1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
|
//===--- CapturePromotion.cpp - Promotes closure captures -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Promotes captures from 'inout' (i.e. by-reference) to by-value
/// ==============================================================
///
/// Swift's closure model is that all local variables are capture by reference.
/// This produces a very simple programming model which is great to use, but
/// relies on the optimizer to promote by-ref captures to by-value (i.e.
/// by-copy) captures for decent performance. Consider this simple example:
///
/// func foo(a : () -> ()) {} // assume this has an unknown body
///
/// func bar() {
/// var x = 42
///
/// foo({ print(x) })
/// }
///
/// Since x is captured by-ref by the closure, x must live on the heap. By
/// looking at bar without any knowledge of foo, we can know that it is safe to
/// promote this to a by-value capture, allowing x to live on the stack under
/// the following conditions:
///
/// 1. If x is not modified in the closure body and is only loaded.
/// 2. If we can prove that all mutations to x occur before the closure is
/// formed.
///
/// Under these conditions if x is loadable then we can even load the given
/// value and pass it as a scalar instead of an address.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-capture-promotion"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/TypeSubstCloner.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include <tuple>
using namespace swift;
STATISTIC(NumCapturesPromoted, "Number of captures promoted");
namespace {
using IndicesSet = llvm::SmallSet<unsigned, 4>;
using PartialApplyIndicesMap = llvm::DenseMap<PartialApplyInst *, IndicesSet>;
} // anonymous namespace
//===----------------------------------------------------------------------===//
// Reachability Utilities
//===----------------------------------------------------------------------===//
namespace {
/// Transient reference to a block set within ReachabilityInfo.
///
/// This is a bitset that conveniently flattens into a matrix allowing bit-wise
/// operations without masking.
///
/// TODO: If this sticks around, maybe we'll make a BitMatrix ADT.
class ReachingBlockSet {
public:
enum { BITWORD_SIZE = (unsigned)sizeof(uint64_t) * CHAR_BIT };
constexpr static size_t numBitWordsForNumBlocks(unsigned NumBlocks) {
return (NumBlocks + BITWORD_SIZE - 1) / BITWORD_SIZE;
}
/// Transient reference to a reaching block matrix.
struct ReachingBlockMatrix {
uint64_t *bits;
unsigned numBitWords; // Words per row.
ReachingBlockMatrix() : bits(nullptr), numBitWords(0) {}
bool empty() const { return !bits; }
};
static ReachingBlockMatrix allocateMatrix(unsigned numBlocks) {
ReachingBlockMatrix m;
m.numBitWords = numBitWordsForNumBlocks(numBlocks);
m.bits = new uint64_t[numBlocks * m.numBitWords];
memset(m.bits, 0, numBlocks * m.numBitWords * sizeof(uint64_t));
return m;
}
static void deallocateMatrix(ReachingBlockMatrix &m) {
delete[] m.bits;
m.bits = nullptr;
m.numBitWords = 0;
}
static ReachingBlockSet allocateSet(unsigned numBlocks) {
ReachingBlockSet s;
s.numBitWords = numBitWordsForNumBlocks(numBlocks);
s.bits = new uint64_t[s.numBitWords];
return s;
}
static void deallocateSet(ReachingBlockSet &s) {
delete[] s.bits;
s.bits = nullptr;
s.numBitWords = 0;
}
private:
uint64_t *bits;
unsigned numBitWords;
public:
ReachingBlockSet() : bits(nullptr), numBitWords(0) {}
ReachingBlockSet(unsigned blockID, ReachingBlockMatrix &m)
: bits(&m.bits[blockID * m.numBitWords]), numBitWords(m.numBitWords) {}
bool test(unsigned id) const {
assert(id / BITWORD_SIZE < numBitWords && "block ID out-of-bounds");
unsigned int modulus = id % BITWORD_SIZE;
long shifted = 1L << modulus;
return bits[id / BITWORD_SIZE] & shifted;
}
void set(unsigned id) {
unsigned int modulus = id % BITWORD_SIZE;
long shifted = 1L << modulus;
assert(id / BITWORD_SIZE < numBitWords && "block ID out-of-bounds");
bits[id / BITWORD_SIZE] |= shifted;
}
ReachingBlockSet &operator|=(const ReachingBlockSet &rhs) {
for (unsigned i : range(numBitWords))
bits[i] |= rhs.bits[i];
return *this;
}
void clear() { memset(bits, 0, numBitWords * sizeof(uint64_t)); }
bool operator==(const ReachingBlockSet &rhs) const {
assert(numBitWords == rhs.numBitWords && "mismatched sets");
for (unsigned i : range(numBitWords))
if (bits[i] != rhs.bits[i])
return false;
return true;
}
bool operator!=(const ReachingBlockSet &rhs) const { return !(*this == rhs); }
ReachingBlockSet(const ReachingBlockSet &rhs)
: bits(rhs.bits), numBitWords(rhs.numBitWords) {}
const ReachingBlockSet &operator=(const ReachingBlockSet &RHS) {
assert(numBitWords == RHS.numBitWords && "mismatched sets");
for (unsigned i : range(numBitWords))
bits[i] = RHS.bits[i];
return *this;
}
};
/// Store the reachability matrix: ToBlock -> FromBlocks.
class ReachabilityInfo {
SILFunction *f;
llvm::DenseMap<SILBasicBlock *, unsigned> blockMap;
ReachingBlockSet::ReachingBlockMatrix matrix;
public:
ReachabilityInfo(SILFunction *f) : f(f) {}
~ReachabilityInfo() { ReachingBlockSet::deallocateMatrix(matrix); }
bool isComputed() const { return !matrix.empty(); }
bool isReachable(SILBasicBlock *From, SILBasicBlock *To);
private:
void compute();
};
} // end anonymous namespace
/// Compute ReachabilityInfo so that it can answer queries about
/// whether a given basic block in a function is reachable from another basic
/// block in the function.
///
/// FIXME: Computing global reachability requires initializing an N^2
/// bitset. This could be avoided by computing reachability on-the-fly
/// for each alloc_box by walking backward from mutations.
void ReachabilityInfo::compute() {
assert(!isComputed() && "already computed");
unsigned n = 0;
for (auto &block : *f)
blockMap.insert({&block, n++});
matrix = ReachingBlockSet::allocateMatrix(n);
ReachingBlockSet newSet = ReachingBlockSet::allocateSet(n);
LLVM_DEBUG(llvm::dbgs() << "Computing Reachability for " << f->getName()
<< " with " << n << " blocks.\n");
// Iterate to a fix point, two times for a topological DAG.
bool madeChange;
do {
madeChange = false;
// Visit all blocks in a predictable order, hopefully close to topological.
for (auto &block : *f) {
ReachingBlockSet curSet(blockMap[&block], matrix);
if (!madeChange) {
// If we have not detected a change yet, then calculate new
// reachabilities into a new bit vector so we can determine if any
// change has occurred.
newSet = curSet;
for (auto pi = block.pred_begin(), pe = block.pred_end(); pi != pe;
++pi) {
unsigned predID = blockMap[*pi];
ReachingBlockSet predSet(predID, matrix);
newSet |= predSet;
newSet.set(predID);
}
if (newSet != curSet) {
curSet = newSet;
madeChange = true;
}
} else {
// Otherwise, just update the existing reachabilities in-place.
for (auto *predBlock : block.getPredecessorBlocks()) {
unsigned predID = blockMap[predBlock];
ReachingBlockSet predSet(predID, matrix);
curSet |= predSet;
curSet.set(predID);
}
}
LLVM_DEBUG(llvm::dbgs()
<< " Block " << blockMap[&block] << " reached by ";
for (unsigned i
: range(n)) {
if (curSet.test(i))
llvm::dbgs() << i << " ";
} llvm::dbgs()
<< "\n");
}
} while (madeChange);
ReachingBlockSet::deallocateSet(newSet);
}
/// Return true if the To basic block is reachable from the From basic
/// block. A block is considered reachable from itself only if its entry can be
/// recursively reached from its own exit.
bool ReachabilityInfo::isReachable(SILBasicBlock *fromBlock,
SILBasicBlock *toBlock) {
if (!isComputed())
compute();
auto fi = blockMap.find(fromBlock), ti = blockMap.find(toBlock);
assert(fi != blockMap.end() && ti != blockMap.end());
ReachingBlockSet fromSet(ti->second, matrix);
return fromSet.test(fi->second);
}
//===----------------------------------------------------------------------===//
// ClosureCloner
//===----------------------------------------------------------------------===//
namespace {
/// A SILCloner subclass which clones a closure function while converting
/// one or more captures from 'inout' (by-reference) to by-value.
class ClosureCloner : public SILClonerWithScopes<ClosureCloner> {
public:
friend class SILInstructionVisitor<ClosureCloner>;
friend class SILCloner<ClosureCloner>;
ClosureCloner(SILOptFunctionBuilder &funcBuilder, SILFunction *orig,
SerializedKind_t serialized, StringRef clonedName,
IndicesSet &promotableIndices, ResilienceExpansion expansion);
void populateCloned();
SILFunction *getCloned() { return &getBuilder().getFunction(); }
static SILFunction *
constructClonedFunction(SILOptFunctionBuilder &funcBuilder,
PartialApplyInst *pai, FunctionRefInst *fri,
IndicesSet &promotableIndices,
ResilienceExpansion resilienceExpansion);
private:
static SILFunction *initCloned(SILOptFunctionBuilder &funcBuilder,
SILFunction *orig, SerializedKind_t serialized,
StringRef clonedName,
IndicesSet &promotableIndices,
ResilienceExpansion expansion);
SILValue getProjectBoxMappedVal(SILValue operandValue);
void visitDebugValueInst(DebugValueInst *inst);
void visitDestroyValueInst(DestroyValueInst *inst);
void visitStructElementAddrInst(StructElementAddrInst *inst);
void visitLoadInst(LoadInst *inst);
void visitLoadBorrowInst(LoadBorrowInst *inst);
void visitEndBorrowInst(EndBorrowInst *inst);
void visitProjectBoxInst(ProjectBoxInst *inst);
void visitBeginAccessInst(BeginAccessInst *inst);
void visitEndAccessInst(EndAccessInst *inst);
ResilienceExpansion resilienceExpansion;
SILFunction *origF;
IndicesSet &promotableIndices;
llvm::DenseMap<SILArgument *, SILValue> boxArgumentMap;
llvm::DenseMap<ProjectBoxInst *, SILValue> projectBoxArgumentMap;
};
} // end anonymous namespace
ClosureCloner::ClosureCloner(SILOptFunctionBuilder &funcBuilder,
SILFunction *orig, SerializedKind_t serialized,
StringRef clonedName,
IndicesSet &promotableIndices,
ResilienceExpansion resilienceExpansion)
: SILClonerWithScopes<ClosureCloner>(
*initCloned(funcBuilder, orig, serialized, clonedName,
promotableIndices, resilienceExpansion)),
origF(orig), promotableIndices(promotableIndices) {
assert(orig->getDebugScope()->Parent != getCloned()->getDebugScope()->Parent);
}
/// Compute the SILParameterInfo list for the new cloned closure.
///
/// Our goal as a result of this transformation is to:
///
/// 1. Let through all arguments not related to a promotable box.
/// 2. Replace container box value arguments for the cloned closure with the
/// transformed address or value argument.
static void
computeNewArgInterfaceTypes(SILFunction *f, IndicesSet &promotableIndices,
SmallVectorImpl<SILParameterInfo> &outTys,
ResilienceExpansion expansion) {
auto fnConv = f->getConventions();
auto parameters = fnConv.funcTy->getParameters();
LLVM_DEBUG(llvm::dbgs() << "Preparing New Args!\n");
auto &types = f->getModule().Types;
// For each parameter in the old function...
for (unsigned index : indices(parameters)) {
auto ¶m = parameters[index];
// The PromotableIndices index is expressed as the argument index (num
// indirect result + param index). Add back the num indirect results to get
// the arg index when working with PromotableIndices.
unsigned argIndex = index + fnConv.getSILArgIndexOfFirstParam();
LLVM_DEBUG(llvm::dbgs()
<< "Index: " << index << "; PromotableIndices: "
<< (promotableIndices.count(argIndex) ? "yes" : "no")
<< " Param: ";
param.print(llvm::dbgs()));
if (!promotableIndices.count(argIndex)) {
outTys.push_back(param);
continue;
}
// Perform the proper conversions and then add it to the new parameter list
// for the type.
assert(!param.isFormalIndirect());
auto paramTy =
param.getSILStorageType(fnConv.silConv.getModule(), fnConv.funcTy,
TypeExpansionContext::minimal());
auto paramBoxTy = paramTy.castTo<SILBoxType>();
assert(paramBoxTy->getLayout()->getFields().size() == 1 &&
"promoting compound box not implemented yet");
auto paramBoxedTy =
getSILBoxFieldType(TypeExpansionContext(*f), paramBoxTy, types, 0);
assert(expansion == f->getResilienceExpansion());
auto ¶mTL = types.getTypeLowering(paramBoxedTy, *f);
ParameterConvention convention;
if (paramTL.isAddressOnly()) {
convention = ParameterConvention::Indirect_In;
} else if (paramTL.isTrivial()) {
convention = ParameterConvention::Direct_Unowned;
} else {
convention = param.isGuaranteed() ? ParameterConvention::Direct_Guaranteed
: ParameterConvention::Direct_Owned;
}
outTys.push_back(SILParameterInfo(paramBoxedTy.getASTType(), convention,
param.getOptions()));
}
}
static std::string getSpecializedName(SILFunction *f,
SerializedKind_t serialized,
IndicesSet &promotableIndices) {
auto p = Demangle::SpecializationPass::CapturePromotion;
Mangle::FunctionSignatureSpecializationMangler mangler(p, serialized, f);
auto fnConv = f->getConventions();
for (unsigned argIdx = 0, endIdx = fnConv.getNumSILArguments();
argIdx < endIdx; ++argIdx) {
if (!promotableIndices.count(argIdx))
continue;
mangler.setArgumentBoxToValue(argIdx);
}
return mangler.mangle();
}
/// Create the function corresponding to the clone of the original
/// closure with the signature modified to reflect promotable captures (which
/// are given by PromotableIndices, such that each entry in the set is the
/// index of the box containing the variable in the closure's argument list, and
/// the address of the box's contents is the argument immediately following each
/// box argument); does not actually clone the body of the function
///
/// *NOTE* PromotableIndices only contains the container value of the box, not
/// the address value.
SILFunction *
ClosureCloner::initCloned(SILOptFunctionBuilder &functionBuilder,
SILFunction *orig, SerializedKind_t serialized,
StringRef clonedName, IndicesSet &promotableIndices,
ResilienceExpansion resilienceExpansion) {
SILModule &mod = orig->getModule();
// Compute the arguments for our new function.
SmallVector<SILParameterInfo, 4> clonedInterfaceArgTys;
computeNewArgInterfaceTypes(orig, promotableIndices, clonedInterfaceArgTys,
resilienceExpansion);
SILFunctionType *origFTI = orig->getLoweredFunctionType();
// Create the thin function type for the cloned closure.
auto clonedTy = SILFunctionType::get(
origFTI->getInvocationGenericSignature(), origFTI->getExtInfo(),
origFTI->getCoroutineKind(), origFTI->getCalleeConvention(),
clonedInterfaceArgTys, origFTI->getYields(), origFTI->getResults(),
origFTI->getOptionalErrorResult(),
origFTI->getPatternSubstitutions(),
origFTI->getInvocationSubstitutions(),
mod.getASTContext(), origFTI->getWitnessMethodConformanceOrInvalid());
assert((orig->isTransparent() || orig->isBare() || orig->getLocation()) &&
"SILFunction missing location");
assert((orig->isTransparent() || orig->isBare() || orig->getDebugScope()) &&
"SILFunction missing DebugScope");
assert(!orig->isGlobalInit() && "Global initializer cannot be cloned");
auto *fn = functionBuilder.createFunction(
orig->getLinkage(), clonedName, clonedTy, orig->getGenericEnvironment(),
orig->getLocation(), orig->isBare(), IsNotTransparent, serialized,
IsNotDynamic, IsNotDistributed, IsNotRuntimeAccessible,
orig->getEntryCount(), orig->isThunk(), orig->getClassSubclassScope(),
orig->getInlineStrategy(), orig->getEffectsKind(), orig,
orig->getDebugScope());
for (auto &attr : orig->getSemanticsAttrs())
fn->addSemanticsAttr(attr);
return fn;
}
/// Populate the body of the cloned closure, modifying instructions as
/// necessary to take into consideration the promoted capture(s)
void ClosureCloner::populateCloned() {
SILFunction *cloned = getCloned();
// Create arguments for the entry block
SILBasicBlock *origEntryBB = &*origF->begin();
SILBasicBlock *clonedEntryBB = cloned->createBasicBlock();
getBuilder().setInsertionPoint(clonedEntryBB);
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(origEntryBB->getArguments().size());
unsigned argNo = 0;
auto ai = origEntryBB->args_begin(), ae = origEntryBB->args_end();
for (; ai != ae; ++argNo, ++ai) {
if (!promotableIndices.count(argNo)) {
// Simply create a new argument which copies the original argument
auto *mappedValue = clonedEntryBB->createFunctionArgument(
(*ai)->getType(), (*ai)->getDecl());
mappedValue->copyFlags(cast<SILFunctionArgument>(*ai));
entryArgs.push_back(mappedValue);
continue;
}
// Handle the case of a promoted capture argument.
auto boxTy = (*ai)->getType().castTo<SILBoxType>();
assert(boxTy->getLayout()->getFields().size() == 1 &&
"promoting compound box not implemented");
auto boxedTy = getSILBoxFieldType(TypeExpansionContext(*cloned), boxTy,
cloned->getModule().Types, 0)
.getObjectType();
auto *newArg =
clonedEntryBB->createFunctionArgument(boxedTy, (*ai)->getDecl());
newArg->copyFlags(cast<SILFunctionArgument>(*ai));
SILValue mappedValue = newArg;
// If SIL ownership is enabled, we need to perform a borrow here if we have
// a non-trivial value. We know that our value is not written to and it does
// not escape. The use of a borrow enforces this.
if (mappedValue->getOwnershipKind() != OwnershipKind::None) {
SILLocation loc(const_cast<ValueDecl *>((*ai)->getDecl()));
mappedValue = getBuilder().emitBeginBorrowOperation(loc, mappedValue);
}
entryArgs.push_back(mappedValue);
boxArgumentMap.insert(std::make_pair(*ai, mappedValue));
// Track the projections of the box.
for (auto *use : (*ai)->getUses()) {
if (auto *pbi = dyn_cast<ProjectBoxInst>(use->getUser())) {
projectBoxArgumentMap.insert(std::make_pair(pbi, mappedValue));
}
}
}
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
cloneFunctionBody(origF, clonedEntryBB, entryArgs);
}
SILFunction *ClosureCloner::constructClonedFunction(
SILOptFunctionBuilder &funcBuilder, PartialApplyInst *pai,
FunctionRefInst *fri, IndicesSet &promotableIndices,
ResilienceExpansion resilienceExpansion) {
SILFunction *f = pai->getFunction();
// Create the Cloned Name for the function.
SILFunction *origF = fri->getReferencedFunction();
SerializedKind_t serializedKind = f->getSerializedKind();
auto clonedName = getSpecializedName(origF, serializedKind, promotableIndices);
// If we already have such a cloned function in the module then just use it.
if (auto *prevF = f->getModule().lookUpFunction(clonedName)) {
assert(prevF->getSerializedKind() == serializedKind);
return prevF;
}
// Otherwise, create a new clone.
ClosureCloner cloner(funcBuilder, origF, serializedKind, clonedName,
promotableIndices, resilienceExpansion);
cloner.populateCloned();
return cloner.getCloned();
}
/// If this operand originates from a mapped ProjectBox, return the mapped
/// value. Otherwise return an invalid value.
SILValue ClosureCloner::getProjectBoxMappedVal(SILValue operandValue) {
if (auto *bai = dyn_cast<BeginAccessInst>(operandValue))
operandValue = bai->getSource();
if (auto *pbi = dyn_cast<ProjectBoxInst>(operandValue)) {
auto iter = projectBoxArgumentMap.find(pbi);
if (iter != projectBoxArgumentMap.end())
return iter->second;
}
return SILValue();
}
/// Handle a debug_value instruction during cloning of a closure;
/// if its operand is the promoted address argument then lower it to
/// another debug_value, otherwise it is handled normally.
void ClosureCloner::visitDebugValueInst(DebugValueInst *inst) {
if (inst->hasAddrVal())
if (SILValue value = getProjectBoxMappedVal(inst->getOperand())) {
getBuilder().setCurrentDebugScope(getOpScope(inst->getDebugScope()));
auto varInfo = *inst->getVarInfo();
if (varInfo.Scope)
varInfo.Scope = getOpScope(inst->getDebugScope());
getBuilder().createDebugValue(inst->getLoc(), value, varInfo);
return;
}
SILCloner<ClosureCloner>::visitDebugValueInst(inst);
}
/// Handle a destroy_value instruction during cloning of a closure; if it is a
/// destroy_value of a promoted box argument, then it is replaced with a
/// destroy_value of the new object type argument, otherwise it is handled
/// normally.
void ClosureCloner::visitDestroyValueInst(DestroyValueInst *inst) {
SILValue operand = inst->getOperand();
if (auto *arg = dyn_cast<SILArgument>(operand)) {
auto iter = boxArgumentMap.find(arg);
if (iter != boxArgumentMap.end()) {
// destroy_value of the box arguments get replaced with an end_borrow,
// destroy_value of the new object type argument.
SILFunction &f = getBuilder().getFunction();
auto &typeLowering = f.getTypeLowering(iter->second->getType());
SILBuilderWithPostProcess<ClosureCloner, 1> b(this, inst);
SILValue value = iter->second;
// We must have emitted a begin_borrow for any non-trivial value. Insert
// an end_borrow if so.
if (value->getOwnershipKind() != OwnershipKind::None) {
auto *bbi = cast<BeginBorrowInst>(value);
value = bbi->getOperand();
b.emitEndBorrowOperation(inst->getLoc(), bbi);
}
typeLowering.emitDestroyValue(b, inst->getLoc(), value);
return;
}
}
SILCloner<ClosureCloner>::visitDestroyValueInst(inst);
}
/// Handle an end_borrow instruction during cloning of a closure; if it is a
/// end_borrow from a load_borrow of a promoted box argument, then it is
/// deleted, otherwise it is handled normally.
void ClosureCloner::visitEndBorrowInst(EndBorrowInst *inst) {
SILValue operand = inst->getOperand();
if (auto *lbi = dyn_cast<LoadBorrowInst>(operand)) {
SILValue op = lbi->getOperand();
// When we check if we can do this, we only need to look through a single
// struct_element_addr since when checking if this is safe, we only look
// through a single struct_element_addr.
if (auto *sea = dyn_cast<StructElementAddrInst>(op))
op = sea->getOperand();
// If after optionally looking through a gep, we have our project_box, just
// eliminate the end_borrow.
if (getProjectBoxMappedVal(op))
return;
}
SILCloner<ClosureCloner>::visitEndBorrowInst(inst);
}
/// Handle a struct_element_addr instruction during cloning of a closure.
///
/// If its operand is the promoted address argument then ignore it, otherwise it
/// is handled normally.
void ClosureCloner::visitStructElementAddrInst(StructElementAddrInst *seai) {
if (getProjectBoxMappedVal(seai->getOperand()))
return;
SILCloner<ClosureCloner>::visitStructElementAddrInst(seai);
}
/// project_box of captured boxes can be eliminated.
void ClosureCloner::visitProjectBoxInst(ProjectBoxInst *pbi) {
if (auto *arg = dyn_cast<SILArgument>(pbi->getOperand()))
if (boxArgumentMap.count(arg))
return;
SILCloner<ClosureCloner>::visitProjectBoxInst(pbi);
}
/// If its operand is the promoted address argument then ignore it, otherwise it
/// is handled normally.
void ClosureCloner::visitBeginAccessInst(BeginAccessInst *bai) {
if (getProjectBoxMappedVal(bai->getSource()))
return;
SILCloner<ClosureCloner>::visitBeginAccessInst(bai);
}
/// If its operand is the promoted address argument then ignore it, otherwise it
/// is handled normally.
void ClosureCloner::visitEndAccessInst(EndAccessInst *eai) {
if (getProjectBoxMappedVal(eai->getBeginAccess()))
return;
SILCloner<ClosureCloner>::visitEndAccessInst(eai);
}
/// Handle a load_borrow instruction during cloning of a closure.
///
/// The two relevant cases are a direct load from a promoted address argument or
/// a load of a struct_element_addr of a promoted address argument.
void ClosureCloner::visitLoadBorrowInst(LoadBorrowInst *lbi) {
getBuilder().setCurrentDebugScope(getOpScope(lbi->getDebugScope()));
assert(lbi->getFunction()->hasOwnership() &&
"We should only see a load borrow in ownership qualified SIL");
if (SILValue value = getProjectBoxMappedVal(lbi->getOperand())) {
// Loads of the address argument get eliminated completely; the uses of
// the loads get mapped to uses of the new object type argument.
//
// We assume that the value is already guaranteed.
assert(
value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed) &&
"Expected argument value to be guaranteed");
recordFoldedValue(lbi, value);
return;
}
auto *seai = dyn_cast<StructElementAddrInst>(lbi->getOperand());
if (!seai) {
SILCloner<ClosureCloner>::visitLoadBorrowInst(lbi);
return;
}
if (SILValue value = getProjectBoxMappedVal(seai->getOperand())) {
// Loads of a struct_element_addr of an argument get replaced with a
// struct_extract of the new passed in value. The value should be borrowed
// already, so we can just extract the value.
assert(
!getBuilder().getFunction().hasOwnership() ||
value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed));
value = getBuilder().emitStructExtract(lbi->getLoc(), value,
seai->getField(), lbi->getType());
recordFoldedValue(lbi, value);
return;
}
SILCloner<ClosureCloner>::visitLoadBorrowInst(lbi);
return;
}
/// Handle a load instruction during cloning of a closure.
///
/// The two relevant cases are a direct load from a promoted address argument or
/// a load of a struct_element_addr of a promoted address argument.
void ClosureCloner::visitLoadInst(LoadInst *li) {
getBuilder().setCurrentDebugScope(getOpScope(li->getDebugScope()));
if (SILValue value = getProjectBoxMappedVal(li->getOperand())) {
// Loads of the address argument get eliminated completely; the uses of
// the loads get mapped to uses of the new object type argument.
//
// If we are compiling with SIL ownership, we need to take different
// behaviors depending on the type of load. Specifically, if we have a
// load [copy], then we need to add a copy_value here. If we have a take
// or trivial, we just propagate the value through.
if (li->getFunction()->hasOwnership() &&
li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
value = getBuilder().createCopyValue(li->getLoc(), value);
}
recordFoldedValue(li, value);
return;
}
auto *seai = dyn_cast<StructElementAddrInst>(li->getOperand());
if (!seai) {
SILCloner<ClosureCloner>::visitLoadInst(li);
return;
}
if (SILValue value = getProjectBoxMappedVal(seai->getOperand())) {
// Loads of a struct_element_addr of an argument get replaced with a
// struct_extract of the new passed in value. The value should be borrowed
// already, so we can just extract the value.
assert(
!getBuilder().getFunction().hasOwnership() ||
value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed));
value = getBuilder().emitStructExtract(li->getLoc(), value,
seai->getField(), li->getType());
// If we were performing a load [copy], then we need to a perform a copy
// here since when cloning, we do not eliminate the destroy on the copied
// value.
if (li->getFunction()->hasOwnership() &&
li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
value = getBuilder().createCopyValue(li->getLoc(), value);
}
recordFoldedValue(li, value);
return;
}
SILCloner<ClosureCloner>::visitLoadInst(li);
}
//===----------------------------------------------------------------------===//
// EscapeMutationScanningState
//===----------------------------------------------------------------------===//
namespace {
struct EscapeMutationScanningState {
/// The list of mutations in the partial_apply caller that we found.
SmallVector<Operand *, 8> accumulatedMutations;
/// The list of escapes in the partial_apply caller/callee of the box that we
/// found.
SmallVector<Operand *, 8> accumulatedEscapes;
/// A multimap that maps partial applies to the set of operands in the partial
/// applies referenced function that the pass has identified as being the use
/// that caused the partial apply to capture our box.
///
/// We use a frozen multi-map since our algorithm first accumulates this info
/// and then wants to use it, perfect for the 2-stage frozen multi map.
SmallFrozenMultiMap<PartialApplyInst *, Operand *, 16>
accumulatedCaptureCausingUses;
/// A flag that we use to ensure that we only ever see 1 project_box on an
/// alloc_box.
bool sawProjectBoxInst;
/// The global partial_apply -> index map.
llvm::DenseMap<PartialApplyInst *, unsigned> &globalIndexMap;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Partial Apply BoxArg Mutation/Escape/Capture Use Analysis
//===----------------------------------------------------------------------===//
static SILArgument *getBoxFromIndex(SILFunction *f, unsigned index) {
assert(f->isDefinition() && "Expected definition not external declaration!");
auto &entry = f->front();
return entry.getArgument(index);
}
static bool isNonMutatingLoad(SILInstruction *inst) {
if (isa<LoadBorrowInst>(inst))
return true;
auto *li = dyn_cast<LoadInst>(inst);
if (!li)
return false;
return li->getOwnershipQualifier() != LoadOwnershipQualifier::Take;
}
/// Given a partial_apply instruction and the argument index into its callee's
/// argument list of a box argument (which is followed by an argument for the
/// address of the box's contents), return true if this box has mutating
/// captures. Return false otherwise. All of the mutating captures that we find
/// are placed into \p accumulatedMutatingUses.
static bool
getPartialApplyArgMutationsAndEscapes(PartialApplyInst *pai,
SILArgument *boxArg,
EscapeMutationScanningState &state) {
SmallVector<ProjectBoxInst *, 2> projectBoxInsts;
// Conservatively do not allow any use of the box argument other than a
// strong_release or projection, since this is the pattern expected from
// SILGen.
SmallVector<Operand *, 32> incrementalEscapes;
SmallVector<Operand *, 32> incrementalCaptureCausingUses;
for (auto *use : boxArg->getUses()) {
if (isa<StrongReleaseInst>(use->getUser()) ||
isa<DestroyValueInst>(use->getUser()))
continue;
if (auto *pbi = dyn_cast<ProjectBoxInst>(use->getUser())) {
projectBoxInsts.push_back(pbi);
continue;
}
incrementalEscapes.push_back(use);
}
// Only allow loads of projections, either directly or via
// struct_element_addr instructions.
//
// TODO: This seems overly limited. Why not projections of tuples and other
// stuff? Also, why not recursive struct elements? This should be a helper
// function that mirrors isNonEscapingUse.
auto checkIfAddrUseMutating = [&](Operand *addrUse) -> bool {
unsigned initSize = incrementalEscapes.size();
auto *addrUser = addrUse->getUser();
if (auto *seai = dyn_cast<StructElementAddrInst>(addrUser)) {
for (auto *seaiUse : seai->getUses()) {
if (isNonMutatingLoad(seaiUse->getUser())) {
incrementalCaptureCausingUses.push_back(seaiUse);
} else {
incrementalEscapes.push_back(seaiUse);
}
}
return incrementalEscapes.size() != initSize;
}
if (isNonMutatingLoad(addrUser)) {
incrementalCaptureCausingUses.push_back(addrUse);
return false;
}
if (DebugValueInst::hasAddrVal(addrUser) ||
isa<MarkFunctionEscapeInst>(addrUser) || isa<EndAccessInst>(addrUser)) {
return false;
}
incrementalEscapes.push_back(addrUse);
return true;
};
for (auto *pbi : projectBoxInsts) {
for (auto *use : pbi->getUses()) {
if (auto *bai = dyn_cast<BeginAccessInst>(use->getUser())) {
for (auto *accessUseOper : bai->getUses()) {
checkIfAddrUseMutating(accessUseOper);
}
continue;
}
checkIfAddrUseMutating(use);
}
}
auto &accCaptureCausingUses = state.accumulatedCaptureCausingUses;
while (!incrementalCaptureCausingUses.empty())
accCaptureCausingUses.insert(pai,
incrementalCaptureCausingUses.pop_back_val());
if (incrementalEscapes.empty())
return false;
while (!incrementalEscapes.empty())
state.accumulatedEscapes.push_back(incrementalEscapes.pop_back_val());
return true;
}
bool isPartialApplyNonEscapingUser(Operand *currentOp, PartialApplyInst *pai,
EscapeMutationScanningState &state) {
LLVM_DEBUG(llvm::dbgs() << " Found partial: " << *pai);
unsigned opNo = currentOp->getOperandNumber();
assert(opNo != 0 && "Alloc box used as callee of partial apply?");
// If we've already seen this partial apply, then it means the same alloc box
// is being captured twice by the same closure, which is odd and unexpected:
// bail instead of trying to handle this case.
if (state.globalIndexMap.count(pai)) {
// TODO: Is it correct to treat this like an escape? We are just currently
// flagging all failures as warnings.
LLVM_DEBUG(llvm::dbgs() << " FAIL! Already seen.\n");
state.accumulatedEscapes.push_back(currentOp);
return false;
}
SILModule &mod = pai->getModule();
SILFunction *f = pai->getFunction();
auto closureType = pai->getType().castTo<SILFunctionType>();
SILFunctionConventions closureConv(closureType, mod);
// Calculate the index into the closure's argument list of the captured
// box pointer (the captured address is always the immediately following
// index so is not stored separately);
unsigned index = opNo - 1 + closureConv.getNumSILArguments();
auto *fn = pai->getReferencedFunctionOrNull();
// It is not safe to look at the content of dynamically replaceable functions
// since this pass looks at the content of Fn.
if (!fn || !fn->isDefinition() || fn->isDynamicallyReplaceable()) {
LLVM_DEBUG(llvm::dbgs() << " FAIL! Not a direct function definition "
"reference.\n");
state.accumulatedEscapes.push_back(currentOp);
return false;
}
SILArgument *boxArg = getBoxFromIndex(fn, index);
// For now, return false is the address argument is an address-only type,
// since we currently handle loadable types only.
// TODO: handle address-only types
// FIXME: Expansion
auto boxTy = boxArg->getType().castTo<SILBoxType>();
assert(boxTy->getLayout()->getFields().size() == 1 &&
"promoting compound box not implemented yet");
if (getSILBoxFieldType(TypeExpansionContext(*fn), boxTy, mod.Types, 0)
.isAddressOnly(*f)) {
LLVM_DEBUG(llvm::dbgs() << " FAIL! Box is an address only "
"argument!\n");
state.accumulatedEscapes.push_back(currentOp);
return false;
}
// Verify that this closure is known not to mutate the captured value; if
// it does, then conservatively refuse to promote any captures of this
// value.
if (getPartialApplyArgMutationsAndEscapes(pai, boxArg, state)) {
LLVM_DEBUG(llvm::dbgs() << " FAIL: Have a mutation or escape of a "
"partial apply arg?!\n");
return false;
}
// Record the index and continue.
LLVM_DEBUG(llvm::dbgs()
<< " Partial apply does not escape, may be optimizable!\n");
LLVM_DEBUG(llvm::dbgs() << " Index: " << index << "\n");
state.globalIndexMap.insert(std::make_pair(pai, index));
return true;
}
//===----------------------------------------------------------------------===//
// Project Box Escaping Use Analysis
//===----------------------------------------------------------------------===//
namespace {
class NonEscapingUserVisitor
: public SILInstructionVisitor<NonEscapingUserVisitor, bool> {
SmallVector<Operand *, 32> worklist;
SmallVectorImpl<Operand *> &accumulatedMutations;
SmallVectorImpl<Operand *> &accumulatedEscapes;
NullablePtr<Operand> currentOp;
public:
NonEscapingUserVisitor(Operand *initialOperand,
SmallVectorImpl<Operand *> &accumulatedMutations,
SmallVectorImpl<Operand *> &accumulatedEscapes)
: worklist(), accumulatedMutations(accumulatedMutations),
accumulatedEscapes(accumulatedEscapes), currentOp() {
worklist.push_back(initialOperand);
}
NonEscapingUserVisitor(const NonEscapingUserVisitor &) = delete;
NonEscapingUserVisitor &operator=(const NonEscapingUserVisitor &) = delete;
NonEscapingUserVisitor(NonEscapingUserVisitor &&) = delete;
NonEscapingUserVisitor &operator=(NonEscapingUserVisitor &&) = delete;
private:
void markCurrentOpAsMutation() {
accumulatedMutations.push_back(currentOp.get());
}
void markCurrentOpAsEscape() {
accumulatedEscapes.push_back(currentOp.get());
}
public:
bool compute() {
while (!worklist.empty()) {
currentOp = worklist.pop_back_val();
SILInstruction *user = currentOp.get()->getUser();
// Ignore type dependent operands.
if (user->isTypeDependentOperand(*(currentOp.get())))
continue;
// Then visit the specific user. This routine returns true if the value
// does not escape. In such a case, continue.
if (visit(user)) {
continue;
}
return false;
}
return true;
}
/// Visit a random value base.
///
/// These are considered to be escapes.
bool visitSILInstruction(SILInstruction *inst) {
LLVM_DEBUG(llvm::dbgs()
<< " FAIL! Have unknown escaping user: " << *inst);
markCurrentOpAsEscape();
return false;
}
#define ALWAYS_NON_ESCAPING_INST(INST) \
bool visit##INST##Inst(INST##Inst *) { return true; }
// Marking the boxed value as escaping is OK. It's just a DI annotation.
ALWAYS_NON_ESCAPING_INST(MarkFunctionEscape)
// These remaining instructions are ok and don't count as mutations.
ALWAYS_NON_ESCAPING_INST(StrongRetain)
ALWAYS_NON_ESCAPING_INST(Load)
ALWAYS_NON_ESCAPING_INST(StrongRelease)
ALWAYS_NON_ESCAPING_INST(DestroyValue)
ALWAYS_NON_ESCAPING_INST(EndBorrow)
#undef ALWAYS_NON_ESCAPING_INST
bool visitDeallocBoxInst(DeallocBoxInst *dbi) {
markCurrentOpAsMutation();
return true;
}
bool visitEndAccessInst(EndAccessInst *) { return true; }
bool visitApplyInst(ApplyInst *ai) {
auto argIndex = currentOp.get()->getOperandNumber() - 1;
SILFunctionConventions substConv(ai->getSubstCalleeType(), ai->getModule());
auto convention = substConv.getSILArgumentConvention(argIndex);
if (!convention.isIndirectConvention()) {
LLVM_DEBUG(llvm::dbgs()
<< " FAIL! Found non indirect apply user: " << *ai);
markCurrentOpAsEscape();
return false;
}
markCurrentOpAsMutation();
return true;
}
/// Add the Operands of a transitive use instruction to the worklist.
void addUsesToWorklist(SingleValueInstruction *svi) {
for (auto *use : svi->getUses()) {
worklist.push_back(use);
}
}
/// This is separate from the normal copy value handling since we are matching
/// the old behavior of non-top-level uses not being able to have partial
/// apply and project box uses.
struct detail {
enum IsMutating_t {
IsNotMutating = 0,
IsMutating = 1,
};
};
#define RECURSIVE_INST_VISITOR(MUTATING, INST) \
bool visit##INST##Inst(INST##Inst *i) { \
if (bool(detail::MUTATING)) { \
markCurrentOpAsMutation(); \
} \
addUsesToWorklist(i); \
return true; \
}
// *NOTE* It is important that we do not have copy_value here. The reason why
// is that we only want to handle copy_value directly of the alloc_box without
// going through any other instructions. This protects our optimization later
// on.
//
// Additionally, copy_value is not a valid use of any of the instructions that
// we allow through.
//
// TODO: Can we ever hit copy_values here? If we do, we may be missing
// opportunities.
RECURSIVE_INST_VISITOR(IsNotMutating, StructElementAddr)
RECURSIVE_INST_VISITOR(IsNotMutating, TupleElementAddr)
RECURSIVE_INST_VISITOR(IsNotMutating, InitEnumDataAddr)
RECURSIVE_INST_VISITOR(IsNotMutating, OpenExistentialAddr)
// begin_access may signify a modification, but is considered nonmutating
// because we will peek though it's uses to find the actual mutation.
RECURSIVE_INST_VISITOR(IsNotMutating, BeginAccess)
RECURSIVE_INST_VISITOR(IsMutating, UncheckedTakeEnumDataAddr)
#undef RECURSIVE_INST_VISITOR
bool visitCopyAddrInst(CopyAddrInst *cai) {
if (currentOp.get()->getOperandNumber() == CopyAddrInst::Dest ||
cai->isTakeOfSrc())
markCurrentOpAsMutation();
return true;
}
bool visitMarkUnresolvedMoveAddrInst(MarkUnresolvedMoveAddrInst *mai) {
if (currentOp.get()->getOperandNumber() == MarkUnresolvedMoveAddrInst::Dest)
markCurrentOpAsMutation();
return true;
}
bool visitStoreInst(StoreInst *si) {
if (currentOp.get()->getOperandNumber() != 1) {
LLVM_DEBUG(llvm::dbgs() << " FAIL! Found store of pointer: " << *si);
markCurrentOpAsEscape();
return false;
}
markCurrentOpAsMutation();
return true;
}
bool visitAssignInst(AssignInst *ai) {
if (currentOp.get()->getOperandNumber() != 1) {
LLVM_DEBUG(llvm::dbgs() << " FAIL! Found store of pointer: " << *ai);
markCurrentOpAsEscape();
return false;
}
markCurrentOpAsMutation();
return true;
}
};
} // end anonymous namespace
/// Given a use of an alloc_box instruction, return true if the use
/// definitely does not allow the box to escape; also, if the use is an
/// instruction which possibly mutates the contents of the box, then add it to
/// the Mutations vector.
static bool isNonEscapingUse(Operand *initialOp,
EscapeMutationScanningState &state) {
return NonEscapingUserVisitor(initialOp, state.accumulatedMutations,
state.accumulatedEscapes)
.compute();
}
static bool isProjectBoxNonEscapingUse(ProjectBoxInst *pbi,
EscapeMutationScanningState &state) {
LLVM_DEBUG(llvm::dbgs() << " Found project box: " << *pbi);
for (Operand *addrOp : pbi->getUses()) {
if (!isNonEscapingUse(addrOp, state)) {
LLVM_DEBUG(llvm::dbgs() << " FAIL! Has escaping user of addr:"
<< *addrOp->getUser());
return false;
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Top Level AllocBox Escape/Mutation Analysis
//===----------------------------------------------------------------------===//
static bool findEscapeOrMutationUses(Operand *op,
EscapeMutationScanningState &state) {
SILInstruction *user = op->getUser();
if (auto *pai = dyn_cast<PartialApplyInst>(user)) {
return !isPartialApplyNonEscapingUser(op, pai, state);
}
// A mark_dependence user on a partial_apply is safe.
if (auto *userMDI = dyn_cast<MarkDependenceInst>(user)) {
if (userMDI->getBase() == op->get()) {
auto parent = userMDI->getValue();
while (auto *parentMDI = dyn_cast<MarkDependenceInst>(parent)) {
parent = parentMDI->getValue();
}
if (isa<PartialApplyInst>(parent))
return false;
state.accumulatedEscapes.push_back(
&userMDI->getOperandRef(MarkDependenceInst::Value));
return true;
}
}
if (auto *pbi = dyn_cast<ProjectBoxInst>(user)) {
// It is assumed in later code that we will only have 1 project_box. This
// can be seen since there is no code for reasoning about multiple
// boxes. Just put in the restriction so we are consistent.
if (state.sawProjectBoxInst)
return true;
state.sawProjectBoxInst = true;
return !isProjectBoxNonEscapingUse(pbi, state);
}
// Given a top level copy value use or mark_uninitialized, check all of its
// user operands as if they were apart of the use list of the base operand.
//
// This is a separate code path from the non escaping user visitor check since
// we want to be more conservative around non-top level copies (i.e. a copy
// derived from a projection like instruction). In fact such a thing may not
// even make any sense!
if (isa<CopyValueInst>(user) || isa<MarkUninitializedInst>(user) ||
isa<BeginBorrowInst>(user)) {
bool foundSomeMutations = false;
for (auto *use : cast<SingleValueInstruction>(user)->getUses()) {
foundSomeMutations |= findEscapeOrMutationUses(use, state);
}
return foundSomeMutations;
}
// Verify that this use does not otherwise allow the alloc_box to
// escape.
return isNonEscapingUse(op, state);
}
/// We found a capture of \p abi in concurrent closure \p pai that we can not
/// promote to a by value capture. Emit a nice warning (FIXME: error) to warn
/// the user and provide the following information in the compiler feedback:
///
/// 1. The source loc where the variable's box is written to.
///
/// 2. The source loc of the captured variable's declaration.
///
/// 3. The source loc of the start of the concurrent closure that caused the
/// variable to be captured.
///
/// 4. All places in the concurrent closure that triggered the box's
/// capture. NOTE: For objects these are load points. For address only things
/// it is still open for debate at this point.
static void diagnoseInvalidCaptureByConcurrentClosure(
AllocBoxInst *abi, PartialApplyInst *pai,
const EscapeMutationScanningState &state, SILInstruction *mutatingUser) {
auto captureCausingUses = state.accumulatedCaptureCausingUses.find(pai);
if (!captureCausingUses) {
llvm::errs() << "Didn't find capture causing use of partial apply: "
<< *pai;
llvm::errs() << "Original Func: " << pai->getFunction()->getName() << '\n';
llvm::errs() << "Partial Applied Func: "
<< pai->getReferencedFunctionOrNull()->getName() << '\n';
llvm::report_fatal_error("standard compiler error");
}
auto &astCtx = pai->getFunction()->getASTContext();
auto &de = astCtx.Diags;
auto varInfo = abi->getVarInfo();
StringRef name = "<unknown>";
if (varInfo) {
name = varInfo->Name;
}
de.diagnoseWithNotes(
de.diagnose(mutatingUser->getLoc().getSourceLoc(),
diag::capturepromotion_concurrentcapture_mutation, name),
[&]() {
de.diagnose(abi->getLoc().getSourceLoc(),
diag::capturepromotion_variable_defined_here);
de.diagnose(pai->getLoc().getSourceLoc(),
diag::capturepromotion_concurrentcapture_closure_here);
for (auto *use : *captureCausingUses) {
de.diagnose(
use->getUser()->getLoc().getSourceLoc(),
diag::capturepromotion_concurrentcapture_capturinguse_here);
}
});
}
/// Examine an alloc_box instruction, returning true if at least one
/// capture of the boxed variable is promotable. If so, then the pair of the
/// partial_apply instruction and the index of the box argument in the closure's
/// argument list is added to IM.
static bool
examineAllocBoxInst(AllocBoxInst *abi, ReachabilityInfo &ri,
llvm::DenseMap<PartialApplyInst *, unsigned> &im) {
LLVM_DEBUG(llvm::dbgs() << "Visiting alloc box: " << *abi);
EscapeMutationScanningState state{{}, {}, {}, false, im};
// Scan the box for escaping or mutating uses.
for (auto *use : abi->getUses()) {
findEscapeOrMutationUses(use, state);
}
if (!state.accumulatedEscapes.empty()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found escaping uses! Can not optimize this alloc box?!\n");
while (!state.accumulatedEscapes.empty()) {
auto *escapingUse = state.accumulatedEscapes.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Escaping use: " << *escapingUse->getUser());
}
return false;
}
state.accumulatedCaptureCausingUses.setFrozen();
LLVM_DEBUG(llvm::dbgs() << "We can optimize this alloc box!\n");
// Helper lambda function to determine if instruction b is strictly after
// instruction a, assuming both are in the same basic block.
auto isAfter = [](SILInstruction *a, SILInstruction *b) {
auto fIter = b->getParent()->begin();
auto bIter = b->getIterator();
auto aIter = a->getIterator();
while (bIter != fIter) {
--bIter;
if (aIter == bIter)
return true;
}
return false;
};
LLVM_DEBUG(llvm::dbgs()
<< "Checking for any mutations that invalidate captures...\n");
// Loop over all mutations to possibly invalidate captures.
for (auto *use : state.accumulatedMutations) {
auto iter = im.begin();
while (iter != im.end()) {
auto *user = use->getUser();
auto *pai = iter->first;
// The mutation invalidates a capture if it occurs in a block reachable
// from the block the partial_apply is in, or if it is in the same
// block is after the partial_apply.
if (ri.isReachable(pai->getParent(), user->getParent()) ||
(pai->getParent() == user->getParent() && isAfter(pai, user))) {
// If our partial apply is concurrent and we can not promote this, emit
// a warning that shows the variable, where the variable is captured,
// and the mutation that we found.
if (pai->getFunctionType()->isSendable()) {
diagnoseInvalidCaptureByConcurrentClosure(abi, pai, state, user);
}
LLVM_DEBUG(llvm::dbgs() << " Invalidating: " << *pai);
LLVM_DEBUG(llvm::dbgs() << " Because of user: " << *user);
auto prev = iter++;
im.erase(prev);
continue;
}
++iter;
}
// If there are no valid captures left, then stop.
if (im.empty()) {
LLVM_DEBUG(llvm::dbgs() << " Ran out of valid captures... bailing!\n");
return false;
}
}
LLVM_DEBUG(llvm::dbgs() << " We can optimize this box!\n");
return true;
}
/// For an alloc_box or iterated copy_value alloc_box, get or create the
/// project_box for the copy or original alloc_box.
///
/// There are two possible case here:
///
/// 1. It could be an alloc box.
/// 2. It could be an iterated copy_value from an alloc_box.
///
/// Some important constraints from our initial safety condition checks:
///
/// 1. We only see a project_box paired with an alloc_box. e.x.:
///
/// (project_box (alloc_box)).
///
/// 2. We only see a mark_uninitialized when paired with an (alloc_box,
/// project_box). e.x.:
///
/// (project_box (mark_uninitialized (alloc_box)))
///
/// The asserts are to make sure that if the initial safety condition check
/// is changed, this code is changed as well.
static SILValue getOrCreateProjectBoxHelper(SILValue partialOperand) {
// If we have a copy_value, just create a project_box on the copy and return.
if (auto *cvi = dyn_cast<CopyValueInst>(partialOperand)) {
SILBuilderWithScope b(std::next(cvi->getIterator()));
return b.createProjectBox(cvi->getLoc(), cvi, 0);
}
// Otherwise, handle the alloc_box case. If we have a mark_uninitialized on
// the box, we know that we will have a project_box of that value due to SIL
// verifier invariants.
SingleValueInstruction *box = cast<AllocBoxInst>(partialOperand);
if (auto *mui = box->getSingleUserOfType<MarkUninitializedInst>()) {
if (auto *pbi = mui->getSingleUserOfType<ProjectBoxInst>()) {
return pbi;
}
}
// Otherwise, create a new project_box.
SILBuilderWithScope b(std::next(box->getIterator()));
return b.createProjectBox(box->getLoc(), box, 0);
}
//===----------------------------------------------------------------------===//
// Top Level Processing of Partial Applies with AllocBox Args
//===----------------------------------------------------------------------===//
/// Change the base in mark_dependence.
static void
mapMarkDependenceArguments(SingleValueInstruction *root,
llvm::DenseMap<SILValue, SILValue> &map,
SmallVectorImpl<SILInstruction *> &toDelete) {
SmallVector<Operand *, 16> useWorklist(root->getUses());
for (auto *use : useWorklist) {
if (auto *mdi = dyn_cast<MarkDependenceInst>(use->getUser())) {
mapMarkDependenceArguments(mdi, map, toDelete);
auto iter = map.find(mdi->getBase());
if (iter != map.end()) {
mdi->setBase(iter->second);
}
// Remove mark_dependence on trivial values.
if (mdi->getBase()->getType().isTrivial(*mdi->getFunction())) {
mdi->replaceAllUsesWith(mdi->getValue());
toDelete.push_back(mdi);
}
}
}
}
/// Given a partial_apply instruction and a set of promotable indices,
/// clone the closure with the promoted captures and replace the partial_apply
/// with a partial_apply of the new closure, fixing up reference counting as
/// necessary. Also, if the closure is cloned, the cloned function is added to
/// the worklist.
static SILFunction *
processPartialApplyInst(SILOptFunctionBuilder &funcBuilder,
PartialApplyInst *pai, IndicesSet &promotableIndices,
SmallVectorImpl<SILFunction *> &worklist) {
SILFunction *f = pai->getFunction();
SILModule &mod = pai->getModule();
auto *fri = dyn_cast<FunctionRefInst>(pai->getCallee());
// Clone the closure with the given promoted captures.
SILFunction *clonedFn = ClosureCloner::constructClonedFunction(
funcBuilder, pai, fri, promotableIndices, f->getResilienceExpansion());
worklist.push_back(clonedFn);
// Mark the original partial apply function as deletable if it doesn't have
// uses later.
fri->getReferencedFunction()->addSemanticsAttr(semantics::DELETE_IF_UNUSED);
// Initialize a SILBuilder and create a function_ref referencing the cloned
// closure.
SILBuilderWithScope builder(pai);
SILValue fnVal = builder.createFunctionRef(pai->getLoc(), clonedFn);
// Populate the argument list for a new partial_apply instruction, taking into
// consideration any captures.
auto calleeFunctionTy = pai->getCallee()->getType().castTo<SILFunctionType>();
auto substCalleeFunctionTy = calleeFunctionTy;
if (pai->hasSubstitutions())
substCalleeFunctionTy = calleeFunctionTy->substGenericArgs(
mod, pai->getSubstitutionMap(), TypeExpansionContext(*f));
SILFunctionConventions calleeConv(substCalleeFunctionTy, mod);
auto calleePInfo = substCalleeFunctionTy->getParameters();
SILFunctionConventions paConv(pai->getType().castTo<SILFunctionType>(), mod);
unsigned firstIndex = paConv.getNumSILArguments();
unsigned opNo = 1;
unsigned opCount = pai->getNumOperands() - pai->getNumTypeDependentOperands();
SmallVector<SILValue, 16> args;
auto numIndirectResults = calleeConv.getNumIndirectSILResults();
llvm::DenseMap<SILValue, SILValue> capturedMap;
llvm::SmallSet<SILValue, 16> newCaptures;
for (; opNo != opCount; ++opNo) {
unsigned index = opNo - 1 + firstIndex;
if (!promotableIndices.count(index)) {
args.push_back(pai->getOperand(opNo));
continue;
}
// First the grab the box and projected_box for the box value.
//
// *NOTE* Box may be a copy_value.
SILValue box = pai->getOperand(opNo);
SILValue addr = getOrCreateProjectBoxHelper(box);
auto &typeLowering = f->getTypeLowering(addr->getType());
auto newCaptured =
typeLowering.emitLoadOfCopy(builder, pai->getLoc(), addr, IsNotTake);
args.push_back(newCaptured);
capturedMap[box] = newCaptured;
newCaptures.insert(newCaptured);
// A partial_apply [stack] does not own the captured argument but we must
// destroy the projected object. We will do so after having created the new
// partial_apply below.
if (pai->isOnStack())
continue;
// Cleanup the captured argument.
//
// *NOTE* If we initially had a box, then this is on the actual
// alloc_box. Otherwise, it is on the specific iterated copy_value that we
// started with.
SILParameterInfo cpInfo = calleePInfo[index - numIndirectResults];
assert(calleeConv.getSILType(cpInfo, builder.getTypeExpansionContext()) ==
box->getType() &&
"SILType of parameter info does not match type of parameter");
releasePartialApplyCapturedArg(builder, pai->getLoc(), box, cpInfo);
++NumCapturesPromoted;
}
// Create a new partial apply with the new arguments.
auto *newPAI = builder.createPartialApply(
pai->getLoc(), fnVal, pai->getSubstitutionMap(), args,
pai->getCalleeConvention(), pai->getResultIsolation(),
pai->isOnStack());
pai->replaceAllUsesWith(newPAI);
pai->eraseFromParent();
if (fri->use_empty()) {
fri->eraseFromParent();
// TODO: If this is the last use of the closure, and if it has internal
// linkage, we should remove it from the SILModule now.
}
if (newPAI->isOnStack()) {
// Insert destroy's of new captured arguments.
for (auto *use : newPAI->getUses()) {
if (auto *dsi = dyn_cast<DeallocStackInst>(use->getUser())) {
builder.setInsertionPoint(std::next(SILBasicBlock::iterator(dsi)));
insertDestroyOfCapturedArguments(
newPAI, builder,
[&](SILValue arg) -> SILValue {
return newCaptures.count(arg) ? arg : SILValue();
});
}
}
// Map the mark dependence arguments.
SmallVector<SILInstruction *, 16> toDelete;
mapMarkDependenceArguments(newPAI, capturedMap, toDelete);
for (auto *inst : toDelete)
inst->eraseFromParent();
}
return clonedFn;
}
static void constructMapFromPartialApplyToPromotableIndices(
SILFunction *f, PartialApplyIndicesMap &partialApplyIndicesAccumulator) {
ReachabilityInfo reachabilityInfo(f);
// This is a map from each partial apply to a single index which is a
// promotable box variable for the alloc_box currently being considered.
llvm::DenseMap<PartialApplyInst *, unsigned> incrementalIndexMap;
// Consider all alloc_box instructions in the function.
for (auto &block : *f) {
for (auto &inst : block) {
if (auto *abi = dyn_cast<AllocBoxInst>(&inst)) {
incrementalIndexMap.clear();
if (examineAllocBoxInst(abi, reachabilityInfo, incrementalIndexMap)) {
// If we are able to promote at least one capture of the alloc_box,
// then add the promotable index to the main map.
for (auto &indexPair : incrementalIndexMap)
partialApplyIndicesAccumulator[indexPair.first].insert(
indexPair.second);
}
LLVM_DEBUG(llvm::dbgs() << "\n");
}
}
}
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
namespace {
class CapturePromotionPass : public SILModuleTransform {
/// The entry point to the transformation.
void run() override {
SmallVector<SILFunction *, 128> worklist;
for (auto &f : *getModule()) {
if (f.wasDeserializedCanonical() || !f.hasOwnership())
continue;
processFunction(&f, worklist);
}
while (!worklist.empty()) {
auto *f = worklist.pop_back_val();
if (!f->hasOwnership())
continue;
processFunction(f, worklist);
}
}
void processFunction(SILFunction *f,
SmallVectorImpl<SILFunction *> &worklist);
};
} // end anonymous namespace
void CapturePromotionPass::processFunction(
SILFunction *func, SmallVectorImpl<SILFunction *> &worklist) {
assert(func->hasOwnership() &&
"Only can perform capture promotion on functions with ownership. All "
"functions in raw SIL should have OSSA now out of SILGen");
LLVM_DEBUG(llvm::dbgs() << "******** Performing Capture Promotion on: "
<< func->getName() << "********\n");
// This is a map from each partial apply to a set of indices of promotable
// box variables.
PartialApplyIndicesMap indicesMap;
constructMapFromPartialApplyToPromotableIndices(func, indicesMap);
// Do the actual promotions; all promotions on a single partial_apply are
// handled together.
SILOptFunctionBuilder funcBuilder(*this);
for (auto &indicesPair : indicesMap) {
PartialApplyInst *pai = indicesPair.first;
SILFunction *clonedFn =
processPartialApplyInst(funcBuilder, pai, indicesPair.second, worklist);
(void)clonedFn;
}
invalidateAnalysis(func, SILAnalysis::InvalidationKind::FunctionBody);
}
SILTransform *swift::createCapturePromotion() {
return new CapturePromotionPass();
}
|