-> %q
/// %p = ...
/// cond_br left, right
/// left:
/// %o = disaggregate %p
/// right:
/// %q = aggregate %p
///
/// Branching like this is actually necessary. It's not legal to aggregate
/// guaranteed opaque values since doing so changes representation which
/// implies a copy.
///
/// It is NOT possible to have links like
///
/// (4) %o -use-> %p -def-> %q
///
/// The reason is that the links mean contradictory things:
/// %o -use-> %p means %p = aggregate %o
/// %p -def-> %q means %p = disaggregate %q
/// There is no overlap between the "aggregate" and the "disaggregate"
/// opcodes.
///
/// This means that any chain of projections looks like
///
/// %d_0 -def-> ... -def-> %d_N -use-> %u_0 -use-> ... -use-> %u_M
///
/// a sequence (possibly empty) of def projections followed by a sequence
/// (possibly empty) of use projections [projection_chain_structure].
struct ValueStorage {
enum : uint32_t { InvalidID = uint32_t(~0) };
enum : uint16_t { InvalidOper = uint16_t(~0) };
/// The final address of this storage after rewriting the SIL. For values
/// linked to their own storage, this is set during storage allocation to an
/// alloc_stack or indirect function argument. For projections, it is only set
/// after materialization (during instruction rewriting).
SILValue storageAddress;
/// The latest instruction which opens an archetype involved in the value's
/// type. Just a cache of getLatestOpeningInst(value).
mutable std::optional<SILInstruction *> latestOpeningInst = std::nullopt;
/// When either isDefProjection or isUseProjection is set, this refers to the
/// storage whose "def" this value projects out of or whose operand this
/// storage projects into via its "use".
uint32_t projectedStorageID = InvalidID;
/// For use-projections, identifies the operand index of the composing use.
/// Only valid for non-phi use projections.
uint16_t projectedOperandNum = InvalidOper;
/// Projection out of a storage def. e.g. this value is a destructure.
unsigned isDefProjection : 1;
/// Projection into a composing use or phi. e.g. this value is used by a
/// struct, tuple, enum, or branch.
unsigned isUseProjection : 1;
// The definition of this value is fully translated to lowered SIL.
unsigned isRewritten : 1;
// This is a use-projection which performs an initialization side-effect,
// either into an enum or an existential.
//
// Tracked to avoid projecting enums/existentials across phis, which would
// result in piecewise initialization.
//
// Note that the corresponding value is the payload, not the
// enum instruction.
unsigned initializes : 1;
ValueStorage(SILValue storageAddress): storageAddress(storageAddress) {
isDefProjection = false;
isUseProjection = false;
isRewritten = false;
initializes = false;
// The initial storage address is only valid when the value is effectively
// already rewritten.
if (storageAddress) {
isRewritten = true;
}
}
bool isAllocated() const {
return storageAddress || isUseProjection || isDefProjection;
}
bool isProjection() const { return isUseProjection || isDefProjection; }
bool isPhiProjection() const {
return isUseProjection && projectedOperandNum == InvalidOper;
}
bool isComposingUseProjection() const {
return isUseProjection && projectedOperandNum != InvalidOper;
}
void markRewritten() {
assert(storageAddress);
isRewritten = true;
}
SILValue getMaterializedAddress() const {
assert(isRewritten && "storage has not been materialized");
return storageAddress;
}
#ifndef NDEBUG
void print(llvm::raw_ostream &OS) const;
void dump() const;
#endif
};
/// Map each opaque/resilient SILValue to its abstract storage.
/// Iteration guarantees RPO order.
///
/// Mapped values are expected to be created in a single RPO pass. "erase" is
/// unsupported. Values must be replaced using 'replaceValue()'.
class ValueStorageMap {
public:
struct ValueStoragePair {
SILValue value;
ValueStorage storage;
ValueStoragePair(SILValue v, ValueStorage s) : value(v), storage(s) {}
#ifndef NDEBUG
void print(llvm::raw_ostream &OS) const;
void dump() const;
#endif
};
private:
typedef std::vector<ValueStoragePair> ValueVector;
// Hash of values to ValueVector indices.
typedef llvm::DenseMap<SILValue, unsigned> ValueHashMap;
ValueVector valueVector;
ValueHashMap valueHashMap;
// True after valueVector is done growing, so ValueStorage references will no
// longer be invalidated.
SWIFT_ASSERT_ONLY_DECL(bool stableStorage = false);
public:
class ProjectionIterator {
public:
using This = ProjectionIterator;
using iterator_category = std::forward_iterator_tag;
using value_type = ValueStoragePair const *;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
protected:
value_type Cur;
ValueStorageMap const ⤅
public:
explicit ProjectionIterator(value_type cur, ValueStorageMap const &map)
: Cur(cur), Map(map) {}
ValueStoragePair const *operator->() const { return Cur; }
ValueStoragePair const *operator*() const { return Cur; }
ValueStorage const &getStorage() const { return Cur->storage; }
SILValue getValue() const { return Cur->value; }
This &operator++() {
assert(Cur && "incrementing past end()!");
if (Cur->storage.isProjection())
Cur = &Map.getProjectedStorage(Cur->storage);
else
Cur = nullptr;
return *this;
}
This operator++(int unused) {
This copy = *this;
++*this;
return copy;
}
friend bool operator==(This lhs, This rhs) { return lhs.Cur == rhs.Cur; }
friend bool operator!=(This lhs, This rhs) { return !(lhs == rhs); }
};
ProjectionIterator projection_begin(SILValue value) const {
return ProjectionIterator(&valueVector[getOrdinal(value)], *this);
}
ProjectionIterator projection_end() const {
return ProjectionIterator(nullptr, *this);
}
/// Returns projections of the specified value from the inside out, starting
/// from the projection for the value and walking outwards to its storage
/// root.
iterator_range<ProjectionIterator> getProjections(SILValue value) const {
if (!contains(value))
return {projection_end(), projection_end()};
return {projection_begin(value), projection_end()};
}
friend class ProjectionIterator;
bool empty() const { return valueVector.empty(); }
void clear() {
valueVector.clear();
valueHashMap.clear();
}
/// Iterate over value storage in RPO order. Once we begin erasing
/// instructions, some entries could become invalid. ValueStorage validity can
/// be checked with valueStorageMap.contains(value).
ValueVector::iterator begin() { return valueVector.begin(); }
ValueVector::iterator end() { return valueVector.end(); }
ValueVector::reverse_iterator rbegin() { return valueVector.rbegin(); }
ValueVector::reverse_iterator rend() { return valueVector.rend(); }
bool contains(SILValue value) const {
return valueHashMap.find(value) != valueHashMap.end();
}
unsigned getOrdinal(SILValue value) const {
auto hashIter = valueHashMap.find(value);
assert(hashIter != valueHashMap.end() && "Missing SILValue");
return hashIter->second;
}
ValueStoragePair &operator[](uint32_t index) { return valueVector[index]; }
ValueStoragePair const &operator[](uint32_t index) const {
return valueVector[index];
}
ValueStorage &getStorage(SILValue value) {
return valueVector[getOrdinal(value)].storage;
}
const ValueStorage &getStorage(SILValue value) const {
return valueVector[getOrdinal(value)].storage;
}
const ValueStorage *getStorageOrNull(SILValue value) const {
auto iter = valueHashMap.find(value);
if (iter == valueHashMap.end())
return nullptr;
return &valueVector[iter->second].storage;
}
void setStable() { SWIFT_ASSERT_ONLY(stableStorage = true); }
/// Given storage for a projection, return the projected storage by following
/// single level of projected storage. The returned storage may
/// recursively be a another projection.
const ValueStoragePair &
getProjectedStorage(const ValueStorage &storage) const {
assert(storage.isProjection());
return valueVector[storage.projectedStorageID];
}
ValueStoragePair &getProjectedStorage(const ValueStorage &storage) {
assert(storage.isProjection());
return valueVector[storage.projectedStorageID];
}
/// Return the non-projection storage that the given storage ultimately refers
/// to by following all projections.
const ValueStorage &getBaseStorage(SILValue value) {
ValueStorage const *last = nullptr;
for (auto *pair : getProjections(value)) {
last = &pair->storage;
}
return *last;
}
void setStorageAddress(SILValue value, SILValue addr) {
auto &storage = getStorage(value);
assert(!storage.storageAddress || storage.storageAddress == addr);
storage.storageAddress = addr;
}
/// Insert a value in the map, creating a ValueStorage object for it. This
/// must be called in RPO order.
void insertValue(SILValue value, SILValue storageAddress);
/// Replace a value that is mapped to storage with another value. This allows
/// limited rewriting of original opaque values. For example, block
/// arguments can be replaced with fake loads in order to rewrite their
/// corresponding terminator.
void replaceValue(SILValue oldValue, SILValue newValue);
/// Record a storage projection from the source of the given operand into its
/// use (e.g. struct_extract, tuple_extract, switch_enum).
void recordDefProjection(Operand *oper, SILValue projectedValue);
/// Record a storage projection from the use of the given operand into the
/// operand's source. (e.g. Any value used by a struct, tuple, or enum may
/// project storage into its use).
void recordComposingUseProjection(Operand *oper, SILValue userValue);
// Mark a phi operand value as coalesced with the phi storage.
void recordPhiUseProjection(Operand *oper, SILPhiArgument *phi);
/// Return true \p oper projects into its use's aggregate storage.
bool isComposingUseProjection(Operand *oper) const;
#ifndef NDEBUG
void printProjections(SILValue value, llvm::raw_ostream &OS) const;
void dumpProjections(SILValue value) const;
void print(llvm::raw_ostream &OS) const;
void dump() const;
#endif
};
} // namespace swift
|