1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
//===--- ConsumeOperatorCopyableValuesChecker.cpp -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-consume-operator-copyable-values-checker"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/ClosureScope.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
using namespace swift;
static llvm::cl::opt<bool> DisableUnhandledMoveDiagnostic(
"sil-consume-operator-disable-unknown-move-diagnostic");
//===----------------------------------------------------------------------===//
// Diagnostic Utilities
//===----------------------------------------------------------------------===//
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
//===----------------------------------------------------------------------===//
// Canonical Liveness
//===----------------------------------------------------------------------===//
namespace {
struct CheckerLivenessInfo {
GraphNodeWorklist<SILValue, 8> defUseWorklist;
llvm::SmallSetVector<Operand *, 8> consumingUse;
llvm::SmallSetVector<SILInstruction *, 8> nonLifetimeEndingUsesInLiveOut;
SmallVector<Operand *, 8> interiorPointerTransitiveUses;
BitfieldRef<DiagnosticPrunedLiveness> liveness;
CheckerLivenessInfo() : nonLifetimeEndingUsesInLiveOut() {}
void initDef(SILValue def) {
liveness->initializeDef(def);
defUseWorklist.insert(def);
}
/// Compute the liveness for any value currently in the defUseWorklist.
///
/// Returns false if we found any escapes. Returns true if no escape uses were
/// found. NOTE: Even if we return false, we still visit all uses and compute
/// liveness normally. We may just be missing uses through the escaping use.
bool compute();
void clear() {
defUseWorklist.clear();
consumingUse.clear();
interiorPointerTransitiveUses.clear();
nonLifetimeEndingUsesInLiveOut.clear();
}
};
} // end anonymous namespace
bool CheckerLivenessInfo::compute() {
LLVM_DEBUG(llvm::dbgs() << "LivenessVisitor Begin!\n");
while (SILValue value = defUseWorklist.pop()) {
LLVM_DEBUG(llvm::dbgs() << "New Value: " << value);
SWIFT_DEFER { LLVM_DEBUG(llvm::dbgs() << "Finished Value: " << value); };
for (Operand *use : value->getUses()) {
auto *user = use->getUser();
LLVM_DEBUG(llvm::dbgs() << " User: " << *user);
// Recurse through copies.
if (auto *copy = dyn_cast<CopyValueInst>(user)) {
LLVM_DEBUG(llvm::dbgs() << " Copy Value. Looking through it\n");
defUseWorklist.insert(copy);
continue;
}
LLVM_DEBUG(llvm::dbgs() << " OperandOwnership: "
<< use->getOperandOwnership() << '\n');
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
break;
case OperandOwnership::TrivialUse:
llvm_unreachable("this operand cannot handle ownership");
// Conservatively treat a conversion to an unowned value as a pointer
// escape. Is it legal to canonicalize ForwardingUnowned?
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
// This is an escape but it is up to the user to handle this, move
// checking stops here.
break;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
liveness->updateForUse(user, /*lifetimeEnding*/ false);
break;
case OperandOwnership::ForwardingConsume:
consumingUse.insert(use);
liveness->updateForUse(user, /*lifetimeEnding*/ true);
break;
case OperandOwnership::DestroyingConsume:
// destroy_value does not force pruned liveness (but store etc. does).
if (!isa<DestroyValueInst>(user)) {
liveness->updateForUse(user, /*lifetimeEnding*/ true);
}
consumingUse.insert(use);
break;
case OperandOwnership::Borrow: {
if (auto *bbi = dyn_cast<BeginBorrowInst>(user)) {
// If we have a lexical begin_borrow, we are going to check its uses
// separately and emit diagnostics for it. So we just need to add the
// liveness of the begin_borrow.
//
// NOTE: We know that semantically the use lexical lifetime must have
// a separate lifetime from the base lexical lifetime that we are
// processing. We do not want to include those uses as transitive uses
// of our base lexical lifetime. We just want to treat the formation
// of the new variable as a use. Thus we only include the begin_borrow
// itself as the use.
if (bbi->isLexical()) {
liveness->updateForUse(bbi, false /*lifetime ending*/);
} else {
// Otherwise, try to update liveness for a borrowing operand
// use. This will make it so that we add the end_borrows of the
// liveness use. If we have a reborrow here, we will bail.
if (liveness->updateForBorrowingOperand(use) !=
InnerBorrowKind::Contained) {
return false;
}
}
}
// FIXME: this ignores all other forms of Borrow ownership, such as
// partial_apply [onstack] and mark_dependence [nonescaping].
break;
}
case OperandOwnership::GuaranteedForwarding:
// A forwarding borrow is validated as part of its parent borrow. So
// just mark it as extending liveness and look through it.
liveness->updateForUse(user, /*lifetimeEnding*/ false);
ForwardingOperand(use).visitForwardedValues([&](SILValue result) {
if (SILArgument::isTerminatorResult(result)) {
return true;
}
if (result->getOwnershipKind() == OwnershipKind::Guaranteed)
defUseWorklist.insert(result);
return true;
});
break;
case OperandOwnership::InteriorPointer: {
// An interior pointer user extends liveness until the end of the
// interior pointer section.
//
// TODO: We really should have all OperandOwnership::InteriorPointer
// instructions be valid to pass to InteriorPointerOperand. Some
// builtins do not do it today and it is probably a misuse of the
// system. That being said, lets do our best here.
if (auto operand = InteriorPointerOperand(use)) {
auto addrUseKind =
operand.findTransitiveUses(&interiorPointerTransitiveUses);
(void)addrUseKind;
while (!interiorPointerTransitiveUses.empty()) {
auto *addrUse = interiorPointerTransitiveUses.pop_back_val();
liveness->updateForUse(addrUse->getUser(),
/*lifetimeEnding*/ false);
}
}
break;
}
case OperandOwnership::EndBorrow:
// Don't care about this use.
break;
case OperandOwnership::Reborrow:
// Reborrows do not occur this early in the pipeline.
llvm_unreachable(
"Reborrows do not occur until we optimize later in the pipeline");
}
}
}
// We succeeded if we reached this point since we handled all uses.
return true;
}
//===----------------------------------------------------------------------===//
// Main Pass
//===----------------------------------------------------------------------===//
namespace {
struct ConsumeOperatorCopyableValuesChecker {
SILFunction *fn;
CheckerLivenessInfo livenessInfo;
DominanceInfo *dominance;
InstructionDeleter deleter;
CanonicalizeOSSALifetime canonicalizer;
ConsumeOperatorCopyableValuesChecker(SILFunction *fn,
DominanceInfo *dominance,
BasicCalleeAnalysis *calleeAnalysis)
: fn(fn), dominance(dominance),
canonicalizer(DontPruneDebugInsts,
MaximizeLifetime_t(!fn->shouldOptimize()), fn,
/*accessBlockAnalysis=*/nullptr, dominance,
calleeAnalysis, deleter) {}
bool check();
void emitDiagnosticForMove(SILValue borrowedValue,
StringRef borrowedValueName, MoveValueInst *mvi);
};
} // namespace
static SourceLoc getSourceLocFromValue(SILValue value) {
if (auto *defInst = value->getDefiningInstruction())
return defInst->getLoc().getSourceLoc();
if (auto *arg = dyn_cast<SILFunctionArgument>(value))
return arg->getDecl()->getLoc();
llvm_unreachable("Do not know how to get source loc for value?!");
}
void ConsumeOperatorCopyableValuesChecker::emitDiagnosticForMove(
SILValue borrowedValue, StringRef borrowedValueName, MoveValueInst *mvi) {
auto &astContext = fn->getASTContext();
// First we emit the main error and then the note on where the move was.
diagnose(astContext, getSourceLocFromValue(borrowedValue),
diag::sil_movechecking_value_used_after_consume,
borrowedValueName);
if (auto sourceLoc = mvi->getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc,
diag::sil_movechecking_consuming_use_here);
}
// Then we do a bit of work to figure out where /all/ of the later uses than
// mvi are so we can emit notes to the user telling them this is a problem
// use. We can do a little more work here since we already know that we are
// going to be emitting a diagnostic and thus later parts of the compiler are
// not going to run. First we look for uses in the same block as our move.
auto *mviBlock = mvi->getParent();
auto mviBlockLiveness = livenessInfo.liveness->getBlockLiveness(mviBlock);
switch (mviBlockLiveness) {
case PrunedLiveBlocks::Dead:
llvm_unreachable("We should never see this");
case PrunedLiveBlocks::LiveWithin: {
// The boundary was within our block. We need to search for uses later than
// us and emit a diagnostic upon them and then return. We leave the rest of
// the function for the implementation of the LiveOutCase.
//
// NOTE: This does mean that once the user fixes this use, they will get
// additional errors that we did not diagnose before. We do this to simplify
// the implementation noting that the program in either case will not
// compile meaning correctness will be maintained despite this
// implementation choice.
for (SILInstruction &inst :
make_range(std::next(mvi->getIterator()), mviBlock->end())) {
switch (livenessInfo.liveness->isInterestingUser(&inst)) {
case PrunedLiveness::NonUser:
break;
case PrunedLiveness::NonLifetimeEndingUse:
case PrunedLiveness::LifetimeEndingUse:
LLVM_DEBUG(llvm::dbgs() << "Emitting note for in block use: " << inst);
if (auto sourceLoc = inst.getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc,
diag::sil_movechecking_nonconsuming_use_here);
}
break;
}
}
return;
}
case PrunedLiveBlocks::LiveOut: {
// The boundary was later than us, we need to do a full on CFG search, which
// we do below.
break;
}
}
// Just to check for dumb mistakes, assert we are LiveOut here.
assert(mviBlockLiveness == PrunedLiveBlocks::LiveOut &&
"We are handling only the live out case here. The rest of the cases "
"were handled in the switch above and return early upon success");
// Ok, our boundary was later, so we need to search the CFG along successor
// edges starting at the successors's of our move function block
BasicBlockWorklist worklist(mvi->getFunction());
for (auto *succBlock : mvi->getParent()->getSuccessorBlocks()) {
worklist.pushIfNotVisited(succBlock);
}
// In order to make sure that we do not miss uses that are within loops, we
// maintain a list of all user sets.
//
// DISCUSSION: The issue is that a block at a deeper loop level than our def,
// even if it contained the use that triggered the issue will be LiveOut. So
// when we see a live out block, we perform this extra check and emit a
// diagnostic if needed.
BasicBlockSet usesToCheckForInLiveOutBlocks(mvi->getFunction());
for (auto *user : livenessInfo.nonLifetimeEndingUsesInLiveOut)
usesToCheckForInLiveOutBlocks.insert(user->getParent());
for (auto *consumingUse : livenessInfo.consumingUse) {
// We ignore consuming uses that are destroy_value since in our model they
// do not provide liveness.
if (!isa<DestroyValueInst>(consumingUse->getUser()))
usesToCheckForInLiveOutBlocks.insert(consumingUse->getParentBlock());
}
while (auto *block = worklist.pop()) {
// First do a quick check if we are not a live out block. If so, the
// boundary was within the block. We need to search for interesting uses in
// the block and then emit diagnostics upon them. We then continue without
// adding successors since we do not need to look further than the pruned
// liveness boundary for uses.
if (PrunedLiveBlocks::LiveOut !=
livenessInfo.liveness->getBlockLiveness(block)) {
for (SILInstruction &inst : *block) {
switch (livenessInfo.liveness->isInterestingUser(&inst)) {
case PrunedLiveness::NonUser:
break;
case PrunedLiveness::NonLifetimeEndingUse:
case PrunedLiveness::LifetimeEndingUse:
LLVM_DEBUG(llvm::dbgs()
<< "(3) Emitting diagnostic for user: " << inst);
if (auto sourceLoc = inst.getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc,
diag::sil_movechecking_nonconsuming_use_here);
}
break;
}
}
continue;
}
// Otherwise, we have a live out block. First before we do anything, add the
// successors of this block to the worklist.
for (auto *succBlock : block->getSuccessorBlocks())
worklist.pushIfNotVisited(succBlock);
// Then check if we have any of those deeper loop nest uses. If not, we are
// done with this block and continue...
if (!usesToCheckForInLiveOutBlocks.contains(block))
continue;
// Ok! This is a live out block with a use we need to emit an error for . We
// know it is reachable from the move since we are walking successors from
// the move block. Of course, if we do not have any such uses... just
// continue.
for (SILInstruction &inst : *block) {
if (livenessInfo.nonLifetimeEndingUsesInLiveOut.contains(&inst)) {
LLVM_DEBUG(llvm::dbgs()
<< "(1) Emitting diagnostic for user: " << inst);
if (auto sourceLoc = inst.getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc,
diag::sil_movechecking_nonconsuming_use_here);
}
continue;
}
for (auto &op : inst.getAllOperands()) {
if (livenessInfo.consumingUse.contains(&op)) {
// If one of our in loop moves is ourselves, then we know that our
// original value is outside of the loop and thus we have a loop
// carry dataflow violation.
if (mvi == &inst) {
diagnose(astContext, inst.getLoc().getSourceLoc(),
diag::sil_movechecking_consumed_in_loop_here);
continue;
}
// We ignore consuming uses that are destroy_value since in our model
// they do not provide liveness.
if (isa<DestroyValueInst>(inst))
continue;
LLVM_DEBUG(llvm::dbgs()
<< "(2) Emitting diagnostic for user: " << inst);
if (auto sourceLoc = inst.getLoc().getSourceLoc()) {
diagnose(astContext, sourceLoc,
diag::sil_movechecking_nonconsuming_use_here);
}
}
}
}
}
}
bool ConsumeOperatorCopyableValuesChecker::check() {
llvm::SmallSetVector<SILValue, 32> valuesToCheck;
for (auto *arg : fn->getEntryBlock()->getSILFunctionArguments()) {
auto ownership = arg->getOwnershipKind();
if ((ownership == OwnershipKind::Owned ||
ownership == OwnershipKind::Guaranteed) &&
!arg->getType().isMoveOnly()) {
LLVM_DEBUG(llvm::dbgs() << "Found owned arg to check: " << *arg);
valuesToCheck.insert(arg);
}
}
for (auto &block : *fn) {
for (auto &ii : block) {
if (auto *mvi = dyn_cast<MoveValueInst>(&ii)) {
if (mvi->isFromVarDecl() && !mvi->getType().isMoveOnly()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found lexical lifetime to check: " << *mvi);
valuesToCheck.insert(mvi);
}
}
if (auto *bbi = dyn_cast<BeginBorrowInst>(&ii)) {
if (bbi->isFromVarDecl() && !bbi->getType().isMoveOnly()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found lexical lifetime to check: " << *bbi);
valuesToCheck.insert(bbi);
}
continue;
}
}
}
if (valuesToCheck.empty()) {
LLVM_DEBUG(llvm::dbgs() << "No values to check! Exiting early!\n");
return false;
}
LLVM_DEBUG(llvm::dbgs()
<< "Found at least one value to check, performing checking.\n");
auto valuesToProcess =
llvm::ArrayRef(valuesToCheck.begin(), valuesToCheck.end());
// If we do not emit any diagnostics, we need to put in a break after each dbg
// info carrying inst for a lexical value that we find a move on. This ensures
// that we avoid a behavior today in SelectionDAG that causes dbg info addr to
// be always sunk to the end of a block.
//
// TODO: We should add llvm.dbg.addr support for fastisel and also teach
// CodeGen how to handle llvm.dbg.addr better.
while (!valuesToProcess.empty()) {
BitfieldRef<DiagnosticPrunedLiveness>::StackState livenessBitfieldContainer(
livenessInfo.liveness, fn, nullptr,
&livenessInfo.nonLifetimeEndingUsesInLiveOut);
auto lexicalValue = valuesToProcess.front();
valuesToProcess = valuesToProcess.drop_front(1);
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << *lexicalValue);
// Then compute liveness.
SWIFT_DEFER { livenessInfo.clear(); };
livenessInfo.initDef(lexicalValue);
// We only fail to optimize if for some reason we hit reborrows. This is
// temporary since we really should just ban reborrows in Raw SIL.
bool canOptimize = livenessInfo.compute();
if (!canOptimize)
continue;
// Then look at all of our found consuming uses. See if any of these are
// _move that are within the boundary.
bool foundMove = false;
SmallVector<SILInstruction *, 2> validMoves;
auto dbgVarInst = DebugVarCarryingInst::getFromValue(lexicalValue);
StringRef varName = DebugVarCarryingInst::getName(dbgVarInst);
for (auto *use : livenessInfo.consumingUse) {
if (auto *mvi = dyn_cast<MoveValueInst>(use->getUser())) {
// Only emit diagnostics if our move value allows us to.
if (!mvi->getAllowDiagnostics())
continue;
// Now that we know we may emit diagnostics for this, unset allows
// diagnostics so that we skip these when we search at the end for
// unvisited move_value [allows_diagnostics].
mvi->setAllowsDiagnostics(false);
LLVM_DEBUG(llvm::dbgs() << "Move Value: " << *mvi);
if (livenessInfo.liveness->isWithinBoundary(mvi)) {
LLVM_DEBUG(llvm::dbgs() << " WithinBoundary: Yes!\n");
emitDiagnosticForMove(lexicalValue, varName, mvi);
} else {
LLVM_DEBUG(llvm::dbgs() << " WithinBoundary: No!\n");
if (auto varInfo = dbgVarInst.getVarInfo()) {
auto *next = mvi->getNextInstruction();
SILBuilderWithScope builder(next);
// We need to make sure any undefs we put in are the same loc/debug
// scope as our original so that the backend treats them as
// referring to the same "debug entity".
builder.setCurrentDebugScope(dbgVarInst->getDebugScope());
builder.createDebugValue(
dbgVarInst->getLoc(), SILUndef::get(mvi->getOperand()),
*varInfo, false /*poison*/, UsesMoveableValueDebugInfo);
}
validMoves.push_back(mvi);
}
foundMove = true;
}
}
// If we found a move, mark our debug var inst as having a moved value. This
// ensures we emit llvm.dbg.addr instead of llvm.dbg.declare in IRGen.
if (foundMove) {
dbgVarInst.markAsMoved();
}
if (validMoves.size() > 0) {
canonicalizer.clear();
canonicalizer.canonicalizeValueLifetime(lexicalValue, validMoves);
}
}
return false;
}
//===----------------------------------------------------------------------===//
// MARK: Unsupported Use Case Errors
//===----------------------------------------------------------------------===//
static void emitUnsupportedUseCaseError(MoveValueInst *mvi) {
auto &astContext = mvi->getModule().getASTContext();
auto diag = diag::sil_movekillscopyablevalue_move_applied_to_unsupported_move;
diagnose(astContext, mvi->getLoc().getSourceLoc(), diag);
mvi->setAllowsDiagnostics(false);
}
/// Try to pattern match if we were trying to move a global. In such a case,
/// emit a better error.
static bool tryEmitCannotConsumeNonLocalMemoryError(MoveValueInst *mvi) {
auto *li = dyn_cast<LoadInst>(mvi->getOperand());
if (!li)
return false;
auto &astContext = mvi->getModule().getASTContext();
if (auto *gai =
dyn_cast<GlobalAddrInst>(stripAccessMarkers(li->getOperand()))) {
auto diag = diag::sil_movekillscopyable_move_applied_to_nonlocal_memory;
diagnose(astContext, mvi->getLoc().getSourceLoc(), diag, 0);
mvi->setAllowsDiagnostics(false);
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
namespace {
class ConsumeOperatorCopyableValuesCheckerPass : public SILFunctionTransform {
void run() override {
auto *fn = getFunction();
// Don't rerun diagnostics on deserialized functions.
if (fn->wasDeserializedCanonical())
return;
assert(fn->getModule().getStage() == SILStage::Raw &&
"Should only run on Raw SIL");
LLVM_DEBUG(llvm::dbgs() << "*** Checking moved values in fn: "
<< getFunction()->getName() << '\n');
auto *dominanceAnalysis = getAnalysis<DominanceAnalysis>();
auto *dominance = dominanceAnalysis->get(fn);
auto *calleeAnalysis = getAnalysis<BasicCalleeAnalysis>();
ConsumeOperatorCopyableValuesChecker checker(getFunction(), dominance,
calleeAnalysis);
auto *loopAnalysis = getAnalysis<SILLoopAnalysis>();
if (checker.check()) {
// If we already had dominance or loop info generated, update them when
// splitting blocks.
AnalysisPreserver preserveDominance(dominanceAnalysis);
AnalysisPreserver preserveLoop(loopAnalysis);
invalidateAnalysis(
SILAnalysis::InvalidationKind::BranchesAndInstructions);
}
// Now search through our function one last time and:
//
// 1. Given any move_value on a move only type, just unset the allows
// diagnostics flag. The move checker will have emitted any errors caused
// by our move [allows_diagnostic] earlier in the compilation pipeline.
//
// 2. Any move_value [allows_diagnostics] that remain that are not on a move
// only type are ones that we did not know how to check so emit a
// diagnostic so the user doesn't assume that they have guarantees.
//
// TODO: Emit specific diagnostics here (e.x.: _move of global).
for (auto &block : *fn) {
for (auto &inst : block) {
if (auto *mvi = dyn_cast<MoveValueInst>(&inst)) {
if (mvi->getAllowDiagnostics()) {
if (mvi->getType().isMoveOnly()) {
mvi->setAllowsDiagnostics(false);
continue;
}
// Try to emit a better error if we try to consume a global.
if (tryEmitCannotConsumeNonLocalMemoryError(mvi))
continue;
if (!DisableUnhandledMoveDiagnostic)
emitUnsupportedUseCaseError(mvi);
}
}
}
}
}
};
} // anonymous namespace
SILTransform *swift::createConsumeOperatorCopyableValuesChecker() {
return new ConsumeOperatorCopyableValuesCheckerPass();
}
|