1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
|
//===--- ConsumeOperatorCopyableAddressChecker.cpp ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// NOTE: This pass is assumed to run before all memory optimizations that
/// manipulate the lifetimes of values in memory such as any of the -Onone
/// predictable memory optimizations. allocbox to stack is ok since it doesn't
/// effect the actual memory itself, just whether the memory is boxed or not.
///
/// In this file, we implement a checker that for memory objects in SIL checks
/// that after a call to _move, one can no longer use a var or a let with an
/// address only type. If you use it after that point, but before a known
/// destroy point, you get an error. Example:
///
/// var x = Class()
/// let y = _move(x)
/// _use(x) // error!
/// x = Class()
/// _use(x) // Ok, we reinitialized the memory.
///
/// Below, I describe in detail the algorithm. NOTE: The design below will be
/// updated to support inits once we actually support vars. Currently, we only
/// support lets.
///
/// # Design
///
/// ## Introduction
///
/// At its heart this checker is a dataflow checker that first understands the
/// lifetime of a specific address and then optimizes based off of that
/// information. It uses AccessUseVisitor to reliably get all users of an
/// address. Then it partitions those uses into three sets:
///
/// * A set of mark_unresolved_move_addr. A mark_unresolved_move_addr is an
/// instruction that marks an invocation by _move on a value. Since we have
/// not yet proven using dataflow that it can be a move, semantically this
/// instruction is actually a copy_addr [init] so we maintain a valid IR if
/// we have uses later that we want to error upon. This is where we always
/// begin tracking dataflow.
///
/// * A set of destroy_value operations. These are points where we stop
/// tracking dataflow.
///
/// * A set of misc uses that just require liveness, We call the last category
/// "livenessUses". These are the uses that can not exist in between the move
/// and the destroy_addr operation and if we see any, we emit an error to the
/// user.
///
/// ## Gathering information to prepare for the Dataflow
///
/// We perform several different dataflow operations:
///
/// 1. First mark_unresolved_move_addr are propagated downwards to determine if
/// they propagate downwards out of blocks. When this is done, we perform the
/// single basic block form of this diagnostic. If we emit a diagnostic while
/// doing that, we exit. Otherwise, we know that there must not be any uses
/// or consumes in the given block, so it propagates move out.
///
/// 2. Then mark_unresolved_move_addr and all liveness uses are propagated up to
/// determine if a block propagates liveness up. We always use the earliest
/// user in the block. Once we find that user, we insert it into a
/// DenseMap<SILBasicBlock *, SILInstruction *>. This is so we can emit a
/// nice diagnostic.
///
/// 3. Then we propagate destroy_addr upwards stopping if we see an init. If we
/// do not see an init, then we know that we propagated that destroy upward
/// out of the block. We then insert that into a DenseMap<SILBasicBlock *,
/// DestroyAddrInst *> we are maintaining. NOTE: We do not need to check for
/// moves here since any move in our block would have either resulted in the
/// destroy_addr being eliminated earlier by the single block form of the
/// diagnostic and us exiting early or us emitting an error diagnostic and
/// exiting early.
///
/// NOTE: The reason why we do not track init information on a per block is that
/// in our dataflow, we are treating inits as normal uses and if we see an init
/// without seeing a destroy_addr, we will error on the use and bail. Once we
/// decide to support vars, this will change.
///
/// NOTE: The reason why we do not track all consuming operations, just destroy
/// operations is that instead we are treating a consuming operation as a
/// liveness use. Since we are always going to just exit on the first error for
/// any specific move (all moves will be checked individually of course), we
/// know that we will stop processing blocks at that point.
///
/// ## Performing the Global Dataflow
///
/// Finally using this information we gathered above, for each markMoveAddrOut
/// block individually, we walk the CFG downwards starting with said block's
/// successors looking for liveness uses and destroy_addr blocks.
///
/// 1. If we visit any "liveness block", immediately emit an error diagnostic as
/// the user requested and return. We can not convert the
/// mark_unresolved_move_addr into a move safely.
///
/// 2. If we visit a DestroyAddr block instead, we mark the destroy_addr as
/// being a destroy_addr that is associated with a move. This is done a per
/// address basis.
///
/// Once we have finished visiting mark_unresolved_move_addr, if we found /any/
/// mark_unresolved_move_addr that were safe to convert to a take (and that we
/// did convert to a take), we need to then cleanup destroys.
///
/// ## Cleaning up Destroys
///
/// We do this simultaneously for all of the mark_unresolved_move_addr applied
/// to a single address. Specifically, we place into a worklist all of the
/// predecessor blocks of all destroy_addr blocks that we found while performing
/// global dataflow. Then for each block b until we run out of blocks:
///
/// 1. If b is a block associated with one of our converted
/// mark_unresolved_move_addr, continue. Along that path, we are shortening
/// the lifetime of the address as requested by the user.
///
/// 2. Then we check if b is a block that was not visited when processing the
/// new moves. In such a case, we have found the dominance frontier of one or
/// many of the moves and insert a destroy_addr at the end of the b and
/// continue.
///
/// 3. Finally, if b is not on our dominance frontier and isn't a stopping
/// point, we add its predecessors to the worklist and continue.
///
/// Once these steps have been completed, we delete all of the old destroy_addr
/// since the lifetime of the address has now been handled appropriately along
/// all paths through the program.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-consume-operator-copyable-addresses-checker"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Types.h"
#include "swift/Basic/BlotSetVector.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/Basic/GraphNodeWorklist.h"
#include "swift/Basic/SmallBitVector.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/Consumption.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLinkage.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/ClosureScope.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
#include "llvm/ADT/PointerEmbeddedInt.h"
#include "llvm/ADT/PointerSumType.h"
using namespace swift;
static llvm::cl::opt<bool> DisableUnhandledConsumeOperator(
"sil-consume-operator-disable-unknown-moveaddr-diagnostic");
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
static SourceLoc getSourceLocFromValue(SILValue value) {
if (auto *defInst = value->getDefiningInstruction())
return defInst->getLoc().getSourceLoc();
if (auto *arg = dyn_cast<SILFunctionArgument>(value))
return arg->getDecl()->getLoc();
llvm_unreachable("Do not know how to get source loc for value?!");
}
#ifndef NDEBUG
static void dumpBitVector(llvm::raw_ostream &os, const SmallBitVector &bv) {
for (unsigned i = 0; i < bv.size(); ++i) {
os << (bv[i] ? '1' : '0');
}
}
#endif
/// Returns true if a value has one or zero debug uses.
static bool hasMoreThanOneDebugUse(SILValue v) {
auto Range = getDebugUses(v);
auto i = Range.begin(), e = Range.end();
if (i == e)
return false;
++i;
return i != e;
}
//===----------------------------------------------------------------------===//
// Forward Declarations
//===----------------------------------------------------------------------===//
namespace {
enum class DownwardScanResult {
Invalid,
Destroy,
Reinit,
// NOTE: We use UseForDiagnostic both for defer uses and normal uses.
UseForDiagnostic,
MoveOut,
ClosureConsume,
ClosureUse,
};
struct ClosureOperandState {
/// This is the downward scan result that visiting a full applysite of this
/// closure will effect on the address being analyzed.
DownwardScanResult result = DownwardScanResult::Invalid;
/// Instructions that act as consumes in the closure callee. This is the set
/// of earliest post dominating consumes that should be eliminated in the
/// cloned callee. Only set if state is upwards consume.
TinyPtrVector<SILInstruction *> pairedConsumingInsts;
/// The set of instructions in the callee that are uses that require the move
/// to be alive. Only set if state is upwards use.
TinyPtrVector<SILInstruction *> pairedUseInsts;
/// The single debug value in the closure callee that we sink to the reinit
/// points.
DebugValueInst *singleDebugValue = nullptr;
bool isUpwardsUse() const { return result == DownwardScanResult::ClosureUse; }
bool isUpwardsConsume() const {
return result == DownwardScanResult::ClosureConsume;
}
};
} // namespace
/// Is this a reinit instruction that we know how to convert into its init form.
static bool isReinitToInitConvertibleInst(Operand *memUse) {
auto *memInst = memUse->getUser();
switch (memInst->getKind()) {
default:
return false;
case SILInstructionKind::CopyAddrInst: {
auto *cai = cast<CopyAddrInst>(memInst);
return !cai->isInitializationOfDest();
}
case SILInstructionKind::StoreInst: {
auto *si = cast<StoreInst>(memInst);
return si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign;
}
}
}
static void convertMemoryReinitToInitForm(SILInstruction *memInst) {
switch (memInst->getKind()) {
default:
llvm_unreachable("unsupported?!");
case SILInstructionKind::CopyAddrInst: {
auto *cai = cast<CopyAddrInst>(memInst);
cai->setIsInitializationOfDest(IsInitialization_t::IsInitialization);
return;
}
case SILInstructionKind::StoreInst: {
auto *si = cast<StoreInst>(memInst);
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
return;
}
}
}
//===----------------------------------------------------------------------===//
// Use State
//===----------------------------------------------------------------------===//
namespace {
struct UseState {
SILValue address;
SmallVector<MarkUnresolvedMoveAddrInst *, 1> markMoves;
SmallPtrSet<SILInstruction *, 1> seenMarkMoves;
llvm::SmallSetVector<SILInstruction *, 2> inits;
llvm::SmallSetVector<SILInstruction *, 4> livenessUses;
SmallBlotSetVector<DestroyAddrInst *, 4> destroys;
llvm::SmallDenseMap<SILInstruction *, unsigned, 4> destroyToIndexMap;
SmallBlotSetVector<SILInstruction *, 4> reinits;
llvm::SmallDenseMap<SILInstruction *, unsigned, 4> reinitToIndexMap;
llvm::SmallMapVector<Operand *, ClosureOperandState, 1> closureUses;
llvm::SmallDenseMap<Operand *, unsigned, 1> closureOperandToIndexMap;
void insertMarkUnresolvedMoveAddr(MarkUnresolvedMoveAddrInst *inst) {
if (!seenMarkMoves.insert(inst).second)
return;
markMoves.emplace_back(inst);
}
void insertDestroy(DestroyAddrInst *dai) {
destroyToIndexMap[dai] = destroys.size();
destroys.insert(dai);
}
void insertReinit(SILInstruction *inst) {
reinitToIndexMap[inst] = reinits.size();
reinits.insert(inst);
}
void insertClosureOperand(Operand *op) {
closureOperandToIndexMap[op] = closureUses.size();
closureUses[op] = {};
}
void clear() {
address = SILValue();
markMoves.clear();
seenMarkMoves.clear();
inits.clear();
livenessUses.clear();
destroys.clear();
destroyToIndexMap.clear();
reinits.clear();
reinitToIndexMap.clear();
closureUses.clear();
closureOperandToIndexMap.clear();
}
SILFunction *getFunction() const { return address->getFunction(); }
};
} // namespace
//===----------------------------------------------------------------------===//
// Dataflow
//===----------------------------------------------------------------------===//
/// Returns true if we are move out, false otherwise. If we find an interesting
/// inst, we return it in foundInst. If no inst is returned, one must continue.
static DownwardScanResult
downwardScanForMoveOut(MarkUnresolvedMoveAddrInst *mvi, UseState &useState,
SILInstruction **foundInst, Operand **foundOperand,
TinyPtrVector<SILInstruction *> &foundClosureInsts) {
// Forward scan looking for uses or reinits.
for (auto &next : llvm::make_range(std::next(mvi->getIterator()),
mvi->getParent()->end())) {
LLVM_DEBUG(llvm::dbgs() << "DownwardScan. Checking: " << next);
// If we hit a non-destroy_addr, then we immediately know that we found an
// error. Return the special result with the next stashed within it.
if (useState.livenessUses.count(&next) ||
useState.seenMarkMoves.count(&next) || useState.inits.count(&next)) {
// Emit a diagnostic error and process the next mark_unresolved_move_addr.
LLVM_DEBUG(llvm::dbgs() << "SingleBlock liveness user: " << next);
*foundInst = &next;
return DownwardScanResult::UseForDiagnostic;
}
{
auto iter = useState.reinitToIndexMap.find(&next);
if (iter != useState.reinitToIndexMap.end()) {
LLVM_DEBUG(llvm::dbgs() << "DownwardScan: reinit: " << next);
*foundInst = &next;
return DownwardScanResult::Reinit;
}
}
// If we see a destroy_addr, then stop processing since it pairs directly
// with our move.
{
auto iter = useState.destroyToIndexMap.find(&next);
if (iter != useState.destroyToIndexMap.end()) {
auto *dai = cast<DestroyAddrInst>(iter->first);
LLVM_DEBUG(llvm::dbgs() << "DownwardScan: Destroy: " << *dai);
*foundInst = dai;
return DownwardScanResult::Destroy;
}
}
// Finally check if we have a closure user that we were able to handle.
if (auto fas = FullApplySite::isa(&next)) {
LLVM_DEBUG(llvm::dbgs() << "DownwardScan: ClosureCheck: " << **fas);
for (auto &op : fas.getArgumentOperands()) {
auto iter = useState.closureUses.find(&op);
if (iter == useState.closureUses.end()) {
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "DownwardScan: ClosureCheck: Matching Operand: "
<< fas.getAppliedArgIndex(op));
*foundInst = &next;
*foundOperand = &op;
switch (iter->second.result) {
case DownwardScanResult::Invalid:
case DownwardScanResult::Destroy:
case DownwardScanResult::Reinit:
case DownwardScanResult::UseForDiagnostic:
case DownwardScanResult::MoveOut:
llvm_unreachable("unhandled");
case DownwardScanResult::ClosureConsume:
LLVM_DEBUG(llvm::dbgs() << ". ClosureConsume.\n");
llvm::copy(iter->second.pairedConsumingInsts,
std::back_inserter(foundClosureInsts));
break;
case DownwardScanResult::ClosureUse:
LLVM_DEBUG(llvm::dbgs() << ". ClosureUse.\n");
llvm::copy(iter->second.pairedUseInsts,
std::back_inserter(foundClosureInsts));
break;
}
return iter->second.result;
}
}
}
// We are move out!
LLVM_DEBUG(llvm::dbgs() << "DownwardScan. We are move out!\n");
return DownwardScanResult::MoveOut;
}
/// Scan backwards from \p inst to the beginning of its parent block looking for
/// uses. We return true if \p inst is the first use that we are tracking for
/// the given block. This means it propagates liveness upwards through the CFG.
///
/// This works only for an instruction expected to be a normal use.
static bool upwardScanForUseOut(SILInstruction *inst, UseState &useState) {
// We scan backwards from the instruction before \p inst to the beginning of
// the block.
for (auto &iter : llvm::make_range(std::next(inst->getReverseIterator()),
inst->getParent()->rend())) {
// If we hit another liveness use, then this isn't the first use in the
// block. We want to store only the first use in the block. In such a case,
// we bail since when we visit that earlier instruction, we will do the
// appropriate check.
if (useState.livenessUses.contains(&iter))
// If we are not tracking a destroy, we stop at liveness uses. If we have
// a destroy_addr, we use the destroy blocks to ignore the liveness uses
// since we use the destroy_addr to signal we should stop tracking when we
// use dataflow and to pair/delete with a move.
return false;
if (useState.destroyToIndexMap.count(&iter))
return false;
if (auto *mmai = dyn_cast<MarkUnresolvedMoveAddrInst>(&iter))
if (useState.seenMarkMoves.count(mmai))
return false;
if (useState.inits.contains(&iter))
return false;
if (useState.reinitToIndexMap.count(&iter))
return false;
if (auto fas = FullApplySite::isa(&iter)) {
for (auto &op : fas.getArgumentOperands()) {
if (useState.closureUses.find(&op) != useState.closureUses.end())
return false;
}
}
}
return true;
}
/// Scan backwards from \p inst to the beginning of its parent block looking for
/// uses. We return true if \p inst is the first use that we are tracking for
/// the given block. This means it propagates liveness upwards through the CFG.
static bool upwardScanForDestroys(SILInstruction *inst, UseState &useState) {
// We scan backwards from the instruction before \p inst to the beginning of
// the block.
for (auto &iter : llvm::make_range(std::next(inst->getReverseIterator()),
inst->getParent()->rend())) {
// If we find a destroy_addr earlier in the block, do not mark this block as
// being associated with this destroy. We always want to associate the move
// with the earliest destroy_addr.
if (useState.destroyToIndexMap.count(&iter))
return false;
if (useState.reinitToIndexMap.count(&iter))
return false;
// If we see an init, then we return found other use to not track this
// destroy_addr up since it is balanced by the init.
if (useState.inits.contains(&iter))
return false;
if (auto fas = FullApplySite::isa(&iter)) {
for (auto &op : fas.getArgumentOperands()) {
if (useState.closureUses.find(&op) != useState.closureUses.end())
return false;
}
}
// Otherwise, we have a normal use, just ignore it.
}
// Ok, this instruction is the first use in the block of our value. So return
// true so we track it as such.
return true;
}
/// Search for the first init in the block.
static bool upwardScanForInit(SILInstruction *inst, UseState &useState) {
// We scan backwards from the instruction before \p inst to the beginning of
// the block.
for (auto &iter : llvm::make_range(std::next(inst->getReverseIterator()),
inst->getParent()->rend())) {
if (useState.inits.contains(&iter))
return false;
if (auto fas = FullApplySite::isa(&iter)) {
for (auto &op : fas.getArgumentOperands()) {
if (useState.closureUses.find(&op) != useState.closureUses.end())
return false;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Closure Argument Global Dataflow
//===----------------------------------------------------------------------===//
namespace {
/// A utility class that analyzes a closure that captures a moved value. It is
/// used to perform move checking within the closure as well as to determine a
/// set of reinit/destroys that we will need to convert to init and or eliminate
/// while cloning the closure.
///
/// NOTE: We do not need to consider if the closure reinitializes the memory
/// since there must be some sort of use for the closure to even reference it
/// and the compiler emits assigns when it reinitializes vars this early in the
/// pipeline.
struct ClosureArgDataflowState {
ASTContext &C;
SmallVector<SILInstruction *, 32> livenessWorklist;
SmallVector<SILInstruction *, 32> consumingWorklist;
MultiDefPrunedLiveness livenessForConsumes;
UseState &useState;
public:
ClosureArgDataflowState(SILFunction *function, UseState &useState)
: C(function->getASTContext()),
livenessForConsumes(function), useState(useState) {}
bool process(
SILArgument *arg, ClosureOperandState &state,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers);
private:
/// Perform our liveness dataflow. Returns true if we found any liveness uses
/// at all. These we will need to error upon.
bool performLivenessDataflow(const BasicBlockSet &initBlocks,
const BasicBlockSet &livenessBlocks,
const BasicBlockSet &consumingBlocks);
/// Perform our consuming dataflow. Returns true if we found an earliest set
/// of consuming uses that we can handle that post-dominate the argument.
/// Returns false otherwise.
bool performConsumingDataflow(const BasicBlockSet &initBlocks,
const BasicBlockSet &consumingBlocks);
void classifyUses(BasicBlockSet &initBlocks, BasicBlockSet &livenessBlocks,
BasicBlockSet &consumingBlocks);
bool handleSingleBlockCase(SILArgument *address, ClosureOperandState &state);
};
} // namespace
bool ClosureArgDataflowState::handleSingleBlockCase(
SILArgument *address, ClosureOperandState &state) {
// Walk the instructions from the beginning of the block to the end.
for (auto &inst : *address->getParent()) {
assert(!useState.inits.count(&inst) &&
"Shouldn't see an init before a destroy or reinit");
// If we see a destroy, then we know we are upwards consume... stash it so
// that we can destroy it
if (auto *dvi = dyn_cast<DestroyAddrInst>(&inst)) {
if (useState.destroyToIndexMap.count(dvi)) {
LLVM_DEBUG(llvm::dbgs()
<< "ClosureArgDataflow: Found Consume: " << *dvi);
if (hasMoreThanOneDebugUse(address))
return false;
state.pairedConsumingInsts.push_back(dvi);
state.result = DownwardScanResult::ClosureConsume;
return true;
}
}
// Same for reinits.
if (useState.reinits.count(&inst)) {
LLVM_DEBUG(llvm::dbgs() << "ClosureArgDataflow: Found Reinit: " << inst);
if (hasMoreThanOneDebugUse(address))
return false;
state.pairedConsumingInsts.push_back(&inst);
state.result = DownwardScanResult::ClosureConsume;
return true;
}
// Finally, if we have a liveness use, report it for a diagnostic.
if (useState.livenessUses.count(&inst)) {
LLVM_DEBUG(llvm::dbgs()
<< "ClosureArgDataflow: Found liveness use: " << inst);
state.pairedUseInsts.push_back(&inst);
state.result = DownwardScanResult::ClosureUse;
return true;
}
}
LLVM_DEBUG(
llvm::dbgs() << "ClosureArgDataflow: Did not find interesting uses.\n");
return false;
}
bool ClosureArgDataflowState::performLivenessDataflow(
const BasicBlockSet &initBlocks, const BasicBlockSet &livenessBlocks,
const BasicBlockSet &consumingBlocks) {
LLVM_DEBUG(llvm::dbgs() << "ClosureArgLivenessDataflow. Start!\n");
bool foundSingleLivenessUse = false;
auto *fn = useState.getFunction();
auto *frontBlock = &*fn->begin();
BasicBlockWorklist worklist(fn);
for (unsigned i : indices(livenessWorklist)) {
auto *&user = livenessWorklist[i];
// If our use is in the first block, then we are done with this user. Set
// the found single liveness use flag and continue!
if (frontBlock == user->getParent()) {
foundSingleLivenessUse = true;
continue;
}
bool success = false;
for (auto *predBlock : user->getParent()->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
while (auto *next = worklist.pop()) {
if (livenessBlocks.contains(next) || initBlocks.contains(next) ||
consumingBlocks.contains(next)) {
continue;
}
if (frontBlock == next) {
success = true;
foundSingleLivenessUse = true;
break;
}
for (auto *predBlock : next->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
if (!success) {
user = nullptr;
}
}
return foundSingleLivenessUse;
}
bool ClosureArgDataflowState::performConsumingDataflow(
const BasicBlockSet &initBlocks, const BasicBlockSet &consumingBlocks) {
auto *fn = useState.getFunction();
auto *frontBlock = &*fn->begin();
bool foundSingleConsumingUse = false;
BasicBlockWorklist worklist(fn);
for (unsigned i : indices(consumingWorklist)) {
auto *&user = consumingWorklist[i];
if (frontBlock == user->getParent())
continue;
bool success = false;
for (auto *predBlock : user->getParent()->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
while (auto *next = worklist.pop()) {
if (initBlocks.contains(next) || consumingBlocks.contains(next)) {
continue;
}
if (frontBlock == next) {
success = true;
foundSingleConsumingUse = true;
break;
}
for (auto *predBlock : next->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
if (!success) {
user = nullptr;
}
}
return foundSingleConsumingUse;
}
void ClosureArgDataflowState::classifyUses(BasicBlockSet &initBlocks,
BasicBlockSet &livenessBlocks,
BasicBlockSet &consumingBlocks) {
for (auto *user : useState.inits) {
if (upwardScanForInit(user, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found init block during classifyUses at: " << *user);
livenessForConsumes.initializeDef(user);
initBlocks.insert(user->getParent());
}
}
for (auto *user : useState.livenessUses) {
if (upwardScanForUseOut(user, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found use block during classifyUses at: " << *user);
livenessBlocks.insert(user->getParent());
livenessWorklist.push_back(user);
}
}
for (auto destroyOpt : useState.destroys) {
assert(destroyOpt);
auto *destroy = *destroyOpt;
auto iter = useState.destroyToIndexMap.find(destroy);
assert(iter != useState.destroyToIndexMap.end());
if (upwardScanForDestroys(destroy, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found destroy block during classifyUses at: " << *destroy);
consumingBlocks.insert(destroy->getParent());
consumingWorklist.push_back(destroy);
}
}
for (auto reinitOpt : useState.reinits) {
assert(reinitOpt);
auto *reinit = *reinitOpt;
auto iter = useState.reinitToIndexMap.find(reinit);
assert(iter != useState.reinitToIndexMap.end());
// TODO: Reinitialization analysis is currently incomplete and leads
// to miscompiles. Treat reinitializations as regular uses for now.
if (!C.LangOpts.hasFeature(Feature::ReinitializeConsumeInMultiBlockDefer)) {
LLVM_DEBUG(llvm::dbgs() << " Treating reinit as use block during classifyUses at: " << *reinit);
livenessBlocks.insert(reinit->getParent());
livenessWorklist.push_back(reinit);
continue;
}
if (upwardScanForDestroys(reinit, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found reinit block during classifyUses at: " << *reinit);
consumingBlocks.insert(reinit->getParent());
consumingWorklist.push_back(reinit);
}
}
}
bool ClosureArgDataflowState::process(
SILArgument *address, ClosureOperandState &state,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers) {
SILFunction *fn = address->getFunction();
assert(fn);
// First see if our function only has a single block. In such a case,
// summarize using the single processing routine.
if (address->getParent()->getTerminator()->isFunctionExiting()) {
LLVM_DEBUG(llvm::dbgs() << "ClosureArgDataflow: Single Block Case.\n");
return handleSingleBlockCase(address, state);
}
LLVM_DEBUG(llvm::dbgs() << "ClosureArgDataflow: Multiple Block Case.\n");
// At this point, we begin by classifying the uses of our address into init
// blocks, liveness blocks, consuming blocks. We also seed the worklist for
// our two dataflows.
SWIFT_DEFER {
livenessWorklist.clear();
consumingWorklist.clear();
};
BasicBlockSet initBlocks(fn);
BasicBlockSet livenessBlocks(fn);
BasicBlockSet consumingBlocks(fn);
classifyUses(initBlocks, livenessBlocks, consumingBlocks);
// Liveness Dataflow:
//
// The way that we do this is that for each such instruction:
//
// 1. If the instruction is in the entrance block, then it is our only answer.
//
// 2. If the user is not in the entrance block, visit recursively its
// predecessor blocks until one either hits the entrance block (in which
// case this is the result) /or/ one hits a block in one of our basic block
// sets which means there is an earlier use. Consuming blocks only stop for
// consuming blocks and init blocks. Liveness blocks stop for all other
// blocks.
//
// The result is what remains in our set. Thus we start by processing
// liveness.
if (performLivenessDataflow(initBlocks, livenessBlocks, consumingBlocks)) {
for (unsigned i : indices(livenessWorklist)) {
if (auto *ptr = livenessWorklist[i]) {
LLVM_DEBUG(llvm::dbgs()
<< "ClosureArgLivenessDataflow. Final: Liveness User: "
<< *ptr);
state.pairedUseInsts.push_back(ptr);
}
}
state.result = DownwardScanResult::ClosureUse;
return true;
}
// Then perform the consuming use dataflow. In this case, we think we may have
// found a set of post-dominating consuming uses for our inout_aliasable
// parameter. We are going to change it to be an out parameter and eliminate
// these when we clone the closure.
if (performConsumingDataflow(initBlocks, consumingBlocks)) {
LLVM_DEBUG(llvm::dbgs() << "found single consuming use!\n");
// Before we do anything, make sure our argument has at least one single
// debug_value user. If we have many we can't handle it since something in
// SILGen is emitting weird code. Our tests will ensure that SILGen does not
// diverge by mistake. So we are really just being careful.
if (hasMoreThanOneDebugUse(address)) {
// Failing b/c more than one debug use!
LLVM_DEBUG(llvm::dbgs() << "...but argument has more than one debug use!\n");
return false;
}
//!!! FIXME: Why?
//auto *frontBlock = &*fn->begin();
//livenessForConsumes.initializeDef(address);
for (unsigned i : indices(consumingWorklist)) {
if (auto *ptr = consumingWorklist[i]) {
LLVM_DEBUG(llvm::dbgs() << "liveness for consume: " << *ptr);
state.pairedConsumingInsts.push_back(ptr);
//livenessForConsumes.updateForUse(ptr, true /*is lifetime ending*/);
}
}
// If our consumes do not have a linear lifetime, bail. We will error on the
// move being unknown.
for (auto *ptr : state.pairedConsumingInsts) {
/*if (livenessForConsumes.isWithinBoundary(ptr)) {
LLVM_DEBUG(llvm::dbgs() << "consuming inst within boundary; bailing: "
<< *ptr);
return false;
}*/
postDominatingConsumingUsers.insert(ptr);
}
state.result = DownwardScanResult::ClosureConsume;
return true;
}
return true;
}
//===----------------------------------------------------------------------===//
// Closure Use Gatherer
//===----------------------------------------------------------------------===//
namespace {
/// Visit all of the uses of a closure argument, initializing useState as we go.
struct GatherClosureUseVisitor : public AccessUseVisitor {
UseState &useState;
GatherClosureUseVisitor(UseState &useState)
: AccessUseVisitor(AccessUseType::Overlapping,
NestedAccessType::IgnoreAccessBegin),
useState(useState) {}
bool visitUse(Operand *op, AccessUseType useTy) override;
void reset(SILValue address) { useState.address = address; }
void clear() { useState.clear(); }
};
} // end anonymous namespace
// Filter out recognized uses that do not write to memory.
//
// TODO: Ensure that all of the conditional-write logic below is encapsulated in
// mayWriteToMemory and just call that instead. Possibly add additional
// verification that visitAccessPathUses recognizes all instructions that may
// propagate pointers (even though they don't write).
bool GatherClosureUseVisitor::visitUse(Operand *op, AccessUseType useTy) {
// If this operand is for a dependent type, then it does not actually access
// the operand's address value. It only uses the metatype defined by the
// operation (e.g. open_existential).
if (op->isTypeDependent()) {
return true;
}
// Ignore debug_values. We should leave them on the argument so that later in
// the function the user can still access the out parameter once it is
// updated.
if (isa<DebugValueInst>(op->getUser()))
return true;
// Ignore end_access. For our purposes, they are irrelevant and we do not want
// to treat them like liveness uses.
if (isa<EndAccessInst>(op->getUser()))
return true;
if (memInstMustInitialize(op)) {
if (stripAccessMarkers(op->get()) != useState.address) {
LLVM_DEBUG(llvm::dbgs()
<< "!!! Error! Found init use not on base address: "
<< *op->getUser());
return false;
}
LLVM_DEBUG(llvm::dbgs() << "ClosureUse: Found init: " << *op->getUser());
useState.inits.insert(op->getUser());
return true;
}
if (isReinitToInitConvertibleInst(op)) {
if (stripAccessMarkers(op->get()) != useState.address) {
LLVM_DEBUG(llvm::dbgs()
<< "!!! Error! Found reinit use not on base address: "
<< *op->getUser());
return false;
}
LLVM_DEBUG(llvm::dbgs() << "ClosureUse: Found reinit: " << *op->getUser());
useState.insertReinit(op->getUser());
return true;
}
if (auto *dvi = dyn_cast<DestroyAddrInst>(op->getUser())) {
// If we see a destroy_addr not on our base address, bail! Just error and
// say that we do not understand the code.
if (dvi->getOperand() != useState.address) {
LLVM_DEBUG(llvm::dbgs()
<< "!!! Error! Found destroy_addr no on base address: "
<< *dvi);
return false;
}
LLVM_DEBUG(llvm::dbgs() << "ClosureUse: Found destroy_addr: " << *dvi);
useState.insertDestroy(dvi);
return true;
}
LLVM_DEBUG(llvm::dbgs() << "ClosureUse: Found liveness use: "
<< *op->getUser());
useState.livenessUses.insert(op->getUser());
return true;
}
//===----------------------------------------------------------------------===//
// Closure Argument Cloner
//===----------------------------------------------------------------------===//
namespace {
struct ClosureArgumentInOutToOutCloner
: SILClonerWithScopes<ClosureArgumentInOutToOutCloner> {
friend class SILInstructionVisitor<ClosureArgumentInOutToOutCloner>;
friend class SILCloner<ClosureArgumentInOutToOutCloner>;
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers;
SILFunction *orig;
const SmallBitVector &argsToConvertIndices;
SmallPtrSet<SILValue, 8> oldArgSet;
// Map from clonedArg -> oldArg.
llvm::SmallMapVector<SILValue, SILValue, 4> clonedArgToOldArgMap;
public:
ClosureArgumentInOutToOutCloner(
SILOptFunctionBuilder &funcBuilder, SILFunction *orig,
SerializedKind_t serializedKind,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers,
const SmallBitVector &argsToConvertIndices, StringRef name);
void populateCloned();
SILFunction *getCloned() { return &getBuilder().getFunction(); }
void visitDebugValueInst(DebugValueInst *inst) {
// Do not clone if our inst argument is one of our cloned arguments. In such
// a case, we are going to handle the debug_value when we visit a post
// dominating consuming reinit.
if (oldArgSet.count(inst->getOperand())) {
LLVM_DEBUG(llvm::dbgs()
<< " Visiting debug value that is in the old arg set!\n");
return;
}
LLVM_DEBUG(llvm::dbgs()
<< " Visiting debug value that we will clone!\n");
SILCloner<ClosureArgumentInOutToOutCloner>::visitDebugValueInst(inst);
}
void visitDestroyValueInst(DestroyValueInst *inst) {
if (!postDominatingConsumingUsers.count(inst)) {
SILCloner<ClosureArgumentInOutToOutCloner>::visitDestroyValueInst(inst);
}
// Don't do anything if we have a destroy.
}
void visitCopyAddrInst(CopyAddrInst *inst) {
if (!postDominatingConsumingUsers.count(inst)) {
return SILCloner<ClosureArgumentInOutToOutCloner>::visitCopyAddrInst(
inst);
}
// If this copy_addr is one of the copies that we need to fixup, convert it
// to an init from a reinit. We also insert a debug_value
assert(!inst->isInitializationOfDest() && "Should be a reinit");
getBuilder().setCurrentDebugScope(getOpScope(inst->getDebugScope()));
recordClonedInstruction(
inst, getBuilder().createCopyAddr(
getOpLocation(inst->getLoc()), getOpValue(inst->getSrc()),
getOpValue(inst->getDest()), inst->isTakeOfSrc(),
IsInitialization_t::IsInitialization));
// Then if in our caller we had a debug_value on our dest, add it here.
auto base = AccessPathWithBase::compute(inst->getDest()).base;
if (oldArgSet.count(base)) {
if (auto *op = getSingleDebugUse(base)) {
if (auto *dvi = dyn_cast<DebugValueInst>(op->getUser())) {
SILCloner<ClosureArgumentInOutToOutCloner>::visitDebugValueInst(dvi);
}
}
}
}
void visitStoreInst(StoreInst *inst) {
if (!postDominatingConsumingUsers.count(inst)) {
return SILCloner<ClosureArgumentInOutToOutCloner>::visitStoreInst(inst);
}
// If this store is one of the copies that we need to fixup, convert it
// to an init from being an assign.
assert(inst->getOwnershipQualifier() == StoreOwnershipQualifier::Assign);
getBuilder().setCurrentDebugScope(getOpScope(inst->getDebugScope()));
recordClonedInstruction(
inst, getBuilder().createStore(
getOpLocation(inst->getLoc()), getOpValue(inst->getSrc()),
getOpValue(inst->getDest()), StoreOwnershipQualifier::Init));
auto base = AccessPathWithBase::compute(inst->getDest()).base;
if (oldArgSet.count(base)) {
if (auto *op = getSingleDebugUse(base)) {
if (auto *dvi = dyn_cast<DebugValueInst>(op->getUser())) {
SILCloner<ClosureArgumentInOutToOutCloner>::visitDebugValueInst(dvi);
}
}
}
}
private:
static SILFunction *initCloned(
SILOptFunctionBuilder &funcBuilder, SILFunction *orig,
SerializedKind_t serializedKind,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers,
const SmallBitVector &argsToConvertIndices, StringRef cloneName);
};
} // namespace
static std::string getClonedName(SILFunction *func, SerializedKind_t serialized,
const SmallBitVector &argsToConvertIndices) {
auto kind = Demangle::SpecializationPass::MoveDiagnosticInOutToOut;
Mangle::FunctionSignatureSpecializationMangler Mangler(kind, serialized,
func);
for (int i = argsToConvertIndices.find_first(); i != -1;
i = argsToConvertIndices.find_next(i)) {
Mangler.setArgumentInOutToOut(i);
}
return Mangler.mangle();
}
ClosureArgumentInOutToOutCloner::ClosureArgumentInOutToOutCloner(
SILOptFunctionBuilder &funcBuilder, SILFunction *orig,
SerializedKind_t serializedKind,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers,
const SmallBitVector &argsToConvertIndices, StringRef name)
: SILClonerWithScopes<ClosureArgumentInOutToOutCloner>(*initCloned(
funcBuilder, orig, serializedKind, postDominatingConsumingUsers,
argsToConvertIndices, name)),
postDominatingConsumingUsers(postDominatingConsumingUsers), orig(orig),
argsToConvertIndices(argsToConvertIndices) {
assert(orig->getDebugScope()->getParentFunction() !=
getCloned()->getDebugScope()->getParentFunction());
}
/// Create the function corresponding to the clone of the
/// original closure with the signature modified to reflect promoted
/// parameters (which are specified by PromotedArgIndices).
SILFunction *ClosureArgumentInOutToOutCloner::initCloned(
SILOptFunctionBuilder &funcBuilder, SILFunction *orig,
SerializedKind_t serialized,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers,
const SmallBitVector &argsToConvertIndices, StringRef clonedName) {
SILModule &mod = orig->getModule();
SmallVector<SILParameterInfo, 4> clonedInterfaceArgTys;
SmallVector<SILResultInfo, 4> clonedResultInfos;
SILFunctionType *origFTI = orig->getLoweredFunctionType();
// First initialized cloned result infos with the old results.
for (auto result : origFTI->getResults())
clonedResultInfos.push_back(result);
// Generate a new parameter list with deleted parameters removed...
unsigned initArgIndex = orig->getConventions().getSILArgIndexOfFirstParam();
LLVM_DEBUG(llvm::dbgs() << "CLONER: initArgIndex: " << initArgIndex << '\n');
for (auto state :
llvm::enumerate(origFTI->getParameters().drop_front(initArgIndex))) {
unsigned index = state.index();
auto paramInfo = state.value();
// If we are supposed to convert this, add the parameter to the result list.
if (argsToConvertIndices.test(index)) {
LLVM_DEBUG(llvm::dbgs() << "CLONER: Converting: " << index << "\n");
clonedResultInfos.emplace_back(paramInfo.getInterfaceType(),
ResultConvention::Indirect);
continue;
}
LLVM_DEBUG(llvm::dbgs() << "CLONER: Letting through: " << index << "\n");
// Otherwise, just let it through.
clonedInterfaceArgTys.push_back(paramInfo);
++index;
}
// Create the new function type for the cloned function with some of
// the parameters moved to be results.
auto clonedTy = SILFunctionType::get(
origFTI->getInvocationGenericSignature(), origFTI->getExtInfo(),
origFTI->getCoroutineKind(), origFTI->getCalleeConvention(),
clonedInterfaceArgTys, origFTI->getYields(), clonedResultInfos,
origFTI->getOptionalErrorResult(), origFTI->getPatternSubstitutions(),
origFTI->getInvocationSubstitutions(), mod.getASTContext(),
origFTI->getWitnessMethodConformanceOrInvalid());
LLVM_DEBUG(llvm::dbgs() << "CLONER: clonedTy: " << clonedTy << "\n");
assert((orig->isTransparent() || orig->isBare() || orig->getLocation()) &&
"SILFunction missing location");
assert((orig->isTransparent() || orig->isBare() || orig->getDebugScope()) &&
"SILFunction missing DebugScope");
assert(!orig->isGlobalInit() && "Global initializer cannot be cloned");
auto *Fn = funcBuilder.createFunction(
swift::getSpecializedLinkage(orig, orig->getLinkage()), clonedName,
clonedTy, orig->getGenericEnvironment(), orig->getLocation(),
orig->isBare(), orig->isTransparent(), serialized, IsNotDynamic,
IsNotDistributed, IsNotRuntimeAccessible, orig->getEntryCount(),
orig->isThunk(), orig->getClassSubclassScope(), orig->getInlineStrategy(),
orig->getEffectsKind(), orig, orig->getDebugScope());
for (auto &Attr : orig->getSemanticsAttrs()) {
Fn->addSemanticsAttr(Attr);
}
return Fn;
}
/// Populate the body of the cloned closure, modifying instructions as
/// necessary to take into consideration the removed parameters.
void ClosureArgumentInOutToOutCloner::populateCloned() {
SILFunction *cloned = getCloned();
// Create arguments for the entry block
SILBasicBlock *origEntryBlock = &*orig->begin();
SILBasicBlock *clonedEntryBlock = cloned->createBasicBlock();
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(origEntryBlock->getArguments().size());
// First process all of the indirect results and add our new results after
// them.
auto oldArgs = origEntryBlock->getArguments();
auto origConventions = orig->getConventions();
for (unsigned i : range(origConventions.getSILArgIndexOfFirstIndirectResult(),
origConventions.getSILArgIndexOfFirstParam())) {
LLVM_DEBUG(llvm::dbgs() << "Have indirect result\n");
auto *arg = oldArgs[i];
// Create a new argument which copies the original argument.
auto *newArg = clonedEntryBlock->createFunctionArgument(arg->getType(),
arg->getDecl());
clonedArgToOldArgMap[newArg] = arg;
entryArgs.push_back(newArg);
}
// To avoid needing to mess with types, just go through our original arguments
// in the entry block to get the right types.
for (auto state : llvm::enumerate(origEntryBlock->getArguments())) {
unsigned argNo = state.index();
LLVM_DEBUG(llvm::dbgs() << "Testing Old Arg Number: " << argNo << "\n");
if (!argsToConvertIndices.test(argNo))
continue;
auto *arg = state.value();
auto *newArg = clonedEntryBlock->createFunctionArgument(arg->getType(),
arg->getDecl());
clonedArgToOldArgMap[newArg] = arg;
oldArgSet.insert(arg);
entryArgs.push_back(newArg);
LLVM_DEBUG(llvm::dbgs() << "Mapping From: " << *arg);
LLVM_DEBUG(llvm::dbgs()
<< " of function: " << arg->getFunction()->getName() << '\n');
LLVM_DEBUG(llvm::dbgs() << "Mapping To: " << *newArg);
LLVM_DEBUG(llvm::dbgs() << " of function: "
<< newArg->getFunction()->getName() << '\n');
}
// Finally, recreate the rest of the arguments which we did not specialize.
for (auto state : llvm::enumerate(origEntryBlock->getArguments())) {
unsigned argNo = state.index();
if (argsToConvertIndices.test(argNo))
continue;
auto *arg = state.value();
auto *newArg = clonedEntryBlock->createFunctionArgument(arg->getType(),
arg->getDecl());
clonedArgToOldArgMap[newArg] = arg;
entryArgs.push_back(newArg);
}
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
cloneFunctionBody(
orig, clonedEntryBlock, entryArgs, [&](SILValue clonedArg) -> SILValue {
LLVM_DEBUG(llvm::dbgs() << "Searching for: " << *clonedArg);
auto iter = clonedArgToOldArgMap.find(clonedArg);
assert(iter != clonedArgToOldArgMap.end() &&
"Should map all cloned args to an old arg");
LLVM_DEBUG(llvm::dbgs() << "Found it! Mapping to : " << *iter->second);
return iter->second;
});
}
/////////////////////////////////////
// Caller Lexical Lifetime Visitor //
/////////////////////////////////////
namespace {
/// Visit all of the uses of a lexical lifetime, initializing useState as we go.
struct GatherLexicalLifetimeUseVisitor : public AccessUseVisitor {
UseState &useState;
GatherLexicalLifetimeUseVisitor(UseState &useState)
: AccessUseVisitor(AccessUseType::Overlapping,
NestedAccessType::IgnoreAccessBegin),
useState(useState) {}
bool visitUse(Operand *op, AccessUseType useTy) override;
void reset(SILValue address) { useState.address = address; }
void clear() { useState.clear(); }
};
} // end anonymous namespace
// Filter out recognized uses that do not write to memory.
//
// TODO: Ensure that all of the conditional-write logic below is encapsulated in
// mayWriteToMemory and just call that instead. Possibly add additional
// verification that visitAccessPathUses recognizes all instructions that may
// propagate pointers (even though they don't write).
bool GatherLexicalLifetimeUseVisitor::visitUse(Operand *op,
AccessUseType useTy) {
// If this operand is for a dependent type, then it does not actually access
// the operand's address value. It only uses the metatype defined by the
// operation (e.g. open_existential).
if (op->isTypeDependent()) {
return true;
}
// If we have a move from src, this is a mark_move we want to visit.
if (auto *move = dyn_cast<MarkUnresolvedMoveAddrInst>(op->getUser())) {
if (move->getSrc() == op->get()) {
LLVM_DEBUG(llvm::dbgs() << "Found move: " << *move);
useState.insertMarkUnresolvedMoveAddr(move);
return true;
}
}
if (memInstMustInitialize(op)) {
if (stripAccessMarkers(op->get()) != useState.address) {
LLVM_DEBUG(llvm::dbgs()
<< "!!! Error! Found init use not on base address: "
<< *op->getUser());
return false;
}
LLVM_DEBUG(llvm::dbgs() << "Found init: " << *op->getUser());
useState.inits.insert(op->getUser());
return true;
}
if (isReinitToInitConvertibleInst(op)) {
if (stripAccessMarkers(op->get()) != useState.address) {
LLVM_DEBUG(llvm::dbgs()
<< "!!! Error! Found reinit use not on base address: "
<< *op->getUser());
return false;
}
LLVM_DEBUG(llvm::dbgs() << "Found reinit: " << *op->getUser());
useState.insertReinit(op->getUser());
return true;
}
if (auto *dvi = dyn_cast<DestroyAddrInst>(op->getUser())) {
// If we see a destroy_addr not on our base address, bail! Just error and
// say that we do not understand the code.
if (dvi->getOperand() != useState.address) {
LLVM_DEBUG(llvm::dbgs()
<< "!!! Error! Found destroy_addr no on base address: "
<< *dvi);
return false;
}
LLVM_DEBUG(llvm::dbgs() << "Found destroy_addr: " << *dvi);
useState.insertDestroy(dvi);
return true;
}
// Then see if we have a inout_aliasable full apply site use. In that case, we
// are going to try and extend move checking into the partial apply using
// cloning to eliminate destroys or reinits.
if (auto fas = FullApplySite::isa(op->getUser())) {
if (stripAccessMarkers(op->get()) != useState.address) {
LLVM_DEBUG(
llvm::dbgs()
<< "!!! Error! Found consuming closure use not on base address: "
<< *op->getUser());
return false;
}
if (fas.getCaptureConvention(*op) ==
SILArgumentConvention::Indirect_InoutAliasable) {
// If we don't find the function, we can't handle this, so bail.
auto *func = fas.getCalleeFunction();
if (!func || !func->isDefer())
return false;
LLVM_DEBUG(llvm::dbgs() << "Found closure use: " << *op->getUser());
useState.insertClosureOperand(op);
return true;
}
}
// Ignore dealloc_stack.
if (isa<DeallocStackInst>(op->getUser()))
return true;
// Ignore end_access.
if (isa<EndAccessInst>(op->getUser()))
return true;
LLVM_DEBUG(llvm::dbgs() << "Found liveness use: " << *op->getUser());
useState.livenessUses.insert(op->getUser());
return true;
}
//===----------------------------------------------------------------------===//
// Global Dataflow
//===----------------------------------------------------------------------===//
namespace {
struct DataflowState {
llvm::DenseMap<SILBasicBlock *, SILInstruction *> useBlocks;
llvm::DenseSet<SILBasicBlock *> initBlocks;
llvm::DenseMap<SILBasicBlock *, SILInstruction *> destroyBlocks;
llvm::DenseMap<SILBasicBlock *, SILInstruction *> reinitBlocks;
llvm::DenseMap<SILBasicBlock *, Operand *> closureConsumeBlocks;
llvm::DenseMap<SILBasicBlock *, ClosureOperandState *> closureUseBlocks;
SmallVector<MarkUnresolvedMoveAddrInst *, 8> markMovesThatPropagateDownwards;
SILOptFunctionBuilder &funcBuilder;
UseState &useState;
llvm::SmallMapVector<FullApplySite, SmallBitVector, 8>
&applySiteToPromotedArgIndices;
SmallBlotSetVector<SILInstruction *, 8> &closureConsumes;
DataflowState(SILOptFunctionBuilder &funcBuilder, UseState &useState,
llvm::SmallMapVector<FullApplySite, SmallBitVector, 8>
&applySiteToPromotedArgIndices,
SmallBlotSetVector<SILInstruction *, 8> &closureConsumes)
: funcBuilder(funcBuilder), useState(useState),
applySiteToPromotedArgIndices(applySiteToPromotedArgIndices),
closureConsumes(closureConsumes) {}
void init();
bool process(
SILValue address, DebugVarCarryingInst addressDebugInst,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers);
bool handleSingleBlockClosure(SILArgument *address,
ClosureOperandState &state);
bool cleanupAllDestroyAddr(
SILValue address, DebugVarCarryingInst addressDebugInst, SILFunction *fn,
SmallBitVector &destroyIndices, SmallBitVector &reinitIndices,
SmallBitVector &consumingClosureIndices,
BasicBlockSet &blocksVisitedWhenProcessingNewTakes,
BasicBlockSet &blocksWithMovesThatAreNowTakes,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers);
void clear() {
useBlocks.clear();
initBlocks.clear();
destroyBlocks.clear();
reinitBlocks.clear();
markMovesThatPropagateDownwards.clear();
closureConsumeBlocks.clear();
closureUseBlocks.clear();
}
};
} // namespace
bool DataflowState::cleanupAllDestroyAddr(
SILValue address, DebugVarCarryingInst addressDebugInst, SILFunction *fn,
SmallBitVector &destroyIndices, SmallBitVector &reinitIndices,
SmallBitVector &consumingClosureIndices,
BasicBlockSet &blocksVisitedWhenProcessingNewTakes,
BasicBlockSet &blocksWithMovesThatAreNowTakes,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers) {
bool madeChange = false;
BasicBlockWorklist worklist(fn);
LLVM_DEBUG(llvm::dbgs() << "Cleanup up destroy addr!\n");
LLVM_DEBUG(llvm::dbgs() << " Visiting destroys!\n");
LLVM_DEBUG(llvm::dbgs() << " Destroy Indices: " << destroyIndices << "\n");
for (int index = destroyIndices.find_first(); index != -1;
index = destroyIndices.find_next(index)) {
LLVM_DEBUG(llvm::dbgs() << " Index: " << index << "\n");
auto dai = useState.destroys[index];
if (!dai)
continue;
LLVM_DEBUG(llvm::dbgs() << " Destroy: " << *dai);
for (auto *predBlock : (*dai)->getParent()->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
LLVM_DEBUG(llvm::dbgs() << " Visiting reinit!\n");
for (int index = reinitIndices.find_first(); index != -1;
index = reinitIndices.find_next(index)) {
auto reinit = useState.reinits[index];
if (!reinit)
continue;
LLVM_DEBUG(llvm::dbgs() << " Reinit: " << **reinit);
for (auto *predBlock : (*reinit)->getParent()->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
LLVM_DEBUG(llvm::dbgs() << " Visiting consuming closures!\n");
for (int index = consumingClosureIndices.find_first(); index != -1;
index = consumingClosureIndices.find_next(index)) {
auto &pair = *std::next(useState.closureUses.begin(), index);
auto *op = pair.first;
LLVM_DEBUG(llvm::dbgs() << " Consuming closure: " << *op->getUser());
for (auto *predBlock : op->getUser()->getParent()->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
LLVM_DEBUG(llvm::dbgs() << "Processing worklist!\n");
while (auto *next = worklist.pop()) {
LLVM_DEBUG(llvm::dbgs()
<< "Looking at block: bb" << next->getDebugID() << "\n");
// Any blocks that contained processed moves are stop points.
if (blocksWithMovesThatAreNowTakes.contains(next)) {
LLVM_DEBUG(llvm::dbgs()
<< " Block contained a move that is now a true take.\n");
continue;
}
// Then if we find that we have a block that was never visited when we
// walked along successor edges from the move, then we know that we need to
// insert a destroy_addr.
//
// This is safe to do since this block lives along the dominance frontier
// and we do not allow for critical edges, so as we walk along predecessors,
// given that any such block must also have a successor that was reachable
// from our move, we know that this unprocessed block must only have one
// successor, a block reachable from our move and thus must not have any
// unhandled uses.
if (!blocksVisitedWhenProcessingNewTakes.contains(next)) {
LLVM_DEBUG(llvm::dbgs() << " Found a block that was not visited when "
"we processed takes of the given move.\n");
// Insert a destroy_addr here since the block isn't reachable from any of
// our moves.
SILBasicBlock::iterator iter;
if (!isa<TermInst>(next->front())) {
iter = std::prev(next->getTerminator()->getIterator());
} else {
iter = next->begin();
}
SILBuilderWithScope builder(iter);
auto *dvi = builder.createDestroyAddr(
RegularLocation::getAutoGeneratedLocation(), address);
// Create a debug_value undef if we have debug info to stop the async dbg
// info propagation from creating debug info for an already destroyed
// value. We use a separate builder since we need to control the debug
// scope/location to get llvm to do the right thing.
if (addressDebugInst) {
if (auto varInfo = addressDebugInst.getVarInfo()) {
// We need to always insert /after/ the reinit since the value will
// not be defined before the value.
SILBuilderWithScope dbgValueInsertBuilder(dvi);
dbgValueInsertBuilder.setCurrentDebugScope(
addressDebugInst->getDebugScope());
dbgValueInsertBuilder.createDebugValue(
(*addressDebugInst)->getLoc(), SILUndef::get(address), *varInfo,
false, UsesMoveableValueDebugInfo);
}
}
useState.destroys.insert(dvi);
continue;
}
// Otherwise, this block is reachable from one of our move blocks, visit
// further predecessors.
for (auto *predBlock : next->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
for (int index = destroyIndices.find_first(); index != -1;
index = destroyIndices.find_next(index)) {
auto destroy = useState.destroys[index];
if (!destroy)
continue;
LLVM_DEBUG(llvm::dbgs() << "Erasing destroy_addr: " << *destroy);
(*destroy)->eraseFromParent();
madeChange = true;
}
for (int index = reinitIndices.find_first(); index != -1;
index = reinitIndices.find_next(index)) {
auto reinit = useState.reinits[index];
if (!reinit)
continue;
LLVM_DEBUG(llvm::dbgs() << "Converting reinit to init: " << *reinit);
convertMemoryReinitToInitForm(*reinit);
// Make sure to create a new debug_value for the reinit value.
if (addressDebugInst) {
if (auto varInfo = addressDebugInst.getVarInfo()) {
// We need to always insert /after/ the reinit since the value will not
// be defined before the value.
SILBuilderWithScope reinitBuilder((*reinit)->getNextInstruction());
reinitBuilder.setCurrentDebugScope(addressDebugInst->getDebugScope());
reinitBuilder.createDebugValue((*addressDebugInst)->getLoc(), address,
*varInfo, false,
UsesMoveableValueDebugInfo);
}
}
madeChange = true;
}
// Check for consuming closures. If we find such a consuming closure, track
// that this full apply site needs to have some parameters converted when we
// are done processing.
//
// NOTE: We do this late to ensure that we only clone a defer exactly once
// rather than multiple times for multiple vars.
for (int index = consumingClosureIndices.find_first(); index != -1;
index = consumingClosureIndices.find_next(index)) {
auto &pair = *std::next(useState.closureUses.begin(), index);
auto *closureUse = pair.first;
if (!closureUse)
continue;
// This is correct today due to us only supporting defer. When we handle
// partial apply, we will need to do more work ehre.
FullApplySite fas(closureUse->getUser());
assert(fas);
unsigned appliedArgIndex = fas.getAppliedArgIndex(*closureUse);
LLVM_DEBUG(llvm::dbgs() << "Processing closure use: " << **fas);
LLVM_DEBUG(llvm::dbgs() << "AppliedArgIndex: " << appliedArgIndex << '\n');
auto &bitVector = applySiteToPromotedArgIndices[fas];
auto conventions = fas.getSubstCalleeConv();
unsigned numNonResultArgs = conventions.getNumSILArguments();
if (bitVector.size() < numNonResultArgs)
bitVector.resize(numNonResultArgs);
bitVector.set(appliedArgIndex);
for (auto *user : pair.second.pairedConsumingInsts) {
closureConsumes.insert(user);
}
}
return madeChange;
}
bool DataflowState::process(
SILValue address, DebugVarCarryingInst addressDebugInst,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers) {
SILFunction *fn = address->getFunction();
assert(fn);
bool madeChange = false;
SmallBitVector indicesOfPairedDestroys;
auto getIndicesOfPairedDestroys = [&]() -> SmallBitVector & {
if (indicesOfPairedDestroys.size() != useState.destroys.size())
indicesOfPairedDestroys.resize(useState.destroys.size());
return indicesOfPairedDestroys;
};
SmallBitVector indicesOfPairedReinits;
auto getIndicesOfPairedReinits = [&]() -> SmallBitVector & {
if (indicesOfPairedReinits.size() != useState.reinits.size())
indicesOfPairedReinits.resize(useState.reinits.size());
return indicesOfPairedReinits;
};
SmallBitVector indicesOfPairedConsumingClosureUses;
auto getIndicesOfPairedConsumingClosureUses = [&]() -> SmallBitVector & {
if (indicesOfPairedConsumingClosureUses.size() !=
useState.closureUses.size())
indicesOfPairedConsumingClosureUses.resize(useState.closureUses.size());
return indicesOfPairedConsumingClosureUses;
};
BasicBlockSet blocksVisitedWhenProcessingNewTakes(fn);
BasicBlockSet blocksWithMovesThatAreNowTakes(fn);
bool convertedMarkMoveToTake = false;
for (auto *mvi : markMovesThatPropagateDownwards) {
bool emittedSingleDiagnostic = false;
LLVM_DEBUG(llvm::dbgs() << "Checking Multi Block Dataflow for: " << *mvi);
LLVM_DEBUG(llvm::dbgs() << " Parent Block: bb"
<< mvi->getParent()->getDebugID() << "\n");
BasicBlockWorklist worklist(fn);
BasicBlockSetVector visitedBlocks(fn);
for (auto *succBlock : mvi->getParent()->getSuccessorBlocks()) {
LLVM_DEBUG(llvm::dbgs()
<< " SuccBlocks: bb" << succBlock->getDebugID() << "\n");
worklist.pushIfNotVisited(succBlock);
visitedBlocks.insert(succBlock);
}
while (auto *next = worklist.pop()) {
LLVM_DEBUG(llvm::dbgs() << "Visiting: bb" << next->getDebugID() << "\n");
// Before we check if we are supposed to stop processing here, check if we
// have a use block. In such a case, emit an error.
//
// NOTE: We do this before since we could have a use before a destroy_addr
// in this block. We would like to error in such a case.
auto iter = useBlocks.find(next);
if (iter != useBlocks.end()) {
LLVM_DEBUG(llvm::dbgs() << " Is Use Block! Emitting Error!\n");
// We found one! Emit the diagnostic and continue and see if we can get
// more diagnostics.
auto &astContext = fn->getASTContext();
{
auto diag =
diag::sil_movechecking_value_used_after_consume;
StringRef name = getDebugVarName(address);
diagnose(astContext, getSourceLocFromValue(address), diag, name);
}
{
auto diag = diag::sil_movechecking_consuming_use_here;
if (auto sourceLoc = mvi->getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc, diag);
}
}
{
auto diag = diag::sil_movechecking_nonconsuming_use_here;
if (auto sourceLoc = iter->second->getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc, diag);
}
}
emittedSingleDiagnostic = true;
break;
}
// Now see if we have a closure use.
{
auto iter = closureUseBlocks.find(next);
if (iter != closureUseBlocks.end()) {
LLVM_DEBUG(llvm::dbgs()
<< " Is Use Block From Closure! Emitting Error!\n");
// We found one! Emit the diagnostic and continue and see if we can
// get more diagnostics.
auto &astContext = fn->getASTContext();
{
auto diag =
diag::sil_movechecking_value_used_after_consume;
StringRef name = getDebugVarName(address);
diagnose(astContext, getSourceLocFromValue(address), diag, name);
}
{
auto diag = diag::sil_movechecking_consuming_use_here;
if (auto sourceLoc = mvi->getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc, diag);
}
}
{
auto diag = diag::sil_movechecking_nonconsuming_use_here;
for (auto *user : iter->second->pairedUseInsts) {
if (auto sourceLoc = user->getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc, diag);
}
}
}
emittedSingleDiagnostic = true;
break;
}
}
// Then see if this is a destroy block. If so, do not add successors and
// continue. This is because we stop processing at destroy_addr. This
// destroy_addr is paired with the mark_unresolved_move_addr.
{
auto iter = destroyBlocks.find(next);
if (iter != destroyBlocks.end()) {
LLVM_DEBUG(llvm::dbgs() << " Is Destroy Block! Setting up for "
"later deletion if possible!\n");
auto indexIter = useState.destroyToIndexMap.find(iter->second);
assert(indexIter != useState.destroyToIndexMap.end());
getIndicesOfPairedDestroys().set(indexIter->second);
continue;
}
}
{
auto iter = reinitBlocks.find(next);
if (iter != reinitBlocks.end()) {
LLVM_DEBUG(llvm::dbgs() << " Is reinit Block! Setting up for "
"later deletion if possible!\n");
auto indexIter = useState.reinitToIndexMap.find(iter->second);
assert(indexIter != useState.reinitToIndexMap.end());
getIndicesOfPairedReinits().set(indexIter->second);
continue;
}
}
{
auto iter = closureConsumeBlocks.find(next);
if (iter != closureConsumeBlocks.end()) {
LLVM_DEBUG(llvm::dbgs() << " Is reinit Block! Setting up for "
"later deletion if possible!\n");
auto indexIter = useState.closureOperandToIndexMap.find(iter->second);
assert(indexIter != useState.closureOperandToIndexMap.end());
getIndicesOfPairedConsumingClosureUses().set(indexIter->second);
continue;
}
}
// Then see if this is an init block. If so, do not add successors and
// continue. We already checked that we are not destroy up in this block
// by the check a few lines up. So we know that we are in one of the
// following situations:
//
// 1. We are the only use in the block. In this case, we must have
// consumed the value with a non-destroy_addr earlier (e.x.: apply). In
// such a case, we need to just stop processing since we are re-initing
// memory for a var.
//
// 2. There is a consuming use that is treated as a consuming use before
// us. In that case, we will have already errored upon it.
if (initBlocks.count(next)) {
LLVM_DEBUG(llvm::dbgs() << " Is Init Block!\n");
continue;
}
LLVM_DEBUG(
llvm::dbgs()
<< " No match! Pushing unvisited successors onto the worklist!\n");
// Otherwise, add successors if we haven't visited them to the worklist.
for (auto *succBlock : next->getSuccessorBlocks()) {
worklist.pushIfNotVisited(succBlock);
visitedBlocks.insert(succBlock);
}
}
// At this point, we know that if we emitted a diagnostic, we need to
// convert the move to a copy_addr [init] since we found a use that violates
// the move. We just want to emit correct IR without the
// mark_unresolved_move_addr within it.
blocksWithMovesThatAreNowTakes.insert(mvi->getParent());
SILBuilderWithScope builder(mvi);
if (emittedSingleDiagnostic) {
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(),
IsNotTake, IsInitialization);
} else {
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(),
IsTake, IsInitialization);
// Now that we have processed all of our mark_moves, eliminate all of the
// destroy_addr and set our debug value as being moved.
if (addressDebugInst) {
addressDebugInst.markAsMoved();
if (auto varInfo = addressDebugInst.getVarInfo()) {
SILBuilderWithScope undefBuilder(builder);
undefBuilder.setCurrentDebugScope(addressDebugInst->getDebugScope());
undefBuilder.createDebugValue(
addressDebugInst->getLoc(), SILUndef::get(address), *varInfo,
false /*poison*/, UsesMoveableValueDebugInfo);
}
}
// Flush our SetVector into the visitedByNewMove.
for (auto *block : visitedBlocks) {
blocksVisitedWhenProcessingNewTakes.insert(block);
}
convertedMarkMoveToTake = true;
}
mvi->eraseFromParent();
madeChange = true;
}
if (!convertedMarkMoveToTake)
return madeChange;
// Now that we have processed all of our mark_moves, eliminate all of the
// destroy_addr.
madeChange |= cleanupAllDestroyAddr(
address, addressDebugInst, fn, getIndicesOfPairedDestroys(),
getIndicesOfPairedReinits(), getIndicesOfPairedConsumingClosureUses(),
blocksVisitedWhenProcessingNewTakes, blocksWithMovesThatAreNowTakes,
postDominatingConsumingUsers);
return madeChange;
}
void DataflowState::init() {
// Go through all init uses and if we don't see any other of our uses, then
// mark this as an "init block".
for (auto *init : useState.inits) {
if (upwardScanForInit(init, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found use block during DataflowState::init at: " << *init);
initBlocks.insert(init->getParent());
}
}
// Then go through all normal uses and do upwardScanForUseOut.
for (auto *user : useState.livenessUses) {
if (upwardScanForUseOut(user, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found liveness block during DataflowState::init at: " << *user);
useBlocks[user->getParent()] = user;
}
}
for (auto destroyOpt : useState.destroys) {
// Any destroys we eliminated when processing single basic blocks will be
// nullptr. Skip them!
if (!destroyOpt)
continue;
auto *destroy = *destroyOpt;
auto iter = useState.destroyToIndexMap.find(destroy);
assert(iter != useState.destroyToIndexMap.end());
if (upwardScanForDestroys(destroy, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found destroy block during DataflowState::init at: " << *destroy);
destroyBlocks[destroy->getParent()] = destroy;
}
}
for (auto reinitOpt : useState.reinits) {
// Any destroys we eliminated when processing single basic blocks will be
// nullptr. Skip them!
if (!reinitOpt)
continue;
auto *reinit = *reinitOpt;
auto iter = useState.reinitToIndexMap.find(reinit);
assert(iter != useState.reinitToIndexMap.end());
if (upwardScanForDestroys(reinit, useState)) {
LLVM_DEBUG(llvm::dbgs() << " Found reinit block during DataflowState::init at: " << *reinit);
reinitBlocks[reinit->getParent()] = reinit;
}
}
for (auto &closureUse : useState.closureUses) {
auto *use = closureUse.first;
auto &state = closureUse.second;
auto *user = use->getUser();
switch (state.result) {
case DownwardScanResult::Invalid:
case DownwardScanResult::Destroy:
case DownwardScanResult::Reinit:
case DownwardScanResult::UseForDiagnostic:
case DownwardScanResult::MoveOut:
llvm_unreachable("unhandled");
case DownwardScanResult::ClosureUse:
if (upwardScanForUseOut(user, useState)) {
LLVM_DEBUG(llvm::dbgs()
<< " Found closure liveness block during DataflowState::init at: " << *user);
closureUseBlocks[user->getParent()] = &state;
}
break;
case DownwardScanResult::ClosureConsume:
if (upwardScanForDestroys(user, useState)) {
LLVM_DEBUG(llvm::dbgs()
<< " Found closure consuming block during DataflowState::init at: " << *user);
closureConsumeBlocks[user->getParent()] = use;
}
break;
}
}
}
//===----------------------------------------------------------------------===//
// Address Checker
//===----------------------------------------------------------------------===//
namespace {
struct ConsumeOperatorCopyableAddressesChecker {
SILFunction *fn;
UseState useState;
DataflowState dataflowState;
UseState closureUseState;
SILOptFunctionBuilder &funcBuilder;
llvm::SmallMapVector<FullApplySite, SmallBitVector, 8>
applySiteToPromotedArgIndices;
SmallBlotSetVector<SILInstruction *, 8> closureConsumes;
ConsumeOperatorCopyableAddressesChecker(SILFunction *fn,
SILOptFunctionBuilder &funcBuilder)
: fn(fn), useState(),
dataflowState(funcBuilder, useState, applySiteToPromotedArgIndices,
closureConsumes),
closureUseState(), funcBuilder(funcBuilder) {}
void cloneDeferCalleeAndRewriteUses(
SmallVectorImpl<SILValue> &temporaryStorage,
const SmallBitVector &bitVector, FullApplySite oldApplySite,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers);
bool check(SILValue address);
bool performClosureDataflow(Operand *callerOperand,
ClosureOperandState &calleeOperandState);
void emitDiagnosticForMove(SILValue borrowedValue,
StringRef borrowedValueName, MoveValueInst *mvi);
bool performSingleBasicBlockAnalysis(SILValue address,
DebugVarCarryingInst addressDebugInst,
MarkUnresolvedMoveAddrInst *mvi);
ASTContext &getASTContext() const { return fn->getASTContext(); }
};
} // namespace
void ConsumeOperatorCopyableAddressesChecker::cloneDeferCalleeAndRewriteUses(
SmallVectorImpl<SILValue> &newArgs, const SmallBitVector &bitVector,
FullApplySite oldApplySite,
SmallBlotSetVector<SILInstruction *, 8> &postDominatingConsumingUsers) {
auto *origCallee = oldApplySite.getReferencedFunctionOrNull();
assert(origCallee);
auto name =
getClonedName(origCallee, origCallee->getSerializedKind(), bitVector);
SILFunction *newCallee = nullptr;
if (auto *fn = origCallee->getModule().lookUpFunction(name)) {
newCallee = fn;
} else {
ClosureArgumentInOutToOutCloner cloner(
funcBuilder, origCallee, origCallee->getSerializedKind(),
postDominatingConsumingUsers, bitVector, name);
cloner.populateCloned();
newCallee = cloner.getCloned();
}
assert(newCallee);
// Ok, we now have populated our new callee. We need to create a new full
// apply site that calls the new function appropriately.
SWIFT_DEFER { newArgs.clear(); };
// First add all of our old results to newArgs.
auto oldConv = oldApplySite.getSubstCalleeConv();
for (unsigned i : range(oldConv.getSILArgIndexOfFirstIndirectResult(),
oldConv.getSILArgIndexOfFirstParam())) {
newArgs.push_back(oldApplySite->getOperand(i));
}
// Now add all of our new out params.
for (int i = bitVector.find_first(); i != -1; i = bitVector.find_next(i)) {
unsigned appliedArgIndex =
oldApplySite.getOperandIndexOfFirstArgument() + i;
newArgs.push_back(oldApplySite->getOperand(appliedArgIndex));
}
// Finally, add all of the rest of our arguments, skipping our new out
// parameters.
for (unsigned i : range(oldConv.getSILArgIndexOfFirstParam(),
oldConv.getNumSILArguments())) {
if (bitVector.test(i))
continue;
unsigned appliedArgIndex =
oldApplySite.getOperandIndexOfFirstArgument() + i;
newArgs.push_back(oldApplySite->getOperand(appliedArgIndex));
}
// Then create our new apply.
SILBuilderWithScope builder(*oldApplySite);
auto *newCalleeRef =
builder.createFunctionRef(oldApplySite->getLoc(), newCallee);
auto *newApply =
builder.createApply(oldApplySite->getLoc(), newCalleeRef,
oldApplySite.getSubstitutionMap(), newArgs);
oldApplySite->replaceAllUsesPairwiseWith(newApply);
oldApplySite->eraseFromParent();
}
bool ConsumeOperatorCopyableAddressesChecker::performClosureDataflow(
Operand *callerOperand, ClosureOperandState &calleeOperandState) {
auto fas = FullApplySite::isa(callerOperand->getUser());
auto *callee = fas.getCalleeFunction();
auto *address =
callee->begin()->getArgument(fas.getCalleeArgIndex(*callerOperand));
LLVM_DEBUG(llvm::dbgs() << "Performing closure dataflow on caller use: "
<< *callerOperand->getUser());
LLVM_DEBUG(llvm::dbgs() << " Callee: " << callee->getName() << '\n');
LLVM_DEBUG(llvm::dbgs() << " Callee Argument: " << *address);
// We emit an end closure dataflow to make it easier when reading debug output
// to make it easy to see when we have returned to analyzing the caller.
SWIFT_DEFER {
LLVM_DEBUG(llvm::dbgs()
<< "Finished performing closure dataflow on Callee: "
<< callee->getName() << '\n';);
};
auto accessPathWithBase = AccessPathWithBase::compute(address);
auto accessPath = accessPathWithBase.accessPath;
// Bail on an invalid AccessPath.
//
// AccessPath completeness is verified independently--it may be invalid in
// extraordinary situations. When AccessPath is valid, we know all its uses
// are recognizable.
//
// NOTE: If due to an invalid access path we fail here, we will just error
// on the _move since the _move would not have been handled.
if (!accessPath.isValid())
return false;
// TODO: Hoist this useState into an ivar that we can reuse in between closure
// operands?
GatherClosureUseVisitor visitor(closureUseState);
SWIFT_DEFER { visitor.clear(); };
visitor.reset(address);
if (!visitAccessPathUses(visitor, accessPath, callee))
return false;
ClosureArgDataflowState closureUseDataflowState(callee, closureUseState);
return closureUseDataflowState.process(address, calleeOperandState,
closureConsumes);
}
struct MoveConstraint {
enum Value : uint8_t {
None,
RequiresReinit,
Illegal,
} value;
operator Value() { return value; }
MoveConstraint(Value value) : value(value) {}
static MoveConstraint forGuaranteed(bool guaranteed) {
return guaranteed ? Illegal : None;
}
bool isIllegal() { return value == Illegal; }
};
static MoveConstraint getMoveConstraint(SILValue addr) {
assert(addr->getType().isAddress());
auto access = AccessPathWithBase::computeInScope(addr);
auto base = access.getAccessBase();
switch (access.accessPath.getStorage().getKind()) {
case AccessRepresentation::Kind::Box:
// Even if the box is guaranteed, it may be permitted to consume its
// storage.
return MoveConstraint::None;
case AccessRepresentation::Kind::Stack: {
// An alloc_stack is guaranteed if it's a "store_borrow destination".
auto *asi = cast<AllocStackInst>(base.getBaseAddress());
return MoveConstraint::forGuaranteed(
!asi->getUsersOfType<StoreBorrowInst>().empty());
}
case AccessRepresentation::Kind::Global:
// A global can be consumed if it's reinitialized.
return MoveConstraint::RequiresReinit;
case AccessRepresentation::Kind::Class:
// A class field can be consumed if it's reinitialized.
return MoveConstraint::RequiresReinit;
case AccessRepresentation::Kind::Tail:
// A class field can be consumed if it's reinitialized.
return MoveConstraint::RequiresReinit;
case AccessRepresentation::Kind::Argument: {
// An indirect argument is guaranteed if it's @in_guaranteed.
auto *arg = base.getArgument();
return MoveConstraint::forGuaranteed(
arg->getArgumentConvention().isGuaranteedConvention());
}
case AccessRepresentation::Kind::Yield: {
auto baseAddr = base.getBaseAddress();
auto *bai = cast<BeginApplyInst>(
cast<MultipleValueInstructionResult>(baseAddr)->getParent());
auto index = *bai->getIndexOfResult(baseAddr);
auto info = bai->getSubstCalleeConv().getYieldInfoForOperandIndex(index);
return MoveConstraint::forGuaranteed(!info.isConsumed());
}
case AccessRepresentation::Kind::Nested: {
auto *bai = cast<BeginAccessInst>(base.getBaseAddress());
if (bai->getAccessKind() == SILAccessKind::Init ||
bai->getAccessKind() == SILAccessKind::Read)
return MoveConstraint::Illegal;
// Allow moves from both modify and deinit.
return MoveConstraint::None;
}
case AccessRepresentation::Kind::Unidentified:
// Conservatively reject for now.
return MoveConstraint::Illegal;
}
}
// Returns true if we emitted a diagnostic and handled the single block
// case. Returns false if we visited all of the uses and seeded the UseState
// struct with the information needed to perform our interprocedural dataflow.
bool ConsumeOperatorCopyableAddressesChecker::performSingleBasicBlockAnalysis(
SILValue address, DebugVarCarryingInst addressDebugInst,
MarkUnresolvedMoveAddrInst *mvi) {
if (getMoveConstraint(mvi->getSrc()).isIllegal()) {
auto &astCtx = mvi->getFunction()->getASTContext();
StringRef name = getDebugVarName(address);
diagnose(astCtx, getSourceLocFromValue(address),
diag::sil_movechecking_guaranteed_value_consumed, name);
diagnose(astCtx, mvi->getLoc().getSourceLoc(),
diag::sil_movechecking_consuming_use_here);
// Replace the marker instruction with a copy_addr to avoid subsequent
// diagnostics.
SILBuilderWithScope builder(mvi);
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(),
IsNotTake, IsInitialization);
mvi->eraseFromParent();
return true;
}
// First scan downwards to make sure we are move out of this block.
auto &useState = dataflowState.useState;
auto &applySiteToPromotedArgIndices =
dataflowState.applySiteToPromotedArgIndices;
auto &closureConsumes = dataflowState.closureConsumes;
SILInstruction *interestingUser = nullptr;
Operand *interestingUse = nullptr;
TinyPtrVector<SILInstruction *> interestingClosureUsers;
switch (downwardScanForMoveOut(mvi, useState, &interestingUser,
&interestingUse, interestingClosureUsers)) {
case DownwardScanResult::Invalid:
llvm_unreachable("invalid");
case DownwardScanResult::Destroy: {
assert(!interestingUse);
assert(interestingUser);
// If we found a destroy, then we found a single block case that we can
// handle. Remove the destroy and convert the mark_unresolved_move_addr
// into a true move.
auto *dvi = cast<DestroyAddrInst>(interestingUser);
SILBuilderWithScope builder(mvi);
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(), IsTake,
IsInitialization);
// Also, mark the alloc_stack as being moved at some point.
if (addressDebugInst) {
if (auto varInfo = addressDebugInst.getVarInfo()) {
SILBuilderWithScope undefBuilder(builder);
undefBuilder.setCurrentDebugScope(addressDebugInst->getDebugScope());
undefBuilder.createDebugValue(addressDebugInst->getLoc(),
SILUndef::get(address), *varInfo, false,
UsesMoveableValueDebugInfo);
}
addressDebugInst.markAsMoved();
}
useState.destroys.erase(dvi);
mvi->eraseFromParent();
dvi->eraseFromParent();
return false;
}
case DownwardScanResult::ClosureUse: {
assert(interestingUse);
assert(interestingUser);
// Then check if we found a user that violated our dataflow rules. In such
// a case, emit an error, cleanup our mark_unresolved_move_addr, and
// finally continue.
auto &astCtx = mvi->getFunction()->getASTContext();
{
auto diag =
diag::sil_movechecking_value_used_after_consume;
StringRef name = getDebugVarName(address);
diagnose(astCtx, getSourceLocFromValue(address), diag, name);
}
auto diag = diag::sil_movechecking_consuming_use_here;
if (auto sourceLoc = mvi->getLoc().getSourceLoc()) {
diagnose(astCtx, sourceLoc, diag);
}
{
auto diag = diag::sil_movechecking_nonconsuming_use_here;
for (auto *user : interestingClosureUsers) {
if (auto sourceLoc = user->getLoc().getSourceLoc()) {
diagnose(astCtx, sourceLoc, diag);
}
}
}
// We purposely continue to see if at least in simple cases, we can flag
// mistakes from other moves. Since we are setting emittedDiagnostic to
// true, we will not perform the actual dataflow due to a check after
// the loop.
//
// We also clean up mvi by converting it to a copy_addr init so we do not
// emit fail errors later.
//
// TODO: Can we handle multiple errors in the same block for a single
// move?
SILBuilderWithScope builder(mvi);
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(),
IsNotTake, IsInitialization);
mvi->eraseFromParent();
return true;
}
case DownwardScanResult::UseForDiagnostic: {
assert(!interestingUse);
assert(interestingUser);
// Then check if we found a user that violated our dataflow rules. In such
// a case, emit an error, cleanup our mark_unresolved_move_addr, and
// finally continue.
auto &astCtx = mvi->getFunction()->getASTContext();
{
auto diag =
diag::sil_movechecking_value_used_after_consume;
StringRef name = getDebugVarName(address);
diagnose(astCtx, getSourceLocFromValue(address), diag, name);
}
{
auto diag = diag::sil_movechecking_consuming_use_here;
if (auto sourceLoc = mvi->getLoc().getSourceLoc()) {
diagnose(astCtx, sourceLoc, diag);
}
}
{
auto diag = diag::sil_movechecking_nonconsuming_use_here;
if (auto sourceLoc = interestingUser->getLoc().getSourceLoc()) {
diagnose(astCtx, sourceLoc, diag);
}
}
// We purposely continue to see if at least in simple cases, we can flag
// mistakes from other moves. Since we are setting emittedDiagnostic to
// true, we will not perform the actual dataflow due to a check after
// the loop.
//
// We also clean up mvi by converting it to a copy_addr init so we do not
// emit fail errors later.
//
// TODO: Can we handle multiple errors in the same block for a single
// move?
SILBuilderWithScope builder(mvi);
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(),
IsNotTake, IsInitialization);
mvi->eraseFromParent();
return true;
}
case DownwardScanResult::Reinit: {
assert(!interestingUse);
assert(interestingUser);
// If we have a reinit, then we have a successful move.
convertMemoryReinitToInitForm(interestingUser);
useState.reinits.erase(interestingUser);
SILBuilderWithScope builder(mvi);
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(), IsTake,
IsInitialization);
if (addressDebugInst) {
if (auto varInfo = addressDebugInst.getVarInfo()) {
{
SILBuilderWithScope undefBuilder(builder);
undefBuilder.setCurrentDebugScope(addressDebugInst->getDebugScope());
undefBuilder.createDebugValue(addressDebugInst->getLoc(),
SILUndef::get(address), *varInfo, false,
UsesMoveableValueDebugInfo);
}
{
// Make sure at the reinit point to create a new debug value after the
// reinit instruction so we reshow the variable.
auto *next = interestingUser->getNextInstruction();
SILBuilderWithScope reinitBuilder(next);
reinitBuilder.setCurrentDebugScope(addressDebugInst->getDebugScope());
reinitBuilder.createDebugValue(addressDebugInst->getLoc(), address,
*varInfo, false,
UsesMoveableValueDebugInfo);
}
}
addressDebugInst.markAsMoved();
}
mvi->eraseFromParent();
return false;
}
case DownwardScanResult::ClosureConsume: {
assert(interestingUse);
assert(interestingUser);
// If we found a closure consume, then we found a single block case that we
// can handle. Remove the destroys/reinit, register the specific.
SILBuilderWithScope builder(mvi);
builder.createCopyAddr(mvi->getLoc(), mvi->getSrc(), mvi->getDest(), IsTake,
IsInitialization);
// This is correct today due to us only supporting defer. When we handle
// partial apply, we will need to do more work ehre.
FullApplySite fas(interestingUser);
assert(fas);
auto &bitVector = applySiteToPromotedArgIndices[fas];
auto conventions = fas.getSubstCalleeConv();
unsigned numNonResultArgs = conventions.getNumSILArguments();
if (bitVector.size() < numNonResultArgs)
bitVector.resize(numNonResultArgs);
bitVector.set(fas.getAppliedArgIndex(*interestingUse));
for (auto *user : interestingClosureUsers) {
closureConsumes.insert(user);
}
LLVM_DEBUG(llvm::dbgs() << "Found apply site to clone: " << **fas);
LLVM_DEBUG(llvm::dbgs() << "BitVector: ";
dumpBitVector(llvm::dbgs(), bitVector); llvm::dbgs() << '\n');
if (addressDebugInst) {
if (auto varInfo = addressDebugInst.getVarInfo()) {
SILBuilderWithScope undefBuilder(builder);
undefBuilder.setCurrentDebugScope(addressDebugInst->getDebugScope());
undefBuilder.createDebugValue(addressDebugInst->getLoc(),
SILUndef::get(address), *varInfo, false,
UsesMoveableValueDebugInfo);
}
addressDebugInst.markAsMoved();
}
mvi->eraseFromParent();
return false;
}
case DownwardScanResult::MoveOut:
assert(!interestingUse);
assert(!interestingUser);
break;
}
// If we did not found any uses later in the block that was an interesting
// use, we need to perform dataflow.
LLVM_DEBUG(llvm::dbgs() << "Our move is live out, so we need to process "
"it with the dataflow.\n");
dataflowState.markMovesThatPropagateDownwards.emplace_back(mvi);
// Now scan up to see if mvi is also a use to seed the dataflow. This could
// happen if we have an earlier move.
if (upwardScanForUseOut(mvi, dataflowState.useState)) {
LLVM_DEBUG(llvm::dbgs() << "MVI projects a use up");
dataflowState.useBlocks[mvi->getParent()] = mvi;
}
return false;
}
bool ConsumeOperatorCopyableAddressesChecker::check(SILValue address) {
auto accessPathWithBase = AccessPathWithBase::compute(address);
auto accessPath = accessPathWithBase.accessPath;
// Bail on an invalid AccessPath.
//
// AccessPath completeness is verified independently--it may be invalid in
// extraordinary situations. When AccessPath is valid, we know all its uses
// are recognizable.
//
// NOTE: If due to an invalid access path we fail here, we will just error
// on the _move since the _move would not have been handled.
if (!accessPath.isValid())
return false;
GatherLexicalLifetimeUseVisitor visitor(useState);
SWIFT_DEFER { visitor.clear(); };
visitor.reset(address);
if (!visitAccessPathUses(visitor, accessPath, fn))
return false;
// See if our base address is an inout. If we found any moves, add as a
// liveness use all function terminators.
if (auto *fArg = dyn_cast<SILFunctionArgument>(address)) {
if (fArg->hasConvention(SILArgumentConvention::Indirect_Inout)) {
if (visitor.useState.markMoves.size()) {
SmallVector<SILBasicBlock *, 2> exitingBlocks;
fn->findExitingBlocks(exitingBlocks);
for (auto *block : exitingBlocks) {
visitor.useState.livenessUses.insert(block->getTerminator());
}
}
}
}
// Now initialize our data structures.
SWIFT_DEFER { dataflowState.clear(); };
// First go through and perform dataflow on each of the closures our address
// depends on. We do not have to worry about other unrelated addresses from
// being passed to the defer in our argument slot since address phis are
// banned in canonical SIL.
//
// This summary will let us treat the whole closure's effect on the closure
// operand as if it was a single instruction.
for (auto &pair : useState.closureUses) {
auto *operand = pair.first;
auto &closureState = pair.second;
if (!performClosureDataflow(operand, closureState)) {
LLVM_DEBUG(llvm::dbgs()
<< "!! Early exit due to failing to analyze closure operand: "
<< *operand->getUser());
return false;
}
}
// Perform the single basic block analysis emitting a diagnostic/pairing
// mark_unresolved_move_addr and destroys if needed. If we discover a
// mark_move that propagates its state out of the current block, this
// routine also prepares the pass for running the multi-basic block
// diagnostic.
bool emittedSingleBBDiagnostic = false;
// Before we process any moves, gather the debug inst associated with our
// address.
//
// NOTE: The reason why we do this early is that we rely on our address
// initially having a single DebugValueCarryingInst (either an alloc_stack
// itself or a debug_value associated with an argument). If we do this while
// processing, as we insert additional debug info we will cause this condition
// to begin failing.
auto addressDebugInst = DebugVarCarryingInst::getFromValue(address);
for (auto *mvi : useState.markMoves) {
LLVM_DEBUG(llvm::dbgs() << "Performing single block analysis on: " << *mvi);
emittedSingleBBDiagnostic |=
performSingleBasicBlockAnalysis(address, addressDebugInst, mvi);
}
if (emittedSingleBBDiagnostic) {
LLVM_DEBUG(llvm::dbgs()
<< "Performed single block analysis and found error!\n");
return true;
}
// Then check if we do not need to propagate down any mark moves. In that
// case, since we did not emit an error but we did not have any
if (dataflowState.markMovesThatPropagateDownwards.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Single block analysis handled all cases "
"without finding an error!\n");
return true;
}
// Ok, we need to perform global dataflow for one of our moves. Initialize our
// dataflow state engine and then run the dataflow itself.
dataflowState.init();
bool result =
dataflowState.process(address, addressDebugInst, closureConsumes);
return result;
}
//===----------------------------------------------------------------------===//
// MARK: Unsupported Use Case Errors
//===----------------------------------------------------------------------===//
namespace {
struct UnsupportedUseCaseDiagnosticEmitter {
MarkUnresolvedMoveAddrInst *mai;
~UnsupportedUseCaseDiagnosticEmitter() {
assert(!mai && "Didn't call cleanup!\n");
}
bool cleanup() && {
// Now that we have emitted the error, replace the move_addr with a
// copy_addr so that future passes never see it. We mark it as a
// copy_addr [init].
SILBuilderWithScope builder(mai);
builder.createCopyAddr(mai->getLoc(), mai->getSrc(), mai->getDest(),
IsNotTake, IsInitialization);
mai->eraseFromParent();
mai = nullptr;
return true;
}
ASTContext &getASTContext() const { return mai->getModule().getASTContext(); }
void emitUnsupportedUseCaseError() const {
auto diag =
diag::sil_movekillscopyablevalue_move_applied_to_unsupported_move;
diagnose(getASTContext(), mai->getLoc().getSourceLoc(), diag);
}
/// Try to pattern match if we were trying to move a global. In such a case,
/// emit a better error.
bool tryEmitCannotConsumeNonLocalMemoryError() const {
auto src = stripAccessMarkers(mai->getSrc());
if (auto *gai = dyn_cast<GlobalAddrInst>(src)) {
auto diag = diag::sil_movekillscopyable_move_applied_to_nonlocal_memory;
diagnose(getASTContext(), mai->getLoc().getSourceLoc(), diag, 0);
return true;
}
// If we have a project_box, then we must have an escaping capture. It is
// the only case that allocbox to stack doesn't handle today.
if (isa<ProjectBoxInst>(src)) {
auto diag = diag::sil_movekillscopyable_move_applied_to_nonlocal_memory;
diagnose(getASTContext(), mai->getLoc().getSourceLoc(), diag, 1);
return true;
}
return false;
}
void emit() const {
if (tryEmitCannotConsumeNonLocalMemoryError())
return;
emitUnsupportedUseCaseError();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
namespace {
class ConsumeOperatorCopyableAddressesCheckerPass
: public SILFunctionTransform {
void run() override {
auto *fn = getFunction();
// Don't rerun diagnostics on deserialized functions.
if (getFunction()->wasDeserializedCanonical())
return;
assert(fn->getModule().getStage() == SILStage::Raw &&
"Should only run on Raw SIL");
llvm::SmallSetVector<SILValue, 32> addressesToCheck;
for (auto *arg : fn->front().getSILFunctionArguments()) {
if (arg->getType().isAddress() &&
(arg->hasConvention(SILArgumentConvention::Indirect_In) ||
arg->hasConvention(SILArgumentConvention::Indirect_In_Guaranteed) ||
arg->hasConvention(SILArgumentConvention::Indirect_Inout) ||
arg->hasConvention(SILArgumentConvention::Indirect_InoutAliasable)))
addressesToCheck.insert(arg);
}
for (auto &block : *fn) {
for (auto ii = block.begin(), ie = block.end(); ii != ie;) {
auto *inst = &*ii;
++ii;
if (auto *asi = dyn_cast<AllocStackInst>(inst)) {
// Only check var_decl alloc_stack insts.
if (asi->isFromVarDecl()) {
LLVM_DEBUG(llvm::dbgs() << "Found lexical alloc_stack: " << *asi);
addressesToCheck.insert(asi);
continue;
}
}
}
}
LLVM_DEBUG(llvm::dbgs() << "Visiting Function: " << fn->getName() << "\n");
auto addressToProcess =
llvm::ArrayRef(addressesToCheck.begin(), addressesToCheck.end());
SILOptFunctionBuilder funcBuilder(*this);
ConsumeOperatorCopyableAddressesChecker checker(getFunction(), funcBuilder);
bool madeChange = false;
while (!addressToProcess.empty()) {
auto address = addressToProcess.front();
addressToProcess = addressToProcess.drop_front(1);
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << *address);
madeChange |= checker.check(address);
}
if (madeChange) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
// Now go through and clone any apply sites that we need to clone.
SmallVector<SILValue, 8> newArgs;
bool rewroteCallee = false;
for (auto &pair : checker.applySiteToPromotedArgIndices) {
SWIFT_DEFER { newArgs.clear(); };
auto fas = pair.first;
auto &bitVector = pair.second;
LLVM_DEBUG(llvm::dbgs() << "CLONING APPLYSITE: " << **fas);
LLVM_DEBUG(llvm::dbgs() << "BitVector: ";
dumpBitVector(llvm::dbgs(), bitVector); llvm::dbgs() << '\n');
checker.cloneDeferCalleeAndRewriteUses(newArgs, bitVector, fas,
checker.closureConsumes);
rewroteCallee = true;
}
if (rewroteCallee)
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
// Now search through our function one last time and any move_value
// [allows_diagnostics] that remain are ones that we did not know how to
// check so emit a diagnostic so the user doesn't assume that they have
// guarantees. This gives us the guarantee that any moves written by the
// user must have been properly resolved and thus maintain that all move
// uses have been resolved appropriately.
//
// TODO: Emit specific diagnostics here (e.x.: _move of global).
if (DisableUnhandledConsumeOperator)
return;
bool lateMadeChange = false;
for (auto &block : *fn) {
for (auto ii = block.begin(), ie = block.end(); ii != ie;) {
auto *inst = &*ii;
++ii;
if (auto *mai = dyn_cast<MarkUnresolvedMoveAddrInst>(inst)) {
UnsupportedUseCaseDiagnosticEmitter emitter{mai};
emitter.emit();
std::move(emitter).cleanup();
lateMadeChange = true;
}
}
}
if (lateMadeChange)
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
};
} // anonymous namespace
SILTransform *swift::createConsumeOperatorCopyableAddressesChecker() {
return new ConsumeOperatorCopyableAddressesCheckerPass();
}
|