1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
|
//===--- DefiniteInitialization.cpp - Perform definite init analysis ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "definite-init"
#include "DIMemoryUseCollector.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/DistributedDecl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Stmt.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/SIL/BasicBlockData.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/DistributedActor.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace ownership;
llvm::cl::opt<bool> TriggerUnreachableOnFailure(
"sil-di-assert-on-failure", llvm::cl::init(false),
llvm::cl::desc("After emitting a DI error, assert instead of continuing. "
"Meant for debugging ONLY!"),
llvm::cl::Hidden);
template<typename ...ArgTypes>
static InFlightDiagnostic diagnose(SILModule &M, SILLocation loc,
ArgTypes... args) {
auto diag = M.getASTContext().Diags.diagnose(loc.getSourceLoc(),
Diagnostic(args...));
if (TriggerUnreachableOnFailure)
llvm_unreachable("Triggering standard assertion failure routine");
return diag;
}
/// Insert a CFG diamond at the position specified by the SILBuilder, with a
/// conditional branch based on "Cond".
///
/// This returns the true, false, and continuation block. The SILBuilder is left
/// at the start of the ContBB block.
static void InsertCFGDiamond(SILValue Cond, SILLocation Loc, SILBuilder &B,
SILBasicBlock *&TrueBB,
SILBasicBlock *&FalseBB,
SILBasicBlock *&ContBB) {
SILBasicBlock *StartBB = B.getInsertionBB();
// Start by splitting the current block.
ContBB = StartBB->split(B.getInsertionPoint());
TrueBB = StartBB->getParent()->createBasicBlock();
TrueBB->getParent()->moveBlockBefore(TrueBB, ContBB->getIterator());
B.setInsertionPoint(TrueBB);
B.createBranch(Loc, ContBB);
FalseBB = StartBB->getParent()->createBasicBlock();
FalseBB->getParent()->moveBlockBefore(FalseBB, ContBB->getIterator());
B.setInsertionPoint(FalseBB);
B.createBranch(Loc, ContBB);
// Now that we have our destinations, insert a conditional branch on the
// condition.
B.setInsertionPoint(StartBB);
B.createCondBranch(Loc, Cond, TrueBB, FalseBB);
B.setInsertionPoint(ContBB, ContBB->begin());
}
//===----------------------------------------------------------------------===//
// Per-Element Promotion Logic
//===----------------------------------------------------------------------===//
namespace {
enum class DIKind : uint8_t { No, Yes, Partial };
} // end anonymous namespace
/// This implements the lattice merge operation for 2 optional DIKinds.
static std::optional<DIKind> mergeKinds(std::optional<DIKind> OK1,
std::optional<DIKind> OK2) {
// If OK1 is unset, ignore it.
if (!OK1.has_value())
return OK2;
DIKind K1 = OK1.value();
// If "this" is already partial, we won't learn anything.
if (K1 == DIKind::Partial)
return K1;
// If OK2 is unset, take K1.
if (!OK2.has_value())
return K1;
DIKind K2 = OK2.value();
// If "K1" is yes, or no, then switch to partial if we find a different
// answer.
if (K1 != K2)
return DIKind::Partial;
// Otherwise, we're still consistently Yes or No.
return K1;
}
namespace {
/// AvailabilitySet - This class stores an array of lattice values for tuple
/// elements being analyzed for liveness computations. Each element is
/// represented with two bits in a bitvector, allowing this to represent the
/// lattice values corresponding to "Unknown" (bottom), "Live" or "Not Live",
/// which are the middle elements of the lattice, and "Partial" which is the
/// top element.
class AvailabilitySet {
// We store two bits per element, encoded in the following form:
// T,T -> Nothing/Unknown
// F,F -> No
// F,T -> Yes
// T,F -> Partial
SmallBitVector Data;
public:
AvailabilitySet() {}
AvailabilitySet(unsigned NumElts) { init(NumElts); }
void init(unsigned NumElts) {
Data.set();
Data.resize(NumElts*2, true);
}
bool empty() const { return Data.empty(); }
unsigned size() const { return Data.size()/2; }
DIKind get(unsigned Elt) const {
return getConditional(Elt).value();
}
std::optional<DIKind> getConditional(unsigned Elt) const {
bool V1 = Data[Elt*2], V2 = Data[Elt*2+1];
if (V1 == V2)
return V1 ? std::optional<DIKind>(std::nullopt) : DIKind::No;
return V2 ? DIKind::Yes : DIKind::Partial;
}
void set(unsigned Elt, DIKind K) {
switch (K) {
case DIKind::No: Data[Elt*2] = false; Data[Elt*2+1] = false; break;
case DIKind::Yes: Data[Elt*2] = false, Data[Elt*2+1] = true; break;
case DIKind::Partial: Data[Elt*2] = true, Data[Elt*2+1] = false; break;
}
}
void set(unsigned Elt, std::optional<DIKind> K) {
if (!K.has_value())
Data[Elt*2] = true, Data[Elt*2+1] = true;
else
set(Elt, K.value());
}
/// containsUnknownElements - Return true if there are any elements that are
/// unknown.
bool containsUnknownElements() const {
// Check that we didn't get any unknown values.
for (unsigned i = 0, e = size(); i != e; ++i)
if (!getConditional(i).has_value())
return true;
return false;
}
bool isAll(DIKind K) const {
for (unsigned i = 0, e = size(); i != e; ++i) {
auto Elt = getConditional(i);
if (!Elt.has_value() || Elt.value() != K)
return false;
}
return true;
}
bool hasAny(DIKind K) const {
for (unsigned i = 0, e = size(); i != e; ++i) {
auto Elt = getConditional(i);
if (Elt.has_value() && Elt.value() == K)
return true;
}
return false;
}
bool isAllYes() const { return isAll(DIKind::Yes); }
bool isAllNo() const { return isAll(DIKind::No); }
/// changeUnsetElementsTo - If any elements of this availability set are not
/// known yet, switch them to the specified value.
void changeUnsetElementsTo(DIKind K) {
for (unsigned i = 0, e = size(); i != e; ++i)
if (!getConditional(i).has_value())
set(i, K);
}
void mergeIn(const AvailabilitySet &RHS) {
// Logically, this is an elementwise "this = merge(this, RHS)" operation,
// using the lattice merge operation for each element.
for (unsigned i = 0, e = size(); i != e; ++i)
set(i, mergeKinds(getConditional(i), RHS.getConditional(i)));
}
void dump(llvm::raw_ostream &OS) const {
OS << '(';
for (unsigned i = 0, e = size(); i != e; ++i) {
if (std::optional<DIKind> Elt = getConditional(i)) {
switch (Elt.value()) {
case DIKind::No: OS << 'n'; break;
case DIKind::Yes: OS << 'y'; break;
case DIKind::Partial: OS << 'p'; break;
}
} else {
OS << '.';
}
}
OS << ')';
}
};
LLVM_ATTRIBUTE_USED
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const AvailabilitySet &AS) {
AS.dump(OS);
return OS;
}
} // end anonymous namespace
namespace {
/// LiveOutBlockState - Keep track of information about blocks that have
/// already been analyzed. Since this is a global analysis, we need this to
/// cache information about different paths through the CFG.
struct LiveOutBlockState {
/// Keep track of whether there is a Store, InOutUse, or Escape locally in
/// this block.
bool HasNonLoadUse : 1;
/// Helper flag used during building the worklist for the dataflow analysis.
bool isInWorkList : 1;
/// Availability of elements within the block.
/// Not "empty" for all blocks which have non-load uses or contain the
/// definition of the memory object.
AvailabilitySet LocalAvailability;
/// The live out information of the block. This is the LocalAvailability
/// plus the information merged-in from the predecessor blocks.
AvailabilitySet OutAvailability;
/// Keep track of blocks where the contents of the self box are stored to
/// as a result of a successful self.init or super.init call.
std::optional<DIKind> LocalSelfInitialized;
/// The live out information of the block. This is the LocalSelfInitialized
/// plus the information merged-in from the predecessor blocks.
std::optional<DIKind> OutSelfInitialized;
LiveOutBlockState() { init(0); }
void init(unsigned NumElements) {
HasNonLoadUse = false;
isInWorkList = false;
LocalAvailability.init(NumElements);
OutAvailability.init(NumElements);
LocalSelfInitialized = std::nullopt;
OutSelfInitialized = std::nullopt;
}
/// Sets all unknown elements to not-available.
void setUnknownToNotAvailable() {
LocalAvailability.changeUnsetElementsTo(DIKind::No);
OutAvailability.changeUnsetElementsTo(DIKind::No);
if (!LocalSelfInitialized.has_value())
LocalSelfInitialized = DIKind::No;
if (!OutSelfInitialized.has_value())
OutSelfInitialized = DIKind::No;
}
/// Transfer function for dataflow analysis.
///
/// \param pred Value from a predecessor block
/// \param out Current live-out
/// \param local Value from current block, overrides predecessor
/// \param result Out parameter
///
/// \return True if the result was different from the live-out
bool transferAvailability(const std::optional<DIKind> pred,
const std::optional<DIKind> out,
const std::optional<DIKind> local,
std::optional<DIKind> &result) {
if (local.has_value()) {
// A local availability overrides the incoming value.
result = local;
} else {
result = mergeKinds(out, pred);
}
if (result.has_value() &&
(!out.has_value() || result.value() != out.value())) {
return true;
}
return false;
}
/// Merge the state from a predecessor block into the OutAvailability.
/// Returns true if the live out set changed.
bool mergeFromPred(const LiveOutBlockState &Pred) {
bool changed = false;
for (unsigned i = 0, e = OutAvailability.size(); i != e; ++i) {
std::optional<DIKind> result;
if (transferAvailability(Pred.OutAvailability.getConditional(i),
OutAvailability.getConditional(i),
LocalAvailability.getConditional(i),
result)) {
changed = true;
OutAvailability.set(i, result);
}
}
std::optional<DIKind> result;
if (transferAvailability(Pred.OutSelfInitialized,
OutSelfInitialized,
LocalSelfInitialized,
result)) {
changed = true;
OutSelfInitialized = result;
}
return changed;
}
/// Sets the elements of a use to available.
void markAvailable(const DIMemoryUse &Use) {
// If the memory object has nothing in it (e.g., is an empty tuple)
// ignore.
if (LocalAvailability.empty()) return;
for (unsigned i = 0; i != Use.NumElements; ++i) {
LocalAvailability.set(Use.FirstElement+i, DIKind::Yes);
OutAvailability.set(Use.FirstElement+i, DIKind::Yes);
}
}
/// Mark the block as storing to self, indicating the self box has been
/// initialized.
void markStoreToSelf() {
LocalSelfInitialized = DIKind::Yes;
OutSelfInitialized = DIKind::Yes;
}
/// If true, we're not done with our dataflow analysis yet.
bool containsUndefinedValues() {
return (!OutSelfInitialized.has_value() ||
OutAvailability.containsUnknownElements());
}
};
struct ConditionalDestroy {
unsigned ReleaseID;
AvailabilitySet Availability;
DIKind SelfInitialized;
};
using BlockStates = BasicBlockData<LiveOutBlockState>;
/// LifetimeChecker - This is the main heavy lifting for definite
/// initialization checking of a memory object.
class LifetimeChecker {
SILFunction &F;
SILModule &Module;
/// TheMemory - This holds information about the memory object being
/// analyzed.
DIMemoryObjectInfo TheMemory;
SmallVectorImpl<DIMemoryUse> &Uses;
TinyPtrVector<SILInstruction *> &StoresToSelf;
SmallVectorImpl<SILInstruction *> &Destroys;
SmallVector<unsigned, 8> NeedsUpdateForInitState;
std::vector<ConditionalDestroy> ConditionalDestroys;
BlockStates &blockStates;
BasicBlockFlag blockStateInitialized;
/// This is a map of uses that are not loads (i.e., they are Stores,
/// InOutUses, and Escapes), to their entry in Uses.
llvm::SmallDenseMap<SILInstruction*, SmallVector<unsigned, 1>, 16> NonLoadUses;
/// This is true when there is an ambiguous store, which may be an init or
/// assign, depending on the CFG path.
bool HasConditionalInitAssign = false;
/// This is true when there is an ambiguous destroy, which may be a release
/// of a fully-initialized or a partially-initialized value.
bool HasConditionalDestroy = false;
/// This is true when there is a destroy on a path where the self value may
/// have been consumed, in which case there is nothing to do.
bool HasConditionalSelfInitialized = false;
/// This is true when the object being checked is a 'self' parameter for a
/// struct in a non-delegating cross-module initializer. In this case, the
/// initializer is not allowed to be fieldwise in Swift 5, so we produce a
/// warning in Swift 4 and earlier.
bool WantsCrossModuleStructInitializerDiagnostic = false;
/// This is true if any diagnostics have offered a fix-it to insert
/// `self.init()`. While the first diagnostic to offer this may not be
/// suggesting it in the best place, offering it more than once is clearly
/// wrong.
bool HasSuggestedNoArgSelfInit = false;
// Keep track of whether we've emitted an error. We only emit one error per
// location as a policy decision.
std::vector<SILLocation> EmittedErrorLocs;
SmallPtrSet<const SILBasicBlock *, 16> BlocksReachableFromEntry;
public:
LifetimeChecker(const DIMemoryObjectInfo &TheMemory,
DIElementUseInfo &UseInfo,
BlockStates &blockStates);
void doIt();
private:
/// Find all the points where \c TheMemory has been fully initialized
/// by a store to its element. If there are no elements then
/// initialization point is located right after the mark_uninitialized
/// instruction.
void
findFullInitializationPoints(SmallVectorImpl<SILInstruction *> &points);
/// Injects `hop_to_executor` instructions into the function after
/// `self` becomes fully initialized, only if the current function
/// is an actor initializer that requires this, and if TheMemory
/// corresponds to `self`.
void injectActorHops();
void emitSelfConsumedDiagnostic(SILInstruction *Inst);
LiveOutBlockState &getBlockInfo(SILBasicBlock *BB) {
auto &state = blockStates.get(BB, []() { return LiveOutBlockState(); });
if (!blockStateInitialized.testAndSet(BB))
state.init(TheMemory.getNumElements());
return state;
}
AvailabilitySet getLivenessAtInst(SILInstruction *Inst, unsigned FirstElt,
unsigned NumElts);
AvailabilitySet getLivenessAtNonTupleInst(SILInstruction *Inst,
SILBasicBlock *InstBB,
AvailabilitySet &CurrentSet);
int getAnyUninitializedMemberAtInst(SILInstruction *Inst, unsigned FirstElt,
unsigned NumElts);
DIKind getSelfInitializedAtInst(SILInstruction *Inst);
bool isInitializedAtUse(const DIMemoryUse &Use,
bool *SuperInitDone = nullptr,
bool *FailedSelfUse = nullptr,
bool *FullyUninitialized = nullptr);
void handleStoreUse(unsigned UseID);
void handleLoadUse(const DIMemoryUse &Use);
void handleLoadForTypeOfSelfUse(DIMemoryUse &Use);
void handleTypeOfSelfUse(DIMemoryUse &Use);
void handleInOutUse(const DIMemoryUse &Use);
void handleEscapeUse(const DIMemoryUse &Use);
void handleFlowSensitiveActorIsolationUse(const DIMemoryUse &Use);
bool diagnoseReturnWithoutInitializingStoredProperties(
const SILInstruction *Inst, SILLocation loc, const DIMemoryUse &Use);
void handleLoadUseFailure(const DIMemoryUse &Use,
bool SuperInitDone,
bool FailedSelfUse);
void handleSelfInitUse(unsigned UseID);
void updateInstructionForInitState(unsigned UseID);
void processUninitializedRelease(SILInstruction *Release,
bool consumed,
SILBasicBlock::iterator InsertPt);
/// Process a mark_uninitialized of an alloc_box that is uninitialized and
/// needs a dealloc_box.
void processUninitializedReleaseOfBox(MarkUninitializedInst *MUI,
SILInstruction *Release,
bool consumed,
SILBasicBlock::iterator InsertPt);
void deleteDeadRelease(unsigned ReleaseID);
void processNonTrivialRelease(unsigned ReleaseID);
SILValue handleConditionalInitAssign();
void handleConditionalDestroys(SILValue ControlVariableAddr);
typedef SmallVector<SILBasicBlock *, 16> WorkListType;
void putIntoWorkList(SILBasicBlock *BB, WorkListType &WorkList);
void computePredsLiveOut(SILBasicBlock *BB);
void getOutAvailability(SILBasicBlock *BB, AvailabilitySet &Result);
void getOutSelfInitialized(SILBasicBlock *BB,
std::optional<DIKind> &Result);
bool shouldEmitError(const SILInstruction *Inst);
std::string getUninitElementName(const DIMemoryUse &Use);
void noteUninitializedMembers(const DIMemoryUse &Use);
void diagnoseInitError(const DIMemoryUse &Use,
Diag<StringRef, bool> DiagMessage);
void diagnoseRefElementAddr(RefElementAddrInst *REI);
bool diagnoseMethodCall(const DIMemoryUse &Use,
bool SuperInitDone);
void diagnoseBadExplicitStore(SILInstruction *Inst);
bool isBlockIsReachableFromEntry(const SILBasicBlock *BB);
};
} // end anonymous namespace
LifetimeChecker::LifetimeChecker(const DIMemoryObjectInfo &TheMemory,
DIElementUseInfo &UseInfo,
BlockStates &blockStates)
: F(TheMemory.getFunction()), Module(TheMemory.getModule()),
TheMemory(TheMemory), Uses(UseInfo.Uses),
StoresToSelf(UseInfo.StoresToSelf), Destroys(UseInfo.Releases),
blockStates(blockStates), blockStateInitialized(&F) {
// The first step of processing an element is to collect information about the
// element into data structures we use later.
for (unsigned ui = 0, e = Uses.size(); ui != e; ++ui) {
auto &Use = Uses[ui];
assert(Use.Inst && "No instruction identified?");
// Keep track of all the uses that aren't loads or escapes. These are
// important uses that we'll visit, but we don't consider them definition
// points for liveness computation purposes.
switch (Use.Kind) {
case DIUseKind::Load:
case DIUseKind::LoadForTypeOfSelf:
case DIUseKind::TypeOfSelf:
case DIUseKind::Escape:
case DIUseKind::FlowSensitiveSelfIsolation:
continue;
case DIUseKind::Assign:
case DIUseKind::Set:
case DIUseKind::IndirectIn:
case DIUseKind::InitOrAssign:
case DIUseKind::InOutArgument:
case DIUseKind::Initialization:
case DIUseKind::InOutSelfArgument:
case DIUseKind::PartialStore:
case DIUseKind::SelfInit:
case DIUseKind::BadExplicitStore:
break;
}
NonLoadUses[Use.Inst].push_back(ui);
auto &BBInfo = getBlockInfo(Use.Inst->getParent());
BBInfo.HasNonLoadUse = true;
// Each of the non-load instructions will each be checked to make sure that
// they are live-in or a full element store. This means that the block they
// are in should be treated as a live out for cross-block analysis purposes.
BBInfo.markAvailable(Use);
}
// Mark blocks where the self box is initialized.
for (auto *I : StoresToSelf) {
// FIXME: critical edges?
auto *bb = I->getParent();
getBlockInfo(bb).markStoreToSelf();
}
// It isn't really a use, but we account for the mark_uninitialized or
// project_box as a use so we see it in our dataflow walks.
auto &MemBBInfo = getBlockInfo(TheMemory.getParentBlock());
MemBBInfo.HasNonLoadUse = true;
// There is no scanning required (or desired) for the block that defines the
// memory object itself. Its live-out properties are whatever are trivially
// locally inferred by the loop above. Mark any unset elements as not
// available.
MemBBInfo.setUnknownToNotAvailable();
// Finally, check if we need to emit compatibility diagnostics for cross-module
// non-delegating struct initializers.
if (TheMemory.isCrossModuleStructInitSelf())
WantsCrossModuleStructInitializerDiagnostic = true;
}
/// Determine whether the specified block is reachable from the entry of the
/// containing function's entrypoint. This allows us to avoid diagnosing DI
/// errors in synthesized code that turns out to be unreachable.
bool LifetimeChecker::isBlockIsReachableFromEntry(const SILBasicBlock *BB) {
// Lazily compute reachability, so we only have to do it in the case of an
// error.
if (BlocksReachableFromEntry.empty()) {
SmallVector<const SILBasicBlock*, 128> Worklist;
Worklist.push_back(&BB->getParent()->front());
BlocksReachableFromEntry.insert(Worklist.back());
// Collect all reachable blocks by walking the successors.
while (!Worklist.empty()) {
const SILBasicBlock *BB = Worklist.pop_back_val();
for (auto &Succ : BB->getSuccessors()) {
if (BlocksReachableFromEntry.insert(Succ).second)
Worklist.push_back(Succ);
}
}
}
return BlocksReachableFromEntry.count(BB);
}
/// shouldEmitError - Check to see if we've already emitted an error at the
/// specified instruction. If so, return false. If not, remember the
/// instruction and return true.
bool LifetimeChecker::shouldEmitError(const SILInstruction *Inst) {
// If this instruction is in a dead region, don't report the error. This can
// occur because we haven't run DCE before DI and this may be a synthesized
// statement. If it isn't synthesized, then DCE will report an error on the
// dead code.
if (!isBlockIsReachableFromEntry(Inst->getParent()))
return false;
// Check to see if we've already emitted an error at this location. If so,
// swallow the error.
SILLocation InstLoc = Inst->getLoc();
if (llvm::any_of(EmittedErrorLocs, [&](SILLocation L) -> bool {
return L.getSourceLoc() == InstLoc.getSourceLoc();
}))
return false;
// Ignore loads used only by an assign_by_wrapper or assign_or_init setter.
// This is safe to ignore because assign_by_wrapper/assign_or_init will
// only be re-written to use the setter if the value is fully initialized.
if (auto *load = dyn_cast<SingleValueInstruction>(Inst)) {
auto isOnlyUsedByPartialApply =
[&](const SingleValueInstruction *inst) -> PartialApplyInst * {
Operand *result = nullptr;
for (auto *op : inst->getUses()) {
auto *user = op->getUser();
// Ignore copies, destroys and borrows because they'd be
// erased together with the setter.
if (isa<DestroyValueInst>(user) || isa<CopyValueInst>(user) ||
isa<BeginBorrowInst>(user) || isa<EndBorrowInst>(user))
continue;
if (result)
return nullptr;
result = op;
}
return result ? dyn_cast<PartialApplyInst>(result->getUser()) : nullptr;
};
if (auto *PAI = isOnlyUsedByPartialApply(load)) {
if (std::find_if(PAI->use_begin(), PAI->use_end(), [](auto PAIUse) {
return isa<AssignByWrapperInst>(PAIUse->getUser()) ||
isa<AssignOrInitInst>(PAIUse->getUser());
}) != PAI->use_end()) {
return false;
}
}
}
EmittedErrorLocs.push_back(InstLoc);
return true;
}
/// Emit notes for each uninitialized stored property in a designated
/// initializer.
void LifetimeChecker::noteUninitializedMembers(const DIMemoryUse &Use) {
assert(TheMemory.isAnyInitSelf() && !TheMemory.isDelegatingInit() &&
"Not a designated initializer");
// Determine which members, specifically are uninitialized.
AvailabilitySet Liveness =
getLivenessAtInst(Use.Inst, Use.FirstElement, Use.NumElements);
SmallVector<std::function<void()>, 2> delayedNotes;
bool emittedNote = false;
for (unsigned i = Use.FirstElement, e = Use.FirstElement+Use.NumElements;
i != e; ++i) {
if (Liveness.get(i) == DIKind::Yes) continue;
// Ignore a failed super.init requirement.
if (i == TheMemory.getNumElements() - 1 && TheMemory.isDerivedClassSelf())
continue;
std::string Name;
auto *Decl = TheMemory.getPathStringToElement(i, Name);
SILLocation Loc = Use.Inst->getLoc();
if (Decl) {
// If we found a non-implicit declaration, use its source location.
if (!Decl->isImplicit())
Loc = SILLocation(Decl);
// If it's marked @_compilerInitialized, delay emission of the note.
if (Decl->getAttrs().hasAttribute<CompilerInitializedAttr>()) {
delayedNotes.push_back([=](){
diagnose(Module, Loc, diag::stored_property_not_initialized,
StringRef(Name));
});
continue;
}
}
diagnose(Module, Loc, diag::stored_property_not_initialized,
StringRef(Name));
emittedNote = true;
}
// Drop the notes for @_compilerInitialized decls if we emitted a note for
// other ones that do not have that attr.
if (emittedNote)
return;
// otherwise, emit delayed notes.
for (auto &emitter : delayedNotes)
emitter();
}
/// Given a use that has at least one uninitialized element in it, produce a
/// nice symbolic name for the element being accessed.
std::string LifetimeChecker::getUninitElementName(const DIMemoryUse &Use) {
// If the overall memory allocation has multiple elements, then dive in to
// explain *which* element is being used uninitialized. Start by rerunning
// the query, to get a bitmask of exactly which elements are uninitialized.
// In a multi-element query, the first element may already be defined and
// we want to point to the second one.
unsigned firstUndefElement =
getAnyUninitializedMemberAtInst(Use.Inst, Use.FirstElement,Use.NumElements);
assert(firstUndefElement != ~0U && "No undef elements found?");
// Verify that it isn't the super.init marker that failed. The client should
// handle this, not pass it down to diagnoseInitError.
assert((!TheMemory.isDerivedClassSelf() ||
firstUndefElement != TheMemory.getNumElements() - 1) &&
"super.init failure not handled in the right place");
// If the definition is a declaration, try to reconstruct a name and
// optionally an access path to the uninitialized element.
//
// TODO: Given that we know the range of elements being accessed, we don't
// need to go all the way deep into a recursive tuple here. We could print
// an error about "v" instead of "v.0" when "v" has tuple type and the whole
// thing is accessed inappropriately.
std::string Name;
TheMemory.getPathStringToElement(firstUndefElement, Name);
return Name;
}
void LifetimeChecker::diagnoseInitError(const DIMemoryUse &Use,
Diag<StringRef, bool> DiagMessage) {
auto *Inst = Use.Inst;
if (!shouldEmitError(Inst))
return;
// If the definition is a declaration, try to reconstruct a name and
// optionally an access path to the uninitialized element.
std::string Name = getUninitElementName(Use);
// Figure out the source location to emit the diagnostic to. If this is null,
// it is probably implicitly generated code, so we'll adjust it.
SILLocation DiagLoc = Inst->getLoc();
if (DiagLoc.isNull() || DiagLoc.getSourceLoc().isInvalid())
DiagLoc = Inst->getFunction()->getLocation();
// Determine whether the field we're touching is a let property.
bool isLet = true;
for (unsigned i = 0, e = Use.NumElements; i != e; ++i)
isLet &= TheMemory.isElementLetProperty(i);
diagnose(Module, DiagLoc, DiagMessage, StringRef(Name), isLet);
// As a debugging hack, print the instruction itself if there is no location
// information. This should never happen.
if (Inst->getLoc().isNull())
llvm::dbgs() << " the instruction: " << *Inst << "\n";
// Provide context as note diagnostics.
// TODO: The QoI could be improved in many different ways here. For example,
// We could give some path information where the use was uninitialized, like
// the static analyzer.
if (!TheMemory.isAnyInitSelf())
diagnose(Module, TheMemory.getLoc(), diag::variable_defined_here, isLet);
}
void LifetimeChecker::diagnoseBadExplicitStore(SILInstruction *Inst) {
if (!shouldEmitError(Inst))
return;
diagnose(Module, Inst->getLoc(), diag::explicit_store_of_compilerinitialized);
}
/// Determines whether the given function is a constructor that belongs to a
/// distributed actor declaration.
/// \returns nullptr if false, and the class decl for the actor otherwise.
static ClassDecl* getDistributedActorOfCtor(SILFunction &F) {
auto *context = F.getDeclContext();
if (auto *ctor = dyn_cast_or_null<ConstructorDecl>(context->getAsDecl()))
if (auto *cls = dyn_cast<ClassDecl>(ctor->getDeclContext()->getAsDecl()))
if (cls->isDistributedActor())
return cls;
return nullptr;
}
static bool isFailableInitReturnUseOfEnum(EnumInst *EI);
void LifetimeChecker::findFullInitializationPoints(
SmallVectorImpl<SILInstruction *> &points) {
auto recordLocations = [&](SILInstruction *inst) {
// While insertAfter can handle terminators, it cannot handle ones that lead
// to a block with multiple predecessors. I don't expect that a terminator
// could initialize a stored property at all: a try_apply passed the
// property as an inout would not be a valid use until _after_ the property
// has been initialized.
assert(!isa<TermInst>(inst) && "unexpected terminator");
//////
// NOTE: We prefer to inject code outside of any access regions, so that
// the dynamic access-set is empty. This is a best-effort to avoid injecting
// it inside of a region, but does not account for overlapping accesses,
// etc. But, I cannot think of a way to create an overlapping access with a
// stored property when it is first initialized, because it's not valid to
// pass those inout or capture them in a closure. - kavon
BeginAccessInst *access = nullptr;
// Finds begin_access instructions that need hops placed after its
// end_access.
auto getBeginAccess = [](SILValue v) -> BeginAccessInst * {
return dyn_cast<BeginAccessInst>(getAccessScope(v));
};
// If this insertion-point is after a store-like instruction, look for a
// begin_access corresponding to the destination.
if (auto *store = dyn_cast<StoreInst>(inst)) {
access = getBeginAccess(store->getDest());
} else if (auto *assign = dyn_cast<AssignInst>(inst)) {
access = getBeginAccess(assign->getDest());
}
// If we found a begin_access, then we need to inject the hop after
// all of the corresponding end_accesses.
if (access) {
for (auto *endAccess : access->getEndAccesses())
points.push_back(endAccess);
} else {
points.push_back(inst);
}
};
// Even if there are no stored properties to initialize, we still need
// to mark full initialization point.
//
// We insert this directly after the mark_uninitialized instruction, so
// that it happens as early as `self` is available.
if (TheMemory.getNumElements() == 0) {
// FIXME: this might be wrong for convenience inits (rdar://87485045)
auto *selfDef = TheMemory.getUninitializedValue();
recordLocations(&*selfDef->getIterator());
return;
}
// Returns true iff a block returns normally from the initializer,
// which means that it returns `self` in some way (perhaps optional-wrapped).
auto returnsSelf = [](SILBasicBlock &block) -> bool {
auto term = block.getTerminator();
auto kind = term->getTermKind();
// Does this block return directly?
if (kind == TermKind::ReturnInst)
return true;
// Does this block return `self` wrapped in an Optional?
// The pattern would look like:
//
// thisBB:
// ...
// %x = enum $Optional<Dactor>, #Optional.some!enumelt
// br exitBB(%x : $Optional<Dactor>)
//
// exitBB(%y : $Optional<Dactor>):
// return %y : $Optional<Dactor>
//
if (kind == TermKind::BranchInst)
if (term->getNumOperands() == 1)
if (auto *passedVal = term->getOperand(0)->getDefiningInstruction())
if (auto *ei = dyn_cast<EnumInst>(passedVal))
if (isFailableInitReturnUseOfEnum(ei))
// Once we've reached this point, we know it's an Optional enum.
// To determine whether it's .some or .none, we can just check
// the number of operands.
return ei->getNumOperands() == 1; // is it .some ?
return false;
};
for (auto &block : F) {
/////
// Step 1: Find initializing blocks, which are blocks that contain a store
// to TheMemory that fully-initializes it, and build the Map.
// We determine whether a block is "initializing" by inspecting the "in" and
// "out" availability sets of the block. If the block goes from No / Partial
// "in" to Yes "out", then some instruction in the block caused TheMemory to
// become fully-initialized, so we record that block and its in-availability
// to scan the block more precisely later in the next Step.
auto &info = getBlockInfo(&block);
if (!info.HasNonLoadUse) {
LLVM_DEBUG(llvm::dbgs()
<< "full-init-finder: rejecting bb" << block.getDebugID()
<< " b/c no non-load uses.\n");
continue; // could not be an initializing block.
}
// Determine if this `block` is initializing, that is:
//
// InAvailability ≡ merge(OutAvailability(predecessors(block)))
// ≠Yes
// AND
// OutAvailability(block) = Yes OR returnsSelf(block)
//
// A block with no predecessors has in-avail of non-Yes.
// A block with no successors has an out-avail of non-Yes, since
// availability is not computed for it.
auto outSet = info.OutAvailability;
if (!outSet.isAllYes() && !returnsSelf(block)) {
LLVM_DEBUG(llvm::dbgs()
<< "full-init-finder: rejecting bb" << block.getDebugID()
<< " b/c non-Yes OUT avail\n");
continue; // then this block never sees TheMemory initialized.
}
AvailabilitySet inSet(outSet.size());
auto const &predecessors = block.getPredecessorBlocks();
for (auto *pred : predecessors)
inSet.mergeIn(getBlockInfo(pred).OutAvailability);
if (inSet.isAllYes()) {
LLVM_DEBUG(llvm::dbgs()
<< "full-init-finder: rejecting bb" << block.getDebugID()
<< " b/c all-Yes IN avail\n");
continue; // then this block always sees TheMemory initialized.
}
LLVM_DEBUG(llvm::dbgs() << "full-init-finder: bb" << block.getDebugID()
<< " is initializing block with in-availability: "
<< inSet << "\n");
// Step 2: Scan the initializing block to find the first non-load use that
// fully-initializes TheMemory.
{
// Tracks status of each element of TheMemory as we scan through the
// block, starting with the initial availability at the block's
// entry-point.
AvailabilitySet localAvail = inSet;
auto bbi = block.begin(); // our cursor and eventual insertion-point.
const auto bbe = block.end();
for (; bbi != bbe; ++bbi) {
auto *inst = &*bbi;
auto result = NonLoadUses.find(inst);
if (result == NonLoadUses.end())
continue; // not a possible store
// Mark the tuple elements involved in this use as defined.
for (unsigned use : result->second) {
auto const &instUse = Uses[use];
for (unsigned i = instUse.FirstElement;
i < instUse.FirstElement + instUse.NumElements; ++i)
localAvail.set(i, DIKind::Yes);
}
// Stop if we found the instruction that initializes TheMemory.
if (localAvail.isAllYes())
break;
}
// Make sure we found the initializing use of TheMemory.
assert(bbi != bbe && "this block is not initializing?");
recordLocations(&*bbi);
}
}
}
void LifetimeChecker::injectActorHops() {
auto ctor = TheMemory.getActorInitSelf();
// Must be `self` within an actor's initializer.
if (!ctor)
return;
// Must not be an init that uses flow-sensitive isolation.
if (usesFlowSensitiveIsolation(ctor))
return;
// Must be an async initializer.
if (!ctor->hasAsync())
return;
// Must be an initializer that is isolated to self.
switch (getActorIsolation(ctor)) {
case ActorIsolation::ActorInstance:
break;
case ActorIsolation::Erased:
llvm_unreachable("constructor cannot have erased isolation");
case ActorIsolation::Unspecified:
case ActorIsolation::Nonisolated:
case ActorIsolation::NonisolatedUnsafe:
case ActorIsolation::GlobalActor:
return;
}
SmallVector<SILInstruction *> hopToActorAfter;
findFullInitializationPoints(hopToActorAfter);
auto injectExecutorHopAfter = [&](SILInstruction *insertPt) -> void {
LLVM_DEBUG(llvm::dbgs() << "hop-injector: injecting after " << *insertPt);
SILBuilderWithScope::insertAfter(insertPt, [&](SILBuilder &b) {
SILLocation genLoc = SILLocation(ctor).asAutoGenerated();
const bool delegating = !TheMemory.isNonDelegatingInit();
SILValue val = TheMemory.getUninitializedValue();
auto &F = b.getFunction();
// delegating inits always have an alloc we need to load it from.
if (delegating)
val = b.createLoad(genLoc, val, LoadOwnershipQualifier::Copy);
SILValue actor = b.createBeginBorrow(genLoc, val);
b.createHopToExecutor(genLoc, actor, /*mandatory=*/false);
// Distributed actors also need to notify their transport immediately
// after performing the hop.
if (!delegating) {
if (auto *actorDecl = getDistributedActorOfCtor(F)) {
SILValue systemRef =
refDistributedActorSystem(b, genLoc, actorDecl, actor);
emitActorReadyCall(b, genLoc, actor, systemRef);
}
}
b.createEndBorrow(genLoc, actor);
if (delegating)
b.createDestroyValue(genLoc, val);
});
};
for (auto *point : hopToActorAfter)
injectExecutorHopAfter(point);
}
void LifetimeChecker::doIt() {
// With any escapes tallied up, we can work through all the uses, checking
// for definitive initialization, promoting loads, rewriting assigns, and
// performing other tasks.
// Note that this should not use a for-each loop, as the Uses list can grow
// and reallocate as we iterate over it.
for (unsigned i = 0; i != Uses.size(); ++i) {
auto &Use = Uses[i];
auto *Inst = Uses[i].Inst;
// Ignore entries for instructions that got expanded along the way.
if (Inst == nullptr) continue;
switch (Use.Kind) {
case DIUseKind::Initialization:
// We assume that SILGen knows what it is doing when it produces
// initializations of variables, because it only produces them when it
// knows they are correct, and this is a super common case for "var x = y"
// cases.
continue;
case DIUseKind::Assign:
case DIUseKind::Set:
// Instructions classified as assign are only generated when lowering
// InitOrAssign instructions in regions known to be initialized. Since
// they are already known to be definitely init, don't reprocess them.
continue;
case DIUseKind::InitOrAssign:
// FIXME: This is a hack because DI is not understanding SILGen's
// stack values that have multiple init and destroy lifetime cycles with
// one allocation. This happens in foreach silgen (see rdar://15532779)
// and needs to be resolved someday, either by changing silgen or by
// teaching DI about destroy events. In the meantime, just assume that
// all stores of trivial type are ok.
if (isa<StoreInst>(Inst))
continue;
LLVM_FALLTHROUGH;
case DIUseKind::PartialStore:
handleStoreUse(i);
break;
case DIUseKind::IndirectIn:
case DIUseKind::Load:
handleLoadUse(Use);
break;
case DIUseKind::InOutArgument:
case DIUseKind::InOutSelfArgument:
handleInOutUse(Use);
break;
case DIUseKind::Escape:
handleEscapeUse(Use);
break;
case DIUseKind::SelfInit:
handleSelfInitUse(i);
break;
case DIUseKind::LoadForTypeOfSelf:
handleLoadForTypeOfSelfUse(Use);
break;
case DIUseKind::TypeOfSelf:
handleTypeOfSelfUse(Use);
break;
case DIUseKind::BadExplicitStore:
diagnoseBadExplicitStore(Inst);
break;
case DIUseKind::FlowSensitiveSelfIsolation:
handleFlowSensitiveActorIsolationUse(Use);
break;
}
}
// If we emitted an error, there is no reason to proceed with load promotion.
if (!EmittedErrorLocs.empty()) {
// Since we failed DI, for now, turn off the move checker on the entire
// function. With time, we should be able to allow for move checker checks
// to be emitted on unrelated allocations, but given where we are this is a
// good enough fix.
TheMemory.getFunction().addSemanticsAttr(
semantics::NO_MOVEONLY_DIAGNOSTICS);
return;
}
// All of the indirect results marked as "out" have to be fully initialized
// before their lifetime ends.
if (TheMemory.isOut()) {
auto diagnoseMissingInit = [&]() {
std::string propertyName;
auto *property = TheMemory.getPathStringToElement(0, propertyName);
diagnose(Module, F.getLocation(),
diag::ivar_not_initialized_by_init_accessor,
property->getName());
EmittedErrorLocs.push_back(TheMemory.getLoc());
};
// No uses means that there was no initialization.
if (Uses.empty()) {
diagnoseMissingInit();
return;
}
// Go over every return block and check whether member is fully initialized
// because it's possible that there is branch that doesn't have any use of
// the memory and nothing else is going to diagnose that. This is different
// from `self`, for example, because it would always have either `copy_addr`
// or `load` before return.
auto returnBB = F.findReturnBB();
while (returnBB != F.end()) {
auto *terminator = returnBB->getTerminator();
// If this is an unreachable block, let's ignore it.
if (isa<UnreachableInst>(terminator)) {
++returnBB;
continue;
}
if (!isInitializedAtUse(DIMemoryUse(terminator, DIUseKind::Load, 0, 1)))
diagnoseMissingInit();
++returnBB;
}
}
// If the memory object has nontrivial type, then any destroy/release of the
// memory object will destruct the memory. If the memory (or some element
// thereof) is not initialized on some path, the bad things happen. Process
// releases to adjust for this.
if (!TheMemory.hasTrivialType()) {
// NOTE: This array may increase in size!
for (unsigned i = 0, e = Destroys.size(); i != e; ++i)
processNonTrivialRelease(i);
}
/// At this point, we should have computed enough liveness information to
/// provide accurate information about initialization points, even for
/// local variables within a function, because we've now processed the
/// destroy/releases.
// Insert hop_to_executor instructions for actor initializers, if needed.
injectActorHops();
// If the memory object had any non-trivial stores that are init or assign
// based on the control flow path reaching them, then insert dynamic control
// logic and CFG diamonds to handle this.
SILValue ControlVariable;
if (HasConditionalInitAssign ||
HasConditionalDestroy ||
HasConditionalSelfInitialized) {
ControlVariable = handleConditionalInitAssign();
SILValue memAddr = TheMemory.getUninitializedValue()->getOperand(0);
if (auto *ASI = dyn_cast<AllocStackInst>(memAddr)) {
ASI->setDynamicLifetime();
} else if (auto *ABI = dyn_cast<AllocBoxInst>(memAddr)) {
ABI->setDynamicLifetime();
}
// We don't support noncopyable types with dynamic lifetimes currently.
if (TheMemory.getType().isMoveOnly()) {
diagnose(Module, TheMemory.getUninitializedValue()->getLoc(),
diag::noncopyable_dynamic_lifetime_unsupported);
}
}
if (!ConditionalDestroys.empty())
handleConditionalDestroys(ControlVariable);
// handleStoreUse(), handleSelfInitUse() and handleConditionalInitAssign()
// postpone lowering of assignment instructions to avoid deleting
// instructions that still appear in the Uses list.
for (unsigned UseID : NeedsUpdateForInitState)
updateInstructionForInitState(UseID);
}
void LifetimeChecker::handleLoadUse(const DIMemoryUse &Use) {
bool IsSuperInitComplete, FailedSelfUse;
// If the value is not definitively initialized, emit an error.
if (!isInitializedAtUse(Use, &IsSuperInitComplete, &FailedSelfUse))
return handleLoadUseFailure(Use, IsSuperInitComplete, FailedSelfUse);
}
static void replaceValueMetatypeInstWithMetatypeArgument(
ValueMetatypeInst *valueMetatype) {
SILValue metatypeArgument = valueMetatype->getFunction()->getSelfArgument();
// SILFunction parameter types never have a DynamicSelfType, since it only
// makes sense in the context of a given method's body. Since the
// value_metatype instruction might produce a DynamicSelfType we have to
// cast the metatype argument.
//
// FIXME: Semantically, we're "opening" the class metatype here to produce
// the "opened" DynamicSelfType. Ideally it would be modeled as an opened
// archetype associated with the original metatype or class instance value,
// instead of as a "global" type.
auto metatypeSelfType = metatypeArgument->getType()
.castTo<MetatypeType>().getInstanceType();
auto valueSelfType = valueMetatype->getType()
.castTo<MetatypeType>().getInstanceType();
if (metatypeSelfType != valueSelfType) {
assert(metatypeSelfType ==
cast<DynamicSelfType>(valueSelfType).getSelfType());
SILBuilderWithScope B(valueMetatype);
metatypeArgument = B.createUncheckedTrivialBitCast(
valueMetatype->getLoc(), metatypeArgument,
valueMetatype->getType());
}
InstModCallbacks callbacks;
replaceAllSimplifiedUsesAndErase(valueMetatype, metatypeArgument, callbacks);
}
void LifetimeChecker::handleLoadForTypeOfSelfUse(DIMemoryUse &Use) {
bool IsSuperInitComplete, FailedSelfUse;
// If the value is not definitively initialized, replace the
// value_metatype instruction with the metatype argument that was passed into
// the initializer.
if (!isInitializedAtUse(Use, &IsSuperInitComplete, &FailedSelfUse)) {
auto load = cast<SingleValueInstruction>(Use.Inst);
ValueMetatypeInst *valueMetatype = nullptr;
for (auto use : load->getUses()) {
valueMetatype = dyn_cast<ValueMetatypeInst>(use->getUser());
if (valueMetatype)
break;
}
replaceValueMetatypeInstWithMetatypeArgument(valueMetatype);
// Dead loads for type-of-self must be removed.
// Otherwise it's a violation of memory lifetime.
if (isa<LoadBorrowInst>(load)) {
assert(load->hasOneUse() && isa<EndBorrowInst>(load->getSingleUse()->getUser()));
load->getSingleUse()->getUser()->eraseFromParent();
}
assert(load->use_empty());
load->eraseFromParent();
// Clear the Inst pointer just to be sure to avoid use-after-free.
Use.Inst = nullptr;
}
}
void LifetimeChecker::handleTypeOfSelfUse(DIMemoryUse &Use) {
bool IsSuperInitComplete, FailedSelfUse;
// If the value is not definitively initialized, replace the
// value_metatype instruction with the metatype argument that was passed into
// the initializer.
if (!isInitializedAtUse(Use, &IsSuperInitComplete, &FailedSelfUse)) {
auto *valueMetatype = cast<ValueMetatypeInst>(Use.Inst);
replaceValueMetatypeInstWithMetatypeArgument(valueMetatype);
// Clear the Inst pointer just to be sure to avoid use-after-free.
Use.Inst = nullptr;
}
}
void LifetimeChecker::handleFlowSensitiveActorIsolationUse(
const DIMemoryUse &Use) {
bool IsSuperInitComplete, FailedSelfUse;
ASTContext &ctx = F.getASTContext();
auto builtinInst = cast<BuiltinInst>(Use.Inst);
SILBuilderWithScope B(builtinInst);
SILValue replacement;
SILType optExistentialType = builtinInst->getType();
SILLocation loc = builtinInst->getLoc();
if (isInitializedAtUse(Use, &IsSuperInitComplete, &FailedSelfUse)) {
// 'self' is initialized, so replace this builtin with the appropriate
// operation to produce `any Actor.
SILValue anyActorValue;
auto conformance = builtinInst->getSubstitutions().getConformances()[0];
if (builtinInst->getBuiltinKind() == BuiltinValueKind::FlowSensitiveSelfIsolation) {
// Create a copy of the actor argument, which we intentionally did not
// copy in SILGen.
SILValue actor = B.createCopyValue(loc, builtinInst->getArguments()[0]);
// Inject 'self' into 'any Actor'.
ProtocolConformanceRef conformances[1] = { conformance };
SILType existentialType = optExistentialType.getOptionalObjectType();
anyActorValue = B.createInitExistentialRef(
loc, existentialType, actor->getType().getASTType(), actor,
ctx.AllocateCopy(conformances));
} else {
// Borrow the actor argument, which we need to form the appropriate
// call to the asLocalActor getter.
SILValue actor = B.createBeginBorrow(loc, builtinInst->getArguments()[0]);
// Dig out the getter for asLocalActor.
auto asLocalActorDecl = getDistributedActorAsLocalActorComputedProperty(
F.getDeclContext()->getParentModule());
auto asLocalActorGetter = asLocalActorDecl->getAccessor(AccessorKind::Get);
SILDeclRef asLocalActorRef = SILDeclRef(
asLocalActorGetter, SILDeclRef::Kind::Func);
SILFunction *asLocalActorFunc = F.getModule()
.lookUpFunction(asLocalActorRef);
SILValue asLocalActorValue = B.createFunctionRef(loc, asLocalActorFunc);
// Call asLocalActor. It produces an 'any Actor'.
anyActorValue = B.createApply(
loc,
asLocalActorValue,
SubstitutionMap::get(asLocalActorGetter->getGenericSignature(),
{ actor->getType().getASTType() },
{ conformance }),
{ actor });
B.createEndBorrow(loc, actor);
}
// Then, wrap it in an optional.
replacement = B.createEnum(
loc, anyActorValue, ctx.getOptionalSomeDecl(), optExistentialType);
} else {
// 'self' is not initialized yet, so use 'nil'.
replacement = B.createEnum(
loc, SILValue(), ctx.getOptionalNoneDecl(), optExistentialType);
}
// Introduce the replacement.
InstModCallbacks callbacks;
replaceAllUsesAndErase(builtinInst, replacement, callbacks);
}
void LifetimeChecker::emitSelfConsumedDiagnostic(SILInstruction *Inst) {
if (!shouldEmitError(Inst))
return;
diagnose(Module, Inst->getLoc(),
diag::self_inside_catch_superselfinit,
(unsigned)TheMemory.isDelegatingInit());
}
/// If \p theStruct is imported from C and has a zeroing no-argument
/// initializer, add a note to suggest calling it ahead of \p loc.
///
/// Most (but not all) C structs have a zeroing no-argument initializer;
/// the ones that don't have fields don't make sense to zero.
static void maybeSuggestNoArgSelfInit(SILModule &module, SILLocation loc,
StructDecl *theStruct) {
if (!theStruct || !theStruct->hasClangNode())
return;
ASTContext &ctx = module.getASTContext();
DeclName noArgInit(ctx, DeclBaseName::createConstructor(),
ArrayRef<Identifier>());
auto lookupResults = theStruct->lookupDirect(noArgInit);
if (lookupResults.size() != 1)
return;
if (lookupResults.front()->getDeclContext() != theStruct)
return;
diagnose(module, loc, diag::designated_init_c_struct_fix)
.fixItInsert(loc.getStartSourceLoc(), "self.init()\n");
}
void LifetimeChecker::handleStoreUse(unsigned UseID) {
DIMemoryUse &Use = Uses[UseID];
// Determine the liveness state of the element that we care about.
auto Liveness = getLivenessAtInst(Use.Inst, Use.FirstElement,
Use.NumElements);
// Check to see if the stored location is either fully uninitialized or fully
// initialized.
bool isFullyInitialized = true;
bool isFullyUninitialized = true;
for (unsigned i = Use.FirstElement, e = i+Use.NumElements;
i != e;++i) {
auto DI = Liveness.get(i);
if (DI != DIKind::Yes)
isFullyInitialized = false;
if (DI != DIKind::No)
isFullyUninitialized = false;
}
if (TheMemory.isNonRootClassSelf()) {
if (getSelfInitializedAtInst(Use.Inst) != DIKind::Yes) {
auto SelfLiveness =
getLivenessAtInst(Use.Inst, 0, TheMemory.getNumElements());
if (SelfLiveness.isAllYes()) {
emitSelfConsumedDiagnostic(Use.Inst);
return;
}
}
}
// If this is a partial store into a struct and the whole struct hasn't been
// initialized, diagnose this as an error.
if (Use.Kind == DIUseKind::PartialStore && !isFullyInitialized) {
assert(Use.NumElements == 1 && "partial stores are intra-element");
diagnoseInitError(Use, diag::struct_not_fully_initialized);
return;
}
// If this is a store to a 'let' property in an initializer, then we only
// allow the assignment if the property was completely uninitialized.
// Overwrites are not permitted.
if (Use.Kind == DIUseKind::PartialStore || !isFullyUninitialized) {
for (unsigned i = Use.FirstElement, e = i+Use.NumElements;
i != e; ++i) {
if (Liveness.get(i) == DIKind::No || !TheMemory.isElementLetProperty(i))
continue;
// Don't emit errors for unreachable code, or if we have already emitted
// a diagnostic.
if (!shouldEmitError(Use.Inst))
continue;
std::string PropertyName;
auto *VD = TheMemory.getPathStringToElement(i, PropertyName);
diagnose(Module, Use.Inst->getLoc(),
diag::immutable_property_already_initialized,
StringRef(PropertyName));
if (auto *Var = dyn_cast<VarDecl>(VD)) {
if (Var->getParentExecutableInitializer())
diagnose(Module, SILLocation(VD),
diag::initial_value_provided_in_let_decl);
Var->emitLetToVarNoteIfSimple(nullptr);
}
return;
}
}
// Check if we're in a struct initializer that uses CrossModuleRootSelf rather
// than DelegatingSelf for Swift 4 compatibility. We look for a problem case by
// seeing if there are any assignments to individual fields that might be
// initializations; that is, that they're not dominated by `self = other`.
auto isFullValueAssignment = [this](const SILInstruction *inst) -> bool {
SILValue addr;
if (auto *copyAddr = dyn_cast<CopyAddrInst>(inst))
addr = copyAddr->getDest();
else if (auto *moveAddr = dyn_cast<MarkUnresolvedMoveAddrInst>(inst))
addr = moveAddr->getDest();
else if (auto *assign = dyn_cast<AssignInst>(inst))
addr = assign->getDest();
else if (auto *assign = dyn_cast<AssignByWrapperInst>(inst))
addr = assign->getDest();
else
return false;
if (auto *access = dyn_cast<BeginAccessInst>(addr))
addr = access->getSource();
if (auto *projection = dyn_cast<ProjectBoxInst>(addr))
addr = projection->getOperand();
return addr == TheMemory.getUninitializedValue();
};
if (!isFullyInitialized && WantsCrossModuleStructInitializerDiagnostic &&
!isFullValueAssignment(Use.Inst)) {
// Deliberately don't check shouldEmitError here; we're using DI to approximate
// whether this would be a valid delegating initializer, but the error when it
// /is/ a delegating initializer won't be path-sensitive.
Type selfTy;
SILLocation fnLoc = TheMemory.getFunction().getLocation();
if (auto *ctor = fnLoc.getAsASTNode<ConstructorDecl>())
selfTy = ctor->getImplicitSelfDecl()->getTypeInContext();
else
selfTy = TheMemory.getASTType();
StructDecl *theStruct = selfTy->getStructOrBoundGenericStruct();
assert(theStruct);
diagnose(Module, Use.Inst->getLoc(),
diag::designated_init_in_cross_module_extension,
selfTy, !isFullyUninitialized,
theStruct->getParentModule()->getName(),
theStruct->hasClangNode());
if (!HasSuggestedNoArgSelfInit && isFullyUninitialized) {
maybeSuggestNoArgSelfInit(Module, Use.Inst->getLoc(), theStruct);
HasSuggestedNoArgSelfInit = true;
}
// Don't emit more than one of these diagnostics per initializer.
WantsCrossModuleStructInitializerDiagnostic = false;
}
// If this is an initialization or a normal assignment, upgrade the store to
// an initialization or assign in the uses list so that clients know about it.
if (isFullyUninitialized) {
// If this is a placeholder use of `assign_or_init` instruction,
// check whether all of the fields are initialized - if so, call a setter,
// otherwise call init accessor.
if (isa<AssignOrInitInst>(Use.Inst) && Use.NumElements == 0) {
auto allFieldsInitialized =
getAnyUninitializedMemberAtInst(Use.Inst, 0,
TheMemory.getNumElements()) == -1;
Use.Kind =
allFieldsInitialized ? DIUseKind::Set : DIUseKind::Initialization;
} else {
Use.Kind = DIUseKind::Initialization;
}
} else if (isFullyInitialized && isa<AssignByWrapperInst>(Use.Inst)) {
// If some fields are uninitialized, re-write assign_by_wrapper to assignment
// of the backing wrapper. If all fields are initialized, assign to the wrapped
// value.
auto allFieldsInitialized =
getAnyUninitializedMemberAtInst(Use.Inst, 0, TheMemory.getNumElements()) == -1;
Use.Kind = allFieldsInitialized ? DIUseKind::Set : DIUseKind::Assign;
} else if (isFullyInitialized && isa<AssignOrInitInst>(Use.Inst)) {
auto allFieldsInitialized =
getAnyUninitializedMemberAtInst(Use.Inst, 0,
TheMemory.getNumElements()) == -1;
auto *AOI = cast<AssignOrInitInst>(Use.Inst);
// init accessor properties without setters behave like `let` properties
// and don't support re-initialization.
if (isa<SILUndef>(AOI->getSetter())) {
diagnose(Module, AOI->getLoc(),
diag::immutable_property_already_initialized,
AOI->getPropertyName());
}
Use.Kind = allFieldsInitialized ? DIUseKind::Set : DIUseKind::Assign;
} else if (isFullyInitialized) {
Use.Kind = DIUseKind::Assign;
} else {
// If it is initialized on some paths, but not others, then we have an
// inconsistent initialization, which needs dynamic control logic in the
// general case.
// This is classified as InitOrAssign (not PartialStore), so there are only
// a few instructions that could reach here.
assert(Use.Kind == DIUseKind::InitOrAssign &&
"should only have inconsistent InitOrAssign's here");
// If this access stores something of non-trivial type, then keep track of
// it for later. Once we've collected all of the conditional init/assigns,
// we can insert a single control variable for the memory object for the
// whole function.
//
// For root class initializers, we must keep track of initializations of
// trivial stored properties also, since we need to know when the object
// has been fully initialized when deciding if a strong_release should
// lower to a partial_dealloc_ref.
if (TheMemory.isRootClassSelf() ||
!Use.onlyTouchesTrivialElements(TheMemory))
HasConditionalInitAssign = true;
return;
}
// Otherwise, we have a definite init or assign. Make sure the instruction
// itself is tagged properly.
NeedsUpdateForInitState.push_back(UseID);
}
/// Check whether the instruction is an application.
///
/// Looks through certain projections to find the application.
/// If this is done, updates isSelfParameter as appropriate; otherwise,
/// assumes it was properly set by the caller based on which operand
/// was accessed.
static FullApplySite findApply(SILInstruction *I, bool &isSelfParameter) {
if (auto apply = FullApplySite::isa(I))
return apply;
// If this is an OpenExistentialAddrInst in preparation for applying
// a witness method, analyze its use to make sure, that no mutation of
// lvalue let constants occurs.
if (auto *open = dyn_cast<OpenExistentialAddrInst>(I)) {
for (auto use : open->getUses()) {
// Stop at the first use in an apply we find. We assume that we
// won't find multiple interesting calls.
if (auto apply = FullApplySite::isa(use->getUser())) {
// The 'open' could also be a type dependency of the apply, so
// instead of checking whether 'use' is exactly the self argument,
// just check whether the self argument is the opened value.
isSelfParameter =
apply.hasSelfArgument() &&
apply.getSelfArgument() == open;
return apply;
}
}
}
return FullApplySite();
}
void LifetimeChecker::handleInOutUse(const DIMemoryUse &Use) {
bool IsSuperInitDone, FailedSelfUse;
// inout uses are generally straight-forward: the memory must be initialized
// before the "address" is passed as an l-value.
if (!isInitializedAtUse(Use, &IsSuperInitDone, &FailedSelfUse)) {
if (FailedSelfUse) {
emitSelfConsumedDiagnostic(Use.Inst);
return;
}
auto diagID = diag::variable_inout_before_initialized;
if (isa<AddressToPointerInst>(Use.Inst))
diagID = diag::variable_addrtaken_before_initialized;
diagnoseInitError(Use, diagID);
return;
}
// One additional check: 'let' properties may never be passed inout, because
// they are only allowed to have their initial value set, not a subsequent
// overwrite.
for (unsigned i = Use.FirstElement, e = i+Use.NumElements;
i != e; ++i) {
if (!TheMemory.isElementLetProperty(i))
continue;
std::string PropertyName;
auto VD = TheMemory.getPathStringToElement(i, PropertyName);
// Try to produce a specific error message about the inout use. If this is
// a call to a method or a mutating property access, indicate that.
// Otherwise, we produce a generic error.
FuncDecl *FD = nullptr;
bool isAssignment = false;
bool isSelfParameter = (Use.Kind == DIUseKind::InOutSelfArgument);
auto Apply = findApply(Use.Inst, isSelfParameter);
if (Apply) {
// If this is a method application, produce a nice, specific, error.
if (auto *WMI = dyn_cast<MethodInst>(Apply.getCallee()))
FD = dyn_cast<FuncDecl>(WMI->getMember().getDecl());
// If this is a direct/devirt method application, check the location info.
if (auto *Fn = Apply.getReferencedFunctionOrNull()) {
if (Fn->hasLocation()) {
auto SILLoc = Fn->getLocation();
FD = SILLoc.getAsASTNode<FuncDecl>();
}
}
// If we failed to find the decl a clean and principled way, try hacks:
// map back to the AST and look for some common patterns.
if (!FD) {
if (Apply.getLoc().getAsASTNode<AssignExpr>())
isAssignment = true;
else if (auto *CE = Apply.getLoc().getAsASTNode<ApplyExpr>()) {
if (auto *DSCE = dyn_cast<SelfApplyExpr>(CE->getFn()))
// Normal method calls are curried, so they are:
// (call_expr (dot_syntax_call_expr (decl_ref_expr METHOD)))
FD = dyn_cast_or_null<FuncDecl>(DSCE->getCalledValue());
else
// Operators and normal function calls are just (CallExpr DRE)
FD = dyn_cast_or_null<FuncDecl>(CE->getCalledValue());
}
}
}
// If we were able to find a method or function call, emit a diagnostic
// about the method. The magic numbers used by the diagnostic are:
// 0 -> method, 1 -> property, 2 -> subscript, 3 -> operator.
auto accessor = dyn_cast_or_null<AccessorDecl>(FD);
if (accessor && isSelfParameter) {
bool isMutator = [&] {
switch (accessor->getAccessorKind()) {
case AccessorKind::Get:
case AccessorKind::DistributedGet:
case AccessorKind::Read:
case AccessorKind::Address:
return false;
case AccessorKind::Set:
case AccessorKind::Modify:
case AccessorKind::MutableAddress:
case AccessorKind::DidSet:
case AccessorKind::WillSet:
case AccessorKind::Init:
return true;
}
llvm_unreachable("bad kind");
}();
diagnose(Module, Use.Inst->getLoc(),
isMutator
? diag::mutation_of_property_of_immutable_value
: diag::using_mutating_accessor_on_immutable_value,
accessor->getStorage()->getBaseName(),
isa<SubscriptDecl>(accessor->getStorage()),
StringRef(PropertyName));
} else if (FD && FD->isOperator()) {
diagnose(Module, Use.Inst->getLoc(),
diag::mutating_method_called_on_immutable_value,
FD->getBaseIdentifier(), /*operator*/ 1,
StringRef(PropertyName));
} else if (FD && isSelfParameter) {
diagnose(Module, Use.Inst->getLoc(),
diag::mutating_method_called_on_immutable_value,
FD->getBaseIdentifier(), /*method*/ 0, StringRef(PropertyName));
} else if (isAssignment) {
diagnose(Module, Use.Inst->getLoc(),
diag::assignment_to_immutable_value, StringRef(PropertyName));
} else {
diagnose(Module, Use.Inst->getLoc(),
diag::immutable_value_passed_inout, StringRef(PropertyName));
}
if (auto *Var = dyn_cast<VarDecl>(VD)) {
Var->emitLetToVarNoteIfSimple(nullptr);
}
return;
}
}
/// Failable enum initializer produce a CFG for the return that looks like this,
/// where the load is the use of 'self'. Detect this pattern so we can consider
/// it a 'return' use of self.
///
/// %3 = load %2 : $*Enum
/// %4 = enum $Optional<Enum>, #Optional.Some!enumelt, %3 : $Enum
/// br bb2(%4 : $Optional<Enum>) // id: %5
/// bb1:
/// %6 = enum $Optional<Enum>, #Optional.None!enumelt // user: %7
/// br bb2(%6 : $Optional<Enum>) // id: %7
/// bb2(%8 : $Optional<Enum>): // Preds: bb0 bb1
/// dealloc_stack %1 : $*Enum // id: %9
/// return %8 : $Optional<Enum> // id: %10
///
static bool isFailableInitReturnUseOfEnum(EnumInst *EI) {
// Only allow enums forming an optional.
if (!EI->getType().getOptionalObjectType())
return false;
if (!EI->hasOneUse())
return false;
auto *BI = dyn_cast<BranchInst>(EI->use_begin()->getUser());
if (!BI || BI->getNumArgs() != 1)
return false;
auto *TargetArg = BI->getDestBB()->getArgument(0);
if (!TargetArg->hasOneUse())
return false;
return isa<ReturnInst>(TargetArg->use_begin()->getUser());
}
/// Given a load instruction, return true iff the result of the load is used
/// in a return instruction directly or is lifted to an optional (i.e., wrapped
/// into .some) and returned. These conditions are used to detect whether the
/// given load instruction is autogenerated for a return from the initializers:
/// `init` or `init?`, respectively. In such cases, the load should not be
/// considered as a use of the value but rather as a part of the return
/// instruction. We emit a specific diagnostic in this case.
static bool isLoadForReturn(SingleValueInstruction *loadInst) {
bool hasReturnUse = false, hasUnknownUses = false;
for (auto LoadUse : loadInst->getUses()) {
auto *User = LoadUse->getUser();
// Ignore retains of the struct/enum before the return.
if (isa<RetainValueInst>(User))
continue;
if (isa<ReturnInst>(User)) {
hasReturnUse = true;
continue;
}
if (auto *EI = dyn_cast<EnumInst>(User))
if (isFailableInitReturnUseOfEnum(EI)) {
hasReturnUse = true;
continue;
}
hasUnknownUses = true;
break;
}
return hasReturnUse && !hasUnknownUses;
}
void LifetimeChecker::handleEscapeUse(const DIMemoryUse &Use) {
// The value must be fully initialized at all escape points. If not, diagnose
// the error.
bool SuperInitDone, FailedSelfUse, FullyUninitialized;
if (isInitializedAtUse(Use, &SuperInitDone, &FailedSelfUse,
&FullyUninitialized)) {
return;
}
auto Inst = Use.Inst;
if (FailedSelfUse) {
emitSelfConsumedDiagnostic(Inst);
return;
}
// This is a use of an uninitialized value. Emit a diagnostic.
if (TheMemory.isDelegatingInit() || TheMemory.isDerivedClassSelfOnly()) {
if (diagnoseMethodCall(Use, false))
return;
if (!shouldEmitError(Inst)) return;
// If this is a load with a single user that is a return, then this is
// a return before self.init. Emit a specific diagnostic.
if (auto *LI = dyn_cast<LoadInst>(Inst))
if (isLoadForReturn(LI)) {
diagnose(Module, Inst->getLoc(),
diag::superselfinit_not_called_before_return,
(unsigned)TheMemory.isDelegatingInit());
return;
}
if (isa<ReturnInst>(Inst)) {
diagnose(Module, Inst->getLoc(),
diag::superselfinit_not_called_before_return,
(unsigned)TheMemory.isDelegatingInit());
return;
}
if (!TheMemory.isClassInitSelf()) {
// If this is a copy_addr into the indirect result, then we're looking at
// the implicit "return self" in an address-only initializer. Emit a
// specific diagnostic.
if (auto *CA = dyn_cast<CopyAddrInst>(Inst)) {
if (CA->isInitializationOfDest() &&
!CA->getFunction()->getArguments().empty() &&
SILValue(CA->getFunction()->getArgument(0)) == CA->getDest()) {
diagnose(Module, Inst->getLoc(),
diag::superselfinit_not_called_before_return,
(unsigned)TheMemory.isDelegatingInit());
return;
}
}
}
if (TheMemory.isDelegatingInit()) {
if (TheMemory.isClassInitSelf()) {
diagnose(Module, Inst->getLoc(), diag::self_before_selfinit);
} else {
diagnose(Module, Inst->getLoc(), diag::self_before_selfinit_value_type);
if (!HasSuggestedNoArgSelfInit && FullyUninitialized) {
auto *maybeStruct =
TheMemory.getASTType().getStructOrBoundGenericStruct();
maybeSuggestNoArgSelfInit(Module, Inst->getLoc(), maybeStruct);
HasSuggestedNoArgSelfInit = true;
}
}
} else {
diagnose(Module, Inst->getLoc(), diag::self_before_superinit);
}
return;
}
if (isa<ApplyInst>(Inst) && TheMemory.isAnyInitSelf() &&
!TheMemory.isClassInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::use_of_self_before_fully_init);
noteUninitializedMembers(Use);
return;
}
if (isa<PartialApplyInst>(Inst) && TheMemory.isClassInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::self_closure_use_uninit);
noteUninitializedMembers(Use);
return;
}
// Extract the reason why this escape-use instruction exists and present
// diagnostics. While an escape-use instruction generally corresponds to a
// capture by a closure, there are the following special cases to consider:
//
// (a) A MarkFunctionEscapeInst with an operand say %var. This is introduced
// by the SILGen phase when %var is the address of a global variable that
// escapes because it is used by a closure or a defer statement or a function
// definition appearing at the top-level. The specific reason why %var escapes
// is recorded in MarkFunctionEscapeInst by making its SIL Location refer to
// the AST of the construct that uses the global variable (namely, a closure
// or a defer statement or a function definition). So, if %var is
// uninitialized at MarkFunctionEscapeInst, extract and report the reason
// why the variable escapes in the error message.
//
// (b) An UncheckedTakeEnumDataAddrInst takes the address of the data of
// an optional and is introduced as an intermediate step in optional chaining.
Diag<StringRef, bool> DiagMessage;
if (isa<MarkFunctionEscapeInst>(Inst)) {
if (Inst->getLoc().isASTNode<AbstractClosureExpr>()) {
DiagMessage = diag::variable_closure_use_uninit;
} else if (Inst->getLoc().isASTNode<DeferStmt>()) {
DiagMessage = diag::variable_defer_use_uninit;
} else {
DiagMessage = diag::variable_function_use_uninit;
}
} else if (isa<UncheckedTakeEnumDataAddrInst>(Inst)) {
DiagMessage = diag::variable_used_before_initialized;
} else {
DiagMessage = diag::variable_closure_use_uninit;
}
diagnoseInitError(Use, DiagMessage);
}
enum BadSelfUseKind {
BeforeStoredPropertyInit,
BeforeSuperInit,
BeforeSelfInit
};
void LifetimeChecker::diagnoseRefElementAddr(RefElementAddrInst *REI) {
if (!shouldEmitError(REI)) return;
auto Kind = (TheMemory.isAnyDerivedClassSelf()
? BeforeSuperInit
: BeforeSelfInit);
diagnose(Module, REI->getLoc(),
diag::self_use_before_fully_init,
REI->getField()->getName(), true, Kind);
}
template <typename T>
static FuncDecl *
findMethodForStoreInitializationOfTemporary(const DIMemoryObjectInfo &TheMemory,
T *SI) {
// We unconditionally strip borrow since a store must take a consuming
// argument, so the ownership verifier would trip. So we know that such a
// thing can not happen. On the other hand, for store_borrow, we need to
// strip the borrow, so lets use idempotence for correctness.
if (stripBorrow(SI->getSrc()) != TheMemory.getUninitializedValue() ||
!isa<AllocStackInst>(SI->getDest()) || !TheMemory.isClassInitSelf()) {
return nullptr;
}
ApplyInst *TheApply = nullptr;
auto addr =
isa<StoreBorrowInst>(SI) ? cast<StoreBorrowInst>(SI) : SI->getDest();
// Check to see if the address of the alloc_stack is only passed to one
// apply_inst and gather the apply while we are at it.
for (auto UI : addr->getUses()) {
if (auto *ApplyUser = dyn_cast<ApplyInst>(UI->getUser())) {
if (TheApply || UI->getOperandNumber() != 1) {
return nullptr;
}
TheApply = ApplyUser;
}
}
// If we didn't find an apply, just return nullptr. This isn't our pattern.
if (!TheApply)
return nullptr;
// Otherwise, try to get the func decl from the referenced function if we can
// find one.
auto *Fn = TheApply->getReferencedFunctionOrNull();
if (!Fn->hasLocation())
return nullptr;
return Fn->getLocation().getAsASTNode<FuncDecl>();
}
bool LifetimeChecker::diagnoseMethodCall(const DIMemoryUse &Use,
bool SuperInitDone) {
SILInstruction *Inst = Use.Inst;
// All of these cases imply that Inst as at +0.
if (auto *REI = dyn_cast<RefElementAddrInst>(Inst)) {
diagnoseRefElementAddr(REI);
return true;
}
// Check to see if this is a use of self or super, due to a method call. If
// so, emit a specific diagnostic.
FuncDecl *Method = nullptr;
// Check for an access to the base class through a borrow+cast.
if (auto *BBI = dyn_cast<BeginBorrowInst>(Inst)) {
llvm::SmallVector<Operand *, 8> Worklist(BBI->use_begin(), BBI->use_end());
while (!Worklist.empty()) {
auto *BBIOp = Worklist.pop_back_val();
auto *BBIOpUser = BBIOp->getUser();
// Skip over end_borrow.
if (isa<EndBorrowInst>(BBIOpUser))
continue;
// Look through upcasts.
if (auto upcast = dyn_cast<UpcastInst>(BBIOpUser)) {
std::copy(upcast->use_begin(), upcast->use_end(),
std::back_inserter(Worklist));
continue;
}
// Look through unchecked_ref_cast.
if (auto cast = dyn_cast<UncheckedRefCastInst>(BBIOpUser)) {
std::copy(cast->use_begin(), cast->use_end(),
std::back_inserter(Worklist));
continue;
}
// If we have a ref_element_addr, then perform the diagnosis.
if (auto *REI = dyn_cast<RefElementAddrInst>(BBIOpUser)) {
diagnoseRefElementAddr(REI);
return true;
}
// If we were not able to find a better error, return false.
return false;
}
}
if (auto UCI = dyn_cast<UpcastInst>(Inst)) {
// If the upcast is used by a ref_element_addr, then it is an access to a
// base ivar before super.init is called.
if (UCI->hasOneUse() && !SuperInitDone) {
if (auto *REI =
dyn_cast<RefElementAddrInst>((*UCI->use_begin())->getUser())) {
diagnoseRefElementAddr(REI);
return true;
}
}
// If the upcast is used by a class_method + apply, then this is a call of a
// superclass method or property accessor. If we have a guaranteed method,
// we will have a release due to a missing optimization in SILGen that will
// be removed.
//
// TODO: Implement the SILGen fixes so this can be removed.
MethodInst *MI = nullptr;
ApplyInst *AI = nullptr;
SILInstruction *Release = nullptr;
for (auto UI : UCI->getUses()) {
auto *User = UI->getUser();
if (auto *TAI = dyn_cast<ApplyInst>(User)) {
if (!AI) {
AI = TAI;
continue;
}
}
if (auto *CMI = dyn_cast<ClassMethodInst>(User)) {
if (!MI) {
MI = CMI;
continue;
}
}
if (auto *OMI = dyn_cast<ObjCMethodInst>(User)) {
if (!MI) {
MI = OMI;
continue;
}
}
if (isa<ReleaseValueInst>(User) || isa<StrongReleaseInst>(User)) {
if (!Release) {
Release = User;
continue;
}
}
// Not a pattern we recognize, conservatively generate a generic
// diagnostic.
MI = nullptr;
break;
}
// If we have a release, make sure that AI is guaranteed. If it is not, emit
// the generic error that we would emit before.
//
// That is the only case where we support pattern matching a release.
if (Release && AI /*
&& (!AI->getSubstCalleeType()->hasSelfParam()
|| !AI->getSubstCalleeType()->getSelfParameter().isGuaranteed())*/)
MI = nullptr;
if (AI && MI) {
// TODO: Could handle many other members more specifically.
Method = dyn_cast<FuncDecl>(MI->getMember().getDecl());
}
}
// If this is an apply instruction and we're in a class initializer, we're
// calling a method on self.
if (isa<ApplyInst>(Inst) && TheMemory.isClassInitSelf()) {
// If this is a method application, produce a nice, specific, error.
if (auto *CMI = dyn_cast<ClassMethodInst>(Inst->getOperand(0)))
Method = dyn_cast<FuncDecl>(CMI->getMember().getDecl());
if (auto *OMI = dyn_cast<ObjCMethodInst>(Inst->getOperand(0)))
Method = dyn_cast<FuncDecl>(OMI->getMember().getDecl());
// If this is a direct/devirt method application, check the location info.
if (auto *Fn = cast<ApplyInst>(Inst)->getReferencedFunctionOrNull()) {
if (Fn->hasLocation())
Method = Fn->getLocation().getAsASTNode<FuncDecl>();
}
}
// If this is part of a call to a witness method for a non-class-bound
// protocol in a root class, then we could have a store to a temporary whose
// address is passed into an apply. Look through this pattern.
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
Method = findMethodForStoreInitializationOfTemporary(TheMemory, SI);
}
if (auto *SI = dyn_cast<StoreBorrowInst>(Inst)) {
Method = findMethodForStoreInitializationOfTemporary(TheMemory, SI);
}
// If we were able to find a method call, emit a diagnostic about the method.
if (Method) {
if (!shouldEmitError(Inst)) return true;
DeclBaseName Name;
if (auto accessor = dyn_cast<AccessorDecl>(Method))
Name = accessor->getStorage()->getBaseName();
else
Name = Method->getBaseIdentifier();
// If this is a use of self before super.init was called, emit a diagnostic
// about *that* instead of about individual properties not being
// initialized.
auto Kind = (SuperInitDone
? BeforeStoredPropertyInit
: (TheMemory.isAnyDerivedClassSelf()
? BeforeSuperInit
: BeforeSelfInit));
diagnose(Module, Inst->getLoc(), diag::self_use_before_fully_init,
Name, isa<AccessorDecl>(Method), Kind);
if (SuperInitDone)
noteUninitializedMembers(Use);
return true;
}
return false;
}
bool LifetimeChecker::diagnoseReturnWithoutInitializingStoredProperties(
const SILInstruction *Inst, SILLocation loc, const DIMemoryUse &Use) {
if (!TheMemory.isAnyInitSelf())
return false;
if (TheMemory.isClassInitSelf() || TheMemory.isDelegatingInit())
return false;
if (!shouldEmitError(Inst))
return true;
if (TheMemory.isCrossModuleStructInitSelf() && TheMemory.hasDummyElement()) {
Type selfTy = TheMemory.getASTType();
const StructDecl *theStruct = selfTy->getStructOrBoundGenericStruct();
assert(theStruct);
bool fullyUnitialized;
(void)isInitializedAtUse(Use, nullptr, nullptr, &fullyUnitialized);
diagnose(Module, loc,
diag::designated_init_in_cross_module_extension,
selfTy, !fullyUnitialized,
theStruct->getParentModule()->getName(),
theStruct->hasClangNode());
} else {
diagnose(Module, loc,
diag::return_from_init_without_initing_stored_properties);
noteUninitializedMembers(Use);
}
return true;
}
/// Check and diagnose various failures when a load use is not fully
/// initialized.
///
/// TODO: In the "No" case, we can emit a fixit adding a default initialization
/// of the type.
void LifetimeChecker::handleLoadUseFailure(const DIMemoryUse &Use,
bool SuperInitDone,
bool FailedSelfUse) {
SILInstruction *Inst = Use.Inst;
// Stores back to the 'self' box are OK.
if (auto store = dyn_cast<StoreInst>(Inst)) {
if (store->getDest() == TheMemory.getUninitializedValue() &&
TheMemory.isClassInitSelf())
return;
}
if (FailedSelfUse) {
emitSelfConsumedDiagnostic(Inst);
return;
}
// If this is a load with a single user that is a return (and optionally a
// retain_value for non-trivial structs/enums), then this is a return in the
// enum/struct init case, and we haven't stored to self. Emit a specific
// diagnostic.
if (isa<LoadInst>(Inst) || isa<LoadBorrowInst>(Inst)) {
auto *LI = Inst;
// If this load is part of a return sequence, diagnose it specially.
if (isLoadForReturn(cast<SingleValueInstruction>(LI))) {
// The load is probably part of the common epilog for the function, try to
// find a more useful source location than the syntactic end of the
// function.
SILLocation returnLoc = Inst->getLoc();
auto TermLoc = Inst->getParent()->getTerminator()->getLoc();
if (TermLoc.getKind() == SILLocation::ReturnKind) {
// Function has a single return that got merged into the epilog block.
returnLoc = TermLoc;
} else {
// Otherwise, there are multiple paths to the epilog block, scan its
// predecessors to see if there are any where the value is unavailable.
// If so, we can use its location information for more precision.
for (auto pred : LI->getParent()->getPredecessorBlocks()) {
auto *TI = pred->getTerminator();
// Check if this is an early return with uninitialized members.
if (TI->getLoc().getKind() == SILLocation::ReturnKind &&
getAnyUninitializedMemberAtInst(TI, Use.FirstElement,
Use.NumElements) != -1)
returnLoc = TI->getLoc();
}
}
if (diagnoseReturnWithoutInitializingStoredProperties(Inst, returnLoc,
Use)) {
return;
}
}
}
// If this is a copy_addr into the 'self' argument, and the memory object is a
// rootself struct/enum or a non-delegating initializer, then we're looking at
// the implicit "return self" in an address-only initializer. Emit a specific
// diagnostic.
if (auto *CA = dyn_cast<CopyAddrInst>(Inst)) {
if (CA->isInitializationOfDest() &&
!CA->getFunction()->getArguments().empty() &&
SILValue(CA->getFunction()->getArgument(0)) == CA->getDest()) {
if (diagnoseReturnWithoutInitializingStoredProperties(Inst,
Inst->getLoc(),
Use)) {
return;
}
}
}
// Check to see if we're returning self in a class initializer before all the
// ivars/super.init are set up.
if (isa<ReturnInst>(Inst) && TheMemory.isAnyInitSelf()) {
if (!shouldEmitError(Inst)) return;
if (!SuperInitDone) {
diagnose(Module, Inst->getLoc(),
diag::superselfinit_not_called_before_return,
(unsigned)TheMemory.isDelegatingInit());
} else {
diagnose(Module, Inst->getLoc(),
diag::return_from_init_without_initing_stored_properties);
noteUninitializedMembers(Use);
}
return;
}
// Check to see if this is a use of self or super, due to a method call. If
// so, emit a specific diagnostic.
if (diagnoseMethodCall(Use, SuperInitDone))
return;
// Otherwise, we couldn't find a specific thing to complain about, so emit a
// generic error, depending on what kind of failure this is.
if (!SuperInitDone) {
if (!shouldEmitError(Inst)) return;
if (TheMemory.isDelegatingInit()) {
if (TheMemory.isClassInitSelf()) {
diagnose(Module, Inst->getLoc(), diag::self_before_selfinit);
} else {
diagnose(Module, Inst->getLoc(), diag::self_before_selfinit_value_type);
}
} else {
diagnose(Module, Inst->getLoc(), diag::self_before_superinit);
}
return;
}
// If this is a call to a method in a class initializer, then it must be a use
// of self before the stored properties are set up.
if (isa<ApplyInst>(Inst) && TheMemory.isClassInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::use_of_self_before_fully_init);
noteUninitializedMembers(Use);
return;
}
// If this is a load of self in a struct/enum/protocol initializer, then it
// must be a use of 'self' before all the stored properties are set up.
if ((isa<LoadInst>(Inst) || isa<LoadBorrowInst>(Inst)) &&
TheMemory.isAnyInitSelf() && !TheMemory.isClassInitSelf()) {
if (!shouldEmitError(Inst)) return;
diagnose(Module, Inst->getLoc(), diag::use_of_self_before_fully_init);
noteUninitializedMembers(Use);
return;
}
// If this is a load into a promoted closure capture, diagnose properly as
// a capture.
if ((isa<LoadInst>(Inst) || isa<LoadBorrowInst>(Inst)) &&
Inst->getLoc().isASTNode<AbstractClosureExpr>())
diagnoseInitError(Use, diag::variable_closure_use_uninit);
else
diagnoseInitError(Use, diag::variable_used_before_initialized);
}
/// handleSelfInitUse - When processing a 'self' argument on a class, this is
/// a call to self.init or super.init.
void LifetimeChecker::handleSelfInitUse(unsigned UseID) {
auto &Use = Uses[UseID];
auto *Inst = Use.Inst;
assert(TheMemory.isAnyInitSelf());
assert(!TheMemory.isClassInitSelf() || TheMemory.isNonRootClassSelf());
assert(TheMemory.getASTType()->hasReferenceSemantics());
// Determine the liveness states of the memory object, including the
// self/super.init state.
AvailabilitySet Liveness =
getLivenessAtInst(Inst, 0, TheMemory.getNumElements());
// self/super.init() calls require that self/super.init has not already
// been called. If it has, reject the program.
switch (Liveness.get(TheMemory.getNumElements() - 1)) {
case DIKind::No: // This is good! Keep going.
break;
case DIKind::Yes:
case DIKind::Partial:
// This is bad, only one super.init call is allowed.
if (getSelfInitializedAtInst(Inst) != DIKind::Yes) {
emitSelfConsumedDiagnostic(Inst);
return;
}
if (shouldEmitError(Inst))
diagnose(Module, Inst->getLoc(), diag::selfinit_multiple_times,
TheMemory.isDelegatingInit());
return;
}
if (TheMemory.isDelegatingInit()) {
assert(TheMemory.getNumElements() == 1 &&
"delegating inits have a single elt");
// Lower Assign instructions if needed.
if (isa<AssignInst>(Use.Inst) || isa<AssignByWrapperInst>(Use.Inst) ||
isa<AssignOrInitInst>(Use.Inst))
NeedsUpdateForInitState.push_back(UseID);
} else {
// super.init also requires that all ivars are initialized before the
// superclass initializer runs.
for (unsigned i = 0, e = TheMemory.getNumElements() - 1; i != e; ++i) {
if (Liveness.get(i) == DIKind::Yes) continue;
// If the super.init call is implicit generated, produce a specific
// diagnostic.
bool isImplicit = Use.Inst->getLoc().getSourceLoc().isInvalid();
auto diag = isImplicit ? diag::ivar_not_initialized_at_implicit_superinit :
diag::ivar_not_initialized_at_superinit;
return diagnoseInitError(Use, diag);
}
// Otherwise everything is good!
}
}
// In case of `var` initializations, SILGen creates a dynamic begin/end_access
// pair around the initialization store. If it's an initialization (and not
// a re-assign) it's guaranteed that it's an exclusive access and we can
// convert the access to an `[init] [static]` access.
static void setStaticInitAccess(SILValue memoryAddress) {
if (auto *ba = dyn_cast<BeginAccessInst>(memoryAddress)) {
if (ba->getEnforcement() == SILAccessEnforcement::Dynamic) {
ba->setEnforcement(SILAccessEnforcement::Static);
if (ba->getAccessKind() == SILAccessKind::Modify)
ba->setAccessKind(SILAccessKind::Init);
}
}
}
/// updateInstructionForInitState - When an instruction being analyzed moves
/// from being InitOrAssign to some concrete state, update it for that state.
/// This includes rewriting them from assign instructions into their composite
/// operations.
void LifetimeChecker::updateInstructionForInitState(unsigned UseID) {
DIMemoryUse &Use = Uses[UseID];
SILInstruction *Inst = Use.Inst;
IsInitialization_t InitKind;
if (Use.Kind == DIUseKind::Initialization ||
Use.Kind == DIUseKind::SelfInit)
InitKind = IsInitialization;
else {
assert(Use.Kind == DIUseKind::Assign || Use.Kind == DIUseKind::Set);
InitKind = IsNotInitialization;
}
// If this is a copy_addr or store_weak, we just set the initialization bit
// depending on what we find.
if (auto *CA = dyn_cast<CopyAddrInst>(Inst)) {
assert(!CA->isInitializationOfDest() &&
"should not modify copy_addr that already knows it is initialized");
CA->setIsInitializationOfDest(InitKind);
if (InitKind == IsInitialization)
setStaticInitAccess(CA->getDest());
// If we had an initialization and had an assignable_but_not_consumable
// noncopyable type, convert it to be an initable_but_not_consumable so that
// we do not consume an uninitialized value.
if (InitKind == IsInitialization) {
if (auto *mmci = dyn_cast<MarkUnresolvedNonCopyableValueInst>(
stripAccessMarkers(CA->getDest()))) {
if (mmci->getCheckKind() == MarkUnresolvedNonCopyableValueInst::
CheckKind::AssignableButNotConsumable) {
mmci->setCheckKind(MarkUnresolvedNonCopyableValueInst::CheckKind::
InitableButNotConsumable);
}
}
}
return;
}
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, name, ...) \
if (auto *SW = dyn_cast<Store##Name##Inst>(Inst)) { \
if (SW->isInitializationOfDest()) \
llvm_unreachable("should not modify store_" #name \
" that already knows it is initialized"); \
SW->setIsInitializationOfDest(InitKind); \
return; \
}
#include "swift/AST/ReferenceStorage.def"
// If this is an assign, rewrite it based on whether it is an initialization
// or not.
if (auto *AI = dyn_cast<AssignInst>(Inst)) {
// Remove this instruction from our data structures, since we will be
// removing it.
Use.Inst = nullptr;
llvm::erase_if(NonLoadUses[Inst], [&](unsigned id) { return id == UseID; });
if (TheMemory.isClassInitSelf() &&
Use.Kind == DIUseKind::SelfInit) {
assert(InitKind == IsInitialization);
AI->setOwnershipQualifier(AssignOwnershipQualifier::Reinit);
} else {
AI->setOwnershipQualifier((InitKind == IsInitialization
? AssignOwnershipQualifier::Init
: AssignOwnershipQualifier::Reassign));
}
// Look and see if we are assigning a moveonly type into a
// mark_unresolved_non_copyable_value [assignable_but_not_consumable]. If we
// are, then we need to transition its flag to initable_but_not_assignable.
//
// NOTE: We should only ever have to do this for a single level since SILGen
// always initializes values completely and we enforce that invariant.
if (InitKind == IsInitialization) {
if (auto *mmci = dyn_cast<MarkUnresolvedNonCopyableValueInst>(
stripAccessMarkers(AI->getDest()))) {
if (mmci->getCheckKind() == MarkUnresolvedNonCopyableValueInst::
CheckKind::AssignableButNotConsumable) {
mmci->setCheckKind(MarkUnresolvedNonCopyableValueInst::CheckKind::
InitableButNotConsumable);
}
}
setStaticInitAccess(AI->getDest());
}
return;
}
if (auto *AI = dyn_cast<AssignOrInitInst>(Inst)) {
// Remove this instruction from our data structures, since we will be
// removing it.
Use.Inst = nullptr;
llvm::erase_if(NonLoadUses[Inst], [&](unsigned id) { return id == UseID; });
switch (Use.Kind) {
case DIUseKind::Assign:
AI->markAsInitialized(Use.Field.get());
LLVM_FALLTHROUGH;
case DIUseKind::Initialization:
AI->setMode(AssignOrInitInst::Init);
break;
case DIUseKind::Set:
AI->setMode(AssignOrInitInst::Set);
break;
default:
llvm_unreachable("Wrong use kind for assign_or_init");
}
return;
}
if (auto *AI = dyn_cast<AssignByWrapperInst>(Inst)) {
// Remove this instruction from our data structures, since we will be
// removing it.
Use.Inst = nullptr;
llvm::erase_if(NonLoadUses[Inst], [&](unsigned id) { return id == UseID; });
switch (Use.Kind) {
case DIUseKind::Initialization:
AI->setMode(AssignByWrapperInst::Initialization);
break;
case DIUseKind::Assign:
AI->setMode(AssignByWrapperInst::Assign);
break;
case DIUseKind::Set:
AI->setMode(AssignByWrapperInst::AssignWrappedValue);
break;
default:
llvm_unreachable("Wrong use kind for assign_by_wrapper");
}
return;
}
if (auto *TACI = dyn_cast<TupleAddrConstructorInst>(Inst)) {
assert(!TACI->isInitializationOfDest() &&
"should not modify copy_addr that already knows it is initialized");
TACI->setIsInitializationOfDest(InitKind);
if (InitKind == IsInitialization)
setStaticInitAccess(TACI->getDest());
// If we had an initialization and had an assignable_but_not_consumable
// noncopyable type, convert it to be an initable_but_not_consumable so that
// we do not consume an uninitialized value.
if (InitKind == IsInitialization) {
if (auto *mmci = dyn_cast<MarkUnresolvedNonCopyableValueInst>(
stripAccessMarkers(TACI->getDest()))) {
if (mmci->getCheckKind() == MarkUnresolvedNonCopyableValueInst::
CheckKind::AssignableButNotConsumable) {
mmci->setCheckKind(MarkUnresolvedNonCopyableValueInst::CheckKind::
InitableButNotConsumable);
}
}
}
return;
}
// Ignore non-stores for SelfInits.
assert(isa<StoreInst>(Inst) && "Unknown store instruction!");
}
void LifetimeChecker::processUninitializedReleaseOfBox(
MarkUninitializedInst *MUI, SILInstruction *Release, bool consumed,
SILBasicBlock::iterator InsertPt) {
assert(isa<AllocBoxInst>(MUI->getOperand()));
assert(MUI == Release->getOperand(0));
SILBuilderWithScope B(Release);
B.setInsertionPoint(InsertPt);
Destroys.push_back(B.createDeallocBox(Release->getLoc(), MUI));
}
static void emitDefaultActorDestroy(SILBuilder &B, SILLocation loc,
SILValue self) {
auto builtinName = B.getASTContext().getIdentifier(
getBuiltinName(BuiltinValueKind::DestroyDefaultActor));
auto resultTy = B.getModule().Types.getEmptyTupleType();
self = B.createBeginBorrow(loc, self);
B.createBuiltin(loc, builtinName, resultTy, /*subs*/{},
{ self });
B.createEndBorrow(loc, self);
}
void LifetimeChecker::processUninitializedRelease(SILInstruction *Release,
bool consumed,
SILBasicBlock::iterator InsertPt) {
// If this is an early release of a class instance, we need to emit a
// dealloc_partial_ref to free the memory. If this is a derived class, we
// may have to do a load of the 'self' box to get the class reference.
if (!TheMemory.isClassInitSelf()) {
if (auto *MUI = dyn_cast<MarkUninitializedInst>(Release->getOperand(0))) {
if (isa<AllocBoxInst>(MUI->getOperand())) {
return processUninitializedReleaseOfBox(MUI, Release, consumed, InsertPt);
}
}
return;
}
auto Loc = Release->getLoc();
SILBuilderWithScope B(Release);
B.setInsertionPoint(InsertPt);
SILValue Pointer = Release->getOperand(0);
// If we see an alloc_box as the pointer, then we're deallocating a 'box' for
// self. Make sure that the box gets deallocated (not released) since the
// pointer it contains will be manually cleaned up.
auto *MUI = dyn_cast<MarkUninitializedInst>(Release->getOperand(0));
if (MUI && isa<AllocBoxInst>(MUI->getOperand())) {
Pointer = MUI->getSingleUserOfType<ProjectBoxInst>();
assert(Pointer);
} else {
MUI = nullptr;
}
if (!consumed) {
if (Pointer->getType().isAddress())
Pointer = B.createLoad(Loc, Pointer, LoadOwnershipQualifier::Take);
auto MetatypeTy = CanMetatypeType::get(TheMemory.getASTType(),
MetatypeRepresentation::Thick);
auto SILMetatypeTy = SILType::getPrimitiveObjectType(MetatypeTy);
SILValue Metatype;
// In an inherited convenience initializer, we must use the dynamic
// type of the object since nothing is initialized yet.
if (TheMemory.isDelegatingInit())
Metatype = B.createValueMetatype(Loc, SILMetatypeTy, Pointer);
else
Metatype = B.createMetatype(Loc, SILMetatypeTy);
// If this is a root default actor, destroy the default-actor state.
// SILGen ensures that this is unconditionally initialized, so we
// don't need to track it specially.
if (!TheMemory.isDelegatingInit()) {
auto classDecl = TheMemory.getASTType().getClassOrBoundGenericClass();
if (classDecl && classDecl->isRootDefaultActor()) {
emitDefaultActorDestroy(B, Loc, Pointer);
}
}
// We've already destroyed any instance variables initialized by this
// constructor, now destroy instance variables initialized by subclass
// constructors that delegated to us, and finally free the memory.
B.createDeallocPartialRef(Loc, Pointer, Metatype);
}
// dealloc_box the self box if necessary.
if (MUI) {
auto DB = B.createDeallocBox(Loc, MUI);
Destroys.push_back(DB);
}
}
void LifetimeChecker::deleteDeadRelease(unsigned ReleaseID) {
SILInstruction *Release = Destroys[ReleaseID];
if (isa<DestroyAddrInst>(Release)) {
SILValue Addr = Release->getOperand(0);
if (auto *AddrI = Addr->getDefiningInstruction()) {
// FIXME: AddrI will not be deleted (nor its operands) when Release is
// still using AddrI's result. Fix this, and migrate to using
// InstructionDeleter utility instead of
// recursivelyDeadTriviallyDeadInstructions.
recursivelyDeleteTriviallyDeadInstructions(AddrI);
}
}
Release->eraseFromParent();
Destroys[ReleaseID] = nullptr;
}
/// processNonTrivialRelease - We handle two kinds of release instructions here:
/// destroy_addr for alloc_stack's and strong_release/dealloc_box for
/// alloc_box's. By the time that DI gets here, we've validated that all uses
/// of the memory location are valid. Unfortunately, the uses being valid
/// doesn't mean that the memory is actually initialized on all paths leading to
/// a release. As such, we have to push the releases up the CFG to where the
/// value is initialized.
///
void LifetimeChecker::processNonTrivialRelease(unsigned ReleaseID) {
SILInstruction *Release = Destroys[ReleaseID];
// If the instruction is a deallocation of uninitialized memory, no action is
// required (or desired).
if (isa<DeallocStackInst>(Release) || isa<DeallocBoxInst>(Release) ||
isa<DeallocRefInst>(Release) || isa<DeallocPartialRefInst>(Release))
return;
// We only handle strong_release, destroy_value, and destroy_addr here. The
// former is a
// release of a class in an initializer, the later is used for local variable
// destruction.
assert(isa<StrongReleaseInst>(Release) || isa<DestroyValueInst>(Release) ||
isa<DestroyAddrInst>(Release));
auto Availability = getLivenessAtInst(Release, 0, TheMemory.getNumElements());
DIKind SelfInitialized = DIKind::Yes;
if (TheMemory.isNonRootClassSelf()) {
SelfInitialized = getSelfInitializedAtInst(Release);
if (SelfInitialized == DIKind::Yes) {
assert(Availability.isAllYes() &&
"Should not store 'self' with uninitialized members into the box");
}
}
// If the memory object is completely initialized, then nothing needs to be
// done at this release point.
if (Availability.isAllYes() && SelfInitialized == DIKind::Yes)
return;
if (Availability.isAllYes() && SelfInitialized == DIKind::No) {
// We're in an error path after performing a self.init or super.init
// delegation. The value was already consumed so there's nothing to release.
processUninitializedRelease(Release, true, Release->getIterator());
deleteDeadRelease(ReleaseID);
return;
}
// If it is all 'no' then we can handle it specially without conditional code.
if (Availability.isAllNo() && SelfInitialized == DIKind::No) {
processUninitializedRelease(Release, false, Release->getIterator());
deleteDeadRelease(ReleaseID);
return;
}
// Otherwise, it is partially live.
// If any elements or the 'super.init' state are conditionally live, we need
// to emit conditional logic.
if (Availability.hasAny(DIKind::Partial))
HasConditionalDestroy = true;
// If the self value was conditionally consumed, we need to emit conditional
// logic.
if (SelfInitialized == DIKind::Partial)
HasConditionalSelfInitialized = true;
// Save it for later processing.
ConditionalDestroys.push_back({ ReleaseID, Availability, SelfInitialized });
}
static Identifier getBinaryFunction(StringRef Name, SILType IntSILTy,
ASTContext &C) {
auto IntTy = IntSILTy.castTo<BuiltinIntegerType>();
unsigned NumBits = IntTy->getWidth().getFixedWidth();
// Name is something like: add_Int64
std::string NameStr(Name);
NameStr += "_Int" + llvm::utostr(NumBits);
return C.getIdentifier(NameStr);
}
static Identifier getTruncateToI1Function(SILType IntSILTy, ASTContext &C) {
auto IntTy = IntSILTy.castTo<BuiltinIntegerType>();
unsigned NumBits = IntTy->getWidth().getFixedWidth();
// Name is something like: trunc_Int64_Int8
std::string NameStr = "trunc_Int" + llvm::utostr(NumBits) + "_Int1";
return C.getIdentifier(NameStr);
}
/// Set a bit in the control variable at the current insertion point.
static void updateControlVariable(SILLocation Loc,
const APInt &Bitmask,
SILValue ControlVariable,
Identifier &OrFn,
SILBuilder &B) {
SILType IVType = ControlVariable->getType().getObjectType();
// Get the integer constant.
SILValue MaskVal = B.createIntegerLiteral(Loc, IVType, Bitmask);
// If the mask is all ones, do a simple store, otherwise do a
// load/or/store sequence to mask in the bits.
if (!Bitmask.isAllOnes()) {
SILValue Tmp =
B.createLoad(Loc, ControlVariable, LoadOwnershipQualifier::Trivial);
if (!OrFn.get())
OrFn = getBinaryFunction("or", IVType, B.getASTContext());
SILValue Args[] = { Tmp, MaskVal };
MaskVal = B.createBuiltin(Loc, OrFn, IVType, {}, Args);
}
B.createStore(Loc, MaskVal, ControlVariable,
StoreOwnershipQualifier::Trivial);
}
/// Test a bit in the control variable at the current insertion point.
static SILValue testControlVariableBit(SILLocation Loc,
unsigned Elt,
SILValue ControlVariableAddr,
Identifier &ShiftRightFn,
Identifier &TruncateFn,
SILBuilder &B) {
SILValue ControlVariable =
B.createLoad(Loc, ControlVariableAddr, LoadOwnershipQualifier::Trivial);
SILValue CondVal = ControlVariable;
CanBuiltinIntegerType IVType = CondVal->getType().castTo<BuiltinIntegerType>();
// If this memory object has multiple tuple elements, we need to make sure
// to test the right one.
if (IVType->getFixedWidth() == 1)
return CondVal;
// Shift the mask down to this element.
if (Elt != 0) {
if (!ShiftRightFn.get())
ShiftRightFn = getBinaryFunction("lshr", CondVal->getType(),
B.getASTContext());
SILValue Amt = B.createIntegerLiteral(Loc, CondVal->getType(), Elt);
SILValue Args[] = { CondVal, Amt };
CondVal = B.createBuiltin(Loc, ShiftRightFn,
CondVal->getType(), {},
Args);
}
if (!TruncateFn.get())
TruncateFn = getTruncateToI1Function(CondVal->getType(),
B.getASTContext());
return B.createBuiltin(Loc, TruncateFn,
SILType::getBuiltinIntegerType(1, B.getASTContext()),
{}, CondVal);
}
/// Test if all bits in the control variable are set at the current
/// insertion point.
static SILValue testAllControlVariableBits(SILLocation Loc,
SILValue ControlVariableAddr,
Identifier &CmpEqFn,
SILBuilder &B) {
SILValue ControlVariable =
B.createLoad(Loc, ControlVariableAddr, LoadOwnershipQualifier::Trivial);
SILValue CondVal = ControlVariable;
CanBuiltinIntegerType IVType = CondVal->getType().castTo<BuiltinIntegerType>();
if (IVType->getFixedWidth() == 1)
return CondVal;
SILValue AllBitsSet = B.createIntegerLiteral(Loc, CondVal->getType(), -1);
if (!CmpEqFn.get())
CmpEqFn = getBinaryFunction("cmp_eq", CondVal->getType(),
B.getASTContext());
SILValue Args[] = { CondVal, AllBitsSet };
return B.createBuiltin(Loc, CmpEqFn,
SILType::getBuiltinIntegerType(1, B.getASTContext()),
{}, Args);
}
/// handleConditionalInitAssign - This memory object has some stores
/// into (some element of) it that is either an init or an assign based on the
/// control flow path through the function, or have a destroy event that happens
/// when the memory object may or may not be initialized. Handle this by
/// inserting a bitvector that tracks the liveness of each tuple element
/// independently.
SILValue LifetimeChecker::handleConditionalInitAssign() {
SILLocation Loc = TheMemory.getLoc();
Loc.markAutoGenerated();
unsigned NumMemoryElements = TheMemory.getNumElements();
// We might need an extra bit to check if self was consumed.
if (HasConditionalSelfInitialized)
++NumMemoryElements;
// Create the control variable as the first instruction in the function (so
// that it is easy to destroy the stack location.
SILType IVType =
SILType::getBuiltinIntegerType(NumMemoryElements, Module.getASTContext());
// Use an empty location for the alloc_stack. If Loc is variable declaration
// the alloc_stack would look like the storage of that variable.
auto *ControlVariableBox =
SILBuilderWithScope(TheMemory.getFunctionEntryPoint())
.createAllocStack(RegularLocation::getAutoGeneratedLocation(),
IVType);
// Find all the return blocks in the function, inserting a dealloc_stack
// before the return.
for (auto &BB : TheMemory.getFunction()) {
auto *Term = BB.getTerminator();
if (Term->isFunctionExiting()) {
SILBuilderWithScope(Term).createDeallocStack(Loc, ControlVariableBox);
}
}
// Before the memory allocation, store zero in the control variable.
SILValue ControlVariableAddr = ControlVariableBox;
{
auto *InsertPoint =
&*std::next(TheMemory.getUninitializedValue()->getIterator());
SILBuilderWithScope B(InsertPoint);
auto Zero = B.createIntegerLiteral(Loc, IVType, 0);
B.createStore(Loc, Zero, ControlVariableAddr,
StoreOwnershipQualifier::Trivial);
}
Identifier OrFn;
// At each initialization, mark the initialized elements live. At each
// conditional assign, resolve the ambiguity by inserting a CFG diamond.
for (unsigned i = 0; i != Uses.size(); ++i) {
auto &Use = Uses[i];
// Ignore deleted uses.
if (Use.Inst == nullptr) continue;
// If this ambiguous store is only of trivial types, then we don't need to
// do anything special. We don't even need keep the init bit for the
// element precise.
//
// For root class initializers, we must keep track of initializations of
// trivial stored properties also, since we need to know when the object
// has been fully initialized when deciding if a strong_release should
// lower to a partial_dealloc_ref.
if (!TheMemory.isRootClassSelf() &&
Use.onlyTouchesTrivialElements(TheMemory))
continue;
SILBuilderWithScope B(Use.Inst);
// Only full initializations make something live. inout uses, escapes, and
// assignments only happen when some kind of init made the element live.
switch (Use.Kind) {
default:
// We can ignore most use kinds here.
continue;
case DIUseKind::InitOrAssign:
// The dynamically unknown case is the interesting one, handle it below.
break;
case DIUseKind::SelfInit:
case DIUseKind::Initialization:
APInt Bitmask = Use.getElementBitmask(NumMemoryElements);
SILBuilderWithScope SB(Use.Inst);
updateControlVariable(Loc, Bitmask, ControlVariableAddr, OrFn, SB);
continue;
}
// If this is the interesting case, we need to generate a CFG diamond for
// each element touched, destroying any live elements so that the resulting
// store is always an initialize. This disambiguates the dynamic
// uncertainty with a runtime check.
SILValue ControlVariable;
// If we have multiple tuple elements, we'll have to do some shifting and
// truncating of the mask value. These values cache the function_ref so we
// don't emit multiple of them.
Identifier ShiftRightFn, TruncateFn;
// If the memory object has multiple tuple elements, we need to destroy any
// live subelements, since they can each be in a different state of
// initialization.
for (unsigned Elt = Use.FirstElement, e = Elt+Use.NumElements;
Elt != e; ++Elt) {
auto CondVal = testControlVariableBit(Loc, Elt, ControlVariableAddr,
ShiftRightFn, TruncateFn,
B);
SILBasicBlock *TrueBB, *FalseBB, *ContBB;
InsertCFGDiamond(CondVal, Loc, B,
TrueBB, FalseBB, ContBB);
// Emit a destroy_addr in the taken block.
B.setInsertionPoint(TrueBB->begin());
SILValue EltPtr;
{
using EndScopeKind = DIMemoryObjectInfo::EndScopeKind;
SmallVector<std::pair<SILValue, EndScopeKind>, 4> EndScopeList;
EltPtr =
TheMemory.emitElementAddressForDestroy(Elt, Loc, B, EndScopeList);
if (auto *DA = B.emitDestroyAddrAndFold(Loc, EltPtr))
Destroys.push_back(DA);
while (!EndScopeList.empty()) {
SILValue value;
EndScopeKind kind;
std::tie(value, kind) = EndScopeList.pop_back_val();
switch (kind) {
case EndScopeKind::Borrow:
B.createEndBorrow(Loc, value);
continue;
case EndScopeKind::Access:
B.createEndAccess(Loc, value, false /*can abort*/);
continue;
}
llvm_unreachable("Covered switch isn't covered!");
}
}
B.setInsertionPoint(ContBB->begin());
}
// Finally, now that we know the value is uninitialized on all paths, it is
// safe to do an unconditional initialization.
Use.Kind = DIUseKind::Initialization;
NeedsUpdateForInitState.push_back(i);
// Update the control variable.
APInt Bitmask = Use.getElementBitmask(NumMemoryElements);
SILBuilderWithScope SB(Use.Inst);
updateControlVariable(Loc, Bitmask, ControlVariableAddr, OrFn, SB);
}
// At each block that stores to self, mark the self value as having been
// initialized.
if (HasConditionalSelfInitialized) {
for (auto *I : StoresToSelf) {
auto *bb = I->getParent();
SILBuilderWithScope B(bb->begin());
// Set the most significant bit.
APInt Bitmask = APInt::getHighBitsSet(NumMemoryElements, 1);
updateControlVariable(Loc, Bitmask, ControlVariableAddr, OrFn, B);
}
}
return ControlVariableAddr;
}
/// Move the end_borrow that guards an alloc_box's lifetime to before the
/// dealloc_box in the CFG diamond that is created for destruction when it is
/// not statically known whether the value is initialized.
///
/// In the following context
///
/// %box = alloc_box
/// %mark_uninit = mark_uninitialized %box
/// %lifetime = begin_borrow [var_decl] %mark_uninit
/// %proj_box = project_box %lifetime
///
/// We are replacing a
///
/// destroy_value %mark_uninit
///
/// with a
///
/// destroy_addr %proj_box
///
/// That's a problem, though, because by SILGen construction the
/// destroy_value is always preceded by an end_borrow
///
/// end_borrow %lifetime
/// destroy_value %mark_uninit
///
/// Consequently, it's not sufficient to just replace the destroy_value
/// %mark_uninit with a destroy_addr %proj_box (or to replace it with a diamond
/// where one branch has that destroy_addr) because the destroy_addr is a use
/// of %proj_box which must be within the var_decl lifetime of the box.
///
/// On the other side, we are hemmed in by the fact that the end_borrow must
/// precede the dealloc_box which will be created in the diamond. So we
/// couldn't simply start inserting before the end_borrow (because the bottom
/// of the diamond contains a dealloc_box, so we would have an end_borrow after
/// the dealloc_box).
///
/// At this point, we have the following code:
///
/// end_borrow %lifetime
/// %initialized = load %addr
/// cond_br %initialized, yes, no
///
/// yes:
/// destroy_addr %proj_box
/// br bottom
///
/// no:
/// br bottom
///
/// bottom:
/// br keep_going
///
/// keep_going:
///
/// So just move the end_borrow to the right position, at the top of the bottom
/// block. The caller will then add the dealloc_box.
static bool adjustAllocBoxEndBorrow(SILInstruction *previous,
SILValue destroyedAddr,
SILBuilderWithScope &builder) {
// This fixup only applies if we're destroying a project_box.
auto *pbi = dyn_cast<ProjectBoxInst>(destroyedAddr);
if (!pbi)
return false;
// This fixup only applies if we're destroying a project_box of the var_decl
// lifetime of an alloc_box.
auto *lifetime = dyn_cast<BeginBorrowInst>(pbi->getOperand());
if (!lifetime)
return false;
assert(lifetime->isFromVarDecl());
assert(isa<AllocBoxInst>(
cast<MarkUninitializedInst>(lifetime->getOperand())->getOperand()));
// Scan the block backwards from previous, looking for an end_borrow. SILGen
// will emit the sequence
//
// end_borrow %lifetime
// destroy_value %mark_uninit
//
// but other passes may have moved them apart.
EndBorrowInst *ebi = nullptr;
for (auto *instruction = previous; instruction;
instruction = instruction->getPreviousInstruction()) {
auto *candidate = dyn_cast<EndBorrowInst>(instruction);
if (!candidate)
continue;
auto *bbi = dyn_cast<BeginBorrowInst>(candidate->getOperand());
if (bbi != lifetime)
continue;
ebi = candidate;
}
if (!ebi)
return false;
ebi->moveBefore(&*builder.getInsertionPoint());
return true;
}
/// Process any destroy_addr and strong_release instructions that are invoked on
/// a partially initialized value. This generates code to destroy the elements
/// that are known to be alive, ignore the ones that are known to be dead, and
/// to emit branching logic when an element may or may not be initialized.
void LifetimeChecker::
handleConditionalDestroys(SILValue ControlVariableAddr) {
SILBuilderWithScope B(TheMemory.getUninitializedValue());
Identifier ShiftRightFn, TruncateFn, CmpEqFn;
unsigned SelfInitializedElt = TheMemory.getNumElements();
unsigned SuperInitElt = TheMemory.getNumElements() - 1;
// Utilities.
auto destroyMemoryElement = [&](SILLocation Loc, unsigned Elt) -> SILValue {
using EndScopeKind = DIMemoryObjectInfo::EndScopeKind;
SmallVector<std::pair<SILValue, EndScopeKind>, 4> EndScopeList;
SILValue EltPtr =
TheMemory.emitElementAddressForDestroy(Elt, Loc, B, EndScopeList);
if (auto *DA = B.emitDestroyAddrAndFold(Loc, EltPtr))
Destroys.push_back(DA);
while (!EndScopeList.empty()) {
SILValue value;
EndScopeKind kind;
std::tie(value, kind) = EndScopeList.pop_back_val();
switch (kind) {
case EndScopeKind::Borrow:
B.createEndBorrow(Loc, value);
continue;
case EndScopeKind::Access:
B.createEndAccess(Loc, value, false /*can abort*/);
continue;
}
llvm_unreachable("Covered switch isn't covered!");
}
return EltPtr;
};
// Destroy all the allocation's fields, not including the allocation
// itself, if we have a class initializer.
auto destroyMemoryElements = [&](SILInstruction *Release, SILLocation Loc,
AvailabilitySet Availability) {
auto *Previous = Release->getPreviousInstruction();
// Delegating initializers don't model the fields of the class.
if (TheMemory.isClassInitSelf() && TheMemory.isDelegatingInit())
return;
// Destroy those fields of TheMemory that are already initialized, skip
// those fields that are known not to be initialized, and conditionally
// destroy fields in a control-flow sensitive situation.
for (unsigned Elt = 0; Elt < TheMemory.getNumMemoryElements(); ++Elt) {
switch (Availability.get(Elt)) {
case DIKind::No:
// If an element is known to be uninitialized, then we know we can
// completely ignore it.
continue;
case DIKind::Partial:
// In the partially live case, we have to check our control variable to
// destroy it. Handle this below.
break;
case DIKind::Yes:
// If an element is known to be initialized, then we can strictly
// destroy its value at releases position.
destroyMemoryElement(Loc, Elt);
continue;
}
// Insert a load of the liveness bitmask and split the CFG into a diamond
// right before the destroy_addr, if we haven't already loaded it.
auto CondVal = testControlVariableBit(Loc, Elt, ControlVariableAddr,
ShiftRightFn, TruncateFn,
B);
SILBasicBlock *ReleaseBlock, *DeallocBlock, *ContBlock;
InsertCFGDiamond(CondVal, Loc, B,
ReleaseBlock, DeallocBlock, ContBlock);
// Set up the initialized release block.
B.setInsertionPoint(ReleaseBlock->begin());
auto EltPtr = destroyMemoryElement(Loc, Elt);
B.setInsertionPoint(ContBlock->begin());
adjustAllocBoxEndBorrow(Previous, EltPtr, B);
}
};
// Either release the self reference, or just deallocate the box,
// depending on if the self box was initialized or not.
auto emitReleaseOfSelfWhenNotConsumed = [&](SILLocation Loc,
SILInstruction *Release) {
auto CondVal = testControlVariableBit(Loc, SelfInitializedElt,
ControlVariableAddr,
ShiftRightFn,
TruncateFn,
B);
SILBasicBlock *ReleaseBlock, *ConsumedBlock, *ContBlock;
InsertCFGDiamond(CondVal, Loc, B,
ReleaseBlock, ConsumedBlock, ContBlock);
// If true, self is fully initialized; just release it as usual.
B.setInsertionPoint(ReleaseBlock->begin());
Release->moveBefore(&*B.getInsertionPoint());
// If false, self is consumed.
B.setInsertionPoint(ConsumedBlock->begin());
processUninitializedRelease(Release, true, B.getInsertionPoint());
};
// After handling any conditional initializations, check to see if we have any
// cases where the value is only partially initialized by the time its
// lifetime ends. In this case, we have to make sure not to destroy an
// element that wasn't initialized yet.
for (auto &CDElt : ConditionalDestroys) {
auto *Release = Destroys[CDElt.ReleaseID];
auto Loc = Release->getLoc();
auto &Availability = CDElt.Availability;
B.setInsertionPoint(Release);
B.setCurrentDebugScope(Release->getDebugScope());
// Value types and root classes don't require any fancy handling.
// Just conditionally destroy each memory element, and for classes,
// also free the partially initialized object.
if (!TheMemory.isNonRootClassSelf()) {
assert(!Availability.isAllYes() &&
"Should not end up here if fully initialized");
// For root class initializers, we check if all properties were
// dynamically initialized, and if so, treat this as a release of
// an initialized 'self', instead of tearing down the fields
// one by one and deallocating memory.
//
// This is required for correctness, since the condition that
// allows 'self' to escape is that all stored properties were
// initialized. So we cannot deallocate the memory if 'self' may
// have escaped.
//
// This also means the deinitializer will run if all stored
// properties were initialized.
if (TheMemory.isClassInitSelf() &&
Availability.hasAny(DIKind::Partial)) {
auto CondVal = testAllControlVariableBits(Loc, ControlVariableAddr,
CmpEqFn, B);
SILBasicBlock *ReleaseBlock, *DeallocBlock, *ContBlock;
InsertCFGDiamond(CondVal, Loc, B,
ReleaseBlock, DeallocBlock, ContBlock);
// If true, self was fully initialized and must be released.
B.setInsertionPoint(ReleaseBlock->begin());
B.setCurrentDebugScope(ReleaseBlock->begin()->getDebugScope());
Release->moveBefore(&*B.getInsertionPoint());
// If false, self is uninitialized and must be freed.
B.setInsertionPoint(DeallocBlock->begin());
B.setCurrentDebugScope(DeallocBlock->begin()->getDebugScope());
destroyMemoryElements(Release, Loc, Availability);
processUninitializedRelease(Release, false, B.getInsertionPoint());
} else {
destroyMemoryElements(Release, Loc, Availability);
processUninitializedRelease(Release, false, B.getInsertionPoint());
// The original strong_release or destroy_addr instruction is
// always dead at this point.
deleteDeadRelease(CDElt.ReleaseID);
}
continue;
}
// Hard case -- we have a self reference which requires additional
// handling to deal with the 'self' value being consumed.
bool isDeadRelease = true;
auto SelfLive = Availability.get(SuperInitElt);
switch (SelfLive) {
case DIKind::No:
assert(CDElt.SelfInitialized == DIKind::No &&
"Impossible to have initialized the self box where "
"self.init was not called");
// self.init or super.init was not called. If we're in the super.init
// case, destroy any initialized fields.
destroyMemoryElements(Release, Loc, Availability);
processUninitializedRelease(Release, false, B.getInsertionPoint());
break;
case DIKind::Yes:
switch (CDElt.SelfInitialized) {
case DIKind::No:
llvm_unreachable("Impossible to have initialized the self box where "
"self.init was not called");
case DIKind::Yes:
llvm_unreachable("This should have been an unconditional destroy");
case DIKind::Partial: {
// self.init or super.init was called, but we don't know if the
// self value was consumed or not.
emitReleaseOfSelfWhenNotConsumed(Loc, Release);
isDeadRelease = false;
break;
}
}
break;
case DIKind::Partial:
switch (CDElt.SelfInitialized) {
case DIKind::No: {
// self.init or super.init may or may not have been called.
// We have not yet stored 'self' into the box.
auto CondVal = testControlVariableBit(Loc, SuperInitElt,
ControlVariableAddr,
ShiftRightFn,
TruncateFn,
B);
SILBasicBlock *ConsumedBlock, *DeallocBlock, *ContBlock;
InsertCFGDiamond(CondVal, Loc, B,
ConsumedBlock, DeallocBlock, ContBlock);
// If true, self.init or super.init was called and self was consumed.
B.setInsertionPoint(ConsumedBlock->begin());
B.setCurrentDebugScope(ConsumedBlock->begin()->getDebugScope());
processUninitializedRelease(Release, true, B.getInsertionPoint());
// If false, self is uninitialized and must be freed.
B.setInsertionPoint(DeallocBlock->begin());
B.setCurrentDebugScope(DeallocBlock->begin()->getDebugScope());
destroyMemoryElements(Release, Loc, Availability);
processUninitializedRelease(Release, false, B.getInsertionPoint());
break;
}
case DIKind::Yes:
llvm_unreachable("Impossible to have initialized the self box where "
"self.init may not have been called");
break;
case DIKind::Partial: {
// self.init or super.init may or may not have been called.
// We may or may have stored 'self' into the box.
auto CondVal = testControlVariableBit(Loc, SuperInitElt,
ControlVariableAddr,
ShiftRightFn,
TruncateFn,
B);
SILBasicBlock *LiveBlock, *DeallocBlock, *ContBlock;
InsertCFGDiamond(CondVal, Loc, B,
LiveBlock, DeallocBlock, ContBlock);
// If true, self was consumed or is fully initialized.
B.setInsertionPoint(LiveBlock->begin());
B.setCurrentDebugScope(LiveBlock->begin()->getDebugScope());
emitReleaseOfSelfWhenNotConsumed(Loc, Release);
isDeadRelease = false;
// If false, self is uninitialized and must be freed.
B.setInsertionPoint(DeallocBlock->begin());
B.setCurrentDebugScope(DeallocBlock->begin()->getDebugScope());
destroyMemoryElements(Release, Loc, Availability);
processUninitializedRelease(Release, false, B.getInsertionPoint());
break;
}
}
}
if (isDeadRelease)
deleteDeadRelease(CDElt.ReleaseID);
}
}
void LifetimeChecker::
putIntoWorkList(SILBasicBlock *BB, WorkListType &WorkList) {
LiveOutBlockState &State = getBlockInfo(BB);
if (!State.isInWorkList && State.containsUndefinedValues()) {
LLVM_DEBUG(llvm::dbgs() << " add block " << BB->getDebugID()
<< " to worklist\n");
WorkList.push_back(BB);
State.isInWorkList = true;
}
}
void LifetimeChecker::
computePredsLiveOut(SILBasicBlock *BB) {
LLVM_DEBUG(llvm::dbgs() << " Get liveness for block " << BB->getDebugID()
<< "\n");
// Collect blocks for which we have to calculate the out-availability.
// These are the paths from blocks with known out-availability to the BB.
WorkListType WorkList;
for (auto Pred : BB->getPredecessorBlocks()) {
putIntoWorkList(Pred, WorkList);
}
size_t idx = 0;
while (idx < WorkList.size()) {
SILBasicBlock *WorkBB = WorkList[idx++];
for (auto Pred : WorkBB->getPredecessorBlocks()) {
putIntoWorkList(Pred, WorkList);
}
}
// Solve the dataflow problem.
#ifndef NDEBUG
int iteration = 0;
int upperIterationLimit = WorkList.size() * 2 + 10; // More than enough.
#endif
bool changed;
do {
assert(iteration < upperIterationLimit &&
"Infinite loop in dataflow analysis?");
LLVM_DEBUG(llvm::dbgs() << " Iteration " << iteration++ << "\n");
changed = false;
// We collected the blocks in reverse order. Since it is a forward dataflow-
// problem, it is faster to go through the worklist in reverse order.
for (auto iter = WorkList.rbegin(); iter != WorkList.rend(); ++iter) {
SILBasicBlock *WorkBB = *iter;
LiveOutBlockState &BBState = getBlockInfo(WorkBB);
// Merge from the predecessor blocks.
for (auto Pred : WorkBB->getPredecessorBlocks()) {
changed |= BBState.mergeFromPred(getBlockInfo(Pred));
}
LLVM_DEBUG(llvm::dbgs() << " Block " << WorkBB->getDebugID()
<< " out: "
<< BBState.OutAvailability << "\n");
// Clear the worklist-flag for the next call to computePredsLiveOut().
// This could be moved out of the outer loop, but doing it here avoids
// another loop with getBlockInfo() calls.
BBState.isInWorkList = false;
}
} while (changed);
}
void LifetimeChecker::
getOutAvailability(SILBasicBlock *BB, AvailabilitySet &Result) {
computePredsLiveOut(BB);
for (auto *Pred : BB->getPredecessorBlocks()) {
auto &BBInfo = getBlockInfo(Pred);
Result.mergeIn(BBInfo.OutAvailability);
}
LLVM_DEBUG(llvm::dbgs() << " Result: " << Result << "\n");
}
void LifetimeChecker::getOutSelfInitialized(SILBasicBlock *BB,
std::optional<DIKind> &Result) {
computePredsLiveOut(BB);
for (auto *Pred : BB->getPredecessorBlocks())
Result = mergeKinds(Result, getBlockInfo(Pred).OutSelfInitialized);
}
AvailabilitySet
LifetimeChecker::getLivenessAtNonTupleInst(swift::SILInstruction *Inst,
swift::SILBasicBlock *InstBB,
AvailabilitySet &Result) {
// If there is a store in the current block, scan the block to see if the
// store is before or after the load. If it is before, it produces the value
// we are looking for.
if (getBlockInfo(InstBB).HasNonLoadUse) {
for (auto BBI = Inst->getIterator(), E = InstBB->begin(); BBI != E;) {
--BBI;
SILInstruction *TheInst = &*BBI;
if (TheInst == TheMemory.getUninitializedValue()) {
Result.set(0, DIKind::No);
return Result;
}
if (NonLoadUses.count(TheInst)) {
// We've found a definition, or something else that will require that
// the memory is initialized at this point.
Result.set(0, DIKind::Yes);
return Result;
}
}
}
getOutAvailability(InstBB, Result);
// If the result element wasn't computed, we must be analyzing code within
// an unreachable cycle that is not dominated by "TheMemory". Just force
// the unset element to yes so that clients don't have to handle this.
if (!Result.getConditional(0))
Result.set(0, DIKind::Yes);
return Result;
}
/// getLivenessAtInst - Compute the liveness state for any number of tuple
/// elements at the specified instruction. The elements are returned as an
/// AvailabilitySet. Elements outside of the range specified may not be
/// computed correctly.
AvailabilitySet LifetimeChecker::getLivenessAtInst(SILInstruction *Inst,
unsigned FirstElt,
unsigned NumElts) {
LLVM_DEBUG(llvm::dbgs() << "Get liveness " << FirstElt << ", #" << NumElts
<< " at " << *Inst);
AvailabilitySet Result(TheMemory.getNumElements());
// Empty tuple queries return a completely "unknown" vector, since they don't
// care about any of the elements.
if (NumElts == 0)
return Result;
SILBasicBlock *InstBB = Inst->getParent();
// The vastly most common case is memory allocations that are not tuples,
// so special case this with a more efficient algorithm.
if (TheMemory.getNumElements() == 1) {
return getLivenessAtNonTupleInst(Inst, InstBB, Result);
}
// Check locally to see if any elements are satisfied within the block, and
// keep track of which ones are still needed in the NeededElements set.
SmallBitVector NeededElements(TheMemory.getNumElements());
NeededElements.set(FirstElt, FirstElt+NumElts);
// If there is a store in the current block, scan the block to see if the
// store is before or after the load. If it is before, it may produce some of
// the elements we are looking for.
if (getBlockInfo(InstBB).HasNonLoadUse) {
for (auto BBI = Inst->getIterator(), E = InstBB->begin(); BBI != E;) {
--BBI;
SILInstruction *TheInst = &*BBI;
// If we found the allocation itself, then we are loading something that
// is not defined at all yet. Scan no further.
if (TheInst == TheMemory.getUninitializedValue()) {
// The result is perfectly decided locally.
for (unsigned i = FirstElt, e = i+NumElts; i != e; ++i)
Result.set(i, NeededElements[i] ? DIKind::No : DIKind::Yes);
return Result;
}
// If this instruction is unrelated to the memory, ignore it.
auto It = NonLoadUses.find(TheInst);
if (It == NonLoadUses.end())
continue;
// Check to see which tuple elements this instruction defines. Clear them
// from the set we're scanning from.
for (unsigned TheUse : It->second) {
auto &TheInstUse = Uses[TheUse];
NeededElements.reset(TheInstUse.FirstElement,
TheInstUse.FirstElement+TheInstUse.NumElements);
}
// If that satisfied all of the elements we're looking for, then we're
// done. Otherwise, keep going.
if (NeededElements.none()) {
Result.changeUnsetElementsTo(DIKind::Yes);
return Result;
}
}
}
// Compute the liveness of each element according to our predecessors.
getOutAvailability(InstBB, Result);
// If any of the elements was locally satisfied, make sure to mark them.
for (unsigned i = FirstElt, e = i+NumElts; i != e; ++i) {
if (!NeededElements[i] || !Result.getConditional(i)) {
// If the result element wasn't computed, we must be analyzing code within
// an unreachable cycle that is not dominated by "TheMemory". Just force
// the unset element to yes so that clients don't have to handle this.
Result.set(i, DIKind::Yes);
}
}
return Result;
}
/// If any of the elements in the specified range are uninitialized at the
/// specified instruction, return the first element that is uninitialized. If
/// they are all initialized, return -1.
int LifetimeChecker::getAnyUninitializedMemberAtInst(SILInstruction *Inst,
unsigned FirstElt,
unsigned NumElts) {
// Determine the liveness states of the elements that we care about.
auto Liveness = getLivenessAtInst(Inst, FirstElt, NumElts);
// Find uninitialized member.
for (unsigned i = FirstElt, e = i+NumElts; i != e; ++i)
if (Liveness.get(i) != DIKind::Yes)
return i;
return -1;
}
/// getSelfInitializedAtInst - Check if the self box in an initializer has
/// a fully initialized value at the specified instruction.
///
/// Possible outcomes:
/// - 'Yes' -- 'self' is fully initialized, and should be destroyed in the
/// usual manner in an error path
///
/// - 'No', and instruction is dominated by a SelfInit use -- this means
/// 'self' was consumed by a self.init or super.init call, and we're in
/// an error path; there's nothing to clean up
///
/// - 'No', and instruction is not dominated by a SelfInit use -- this means
/// we have to do a partial cleanup, for example deallocating a class
/// instance without destroying its members
///
/// Also, the full range of conditional outcomes is possible above, if the
/// result is 'Partial'.
DIKind LifetimeChecker::
getSelfInitializedAtInst(SILInstruction *Inst) {
LLVM_DEBUG(llvm::dbgs() << "Get self initialized at " << *Inst);
SILBasicBlock *InstBB = Inst->getParent();
auto &BlockInfo = getBlockInfo(InstBB);
if (BlockInfo.LocalSelfInitialized.has_value())
return *BlockInfo.LocalSelfInitialized;
std::optional<DIKind> Result;
getOutSelfInitialized(InstBB, Result);
// If the result wasn't computed, we must be analyzing code within
// an unreachable cycle that is not dominated by "TheMemory". Just force
// the result to initialized so that clients don't have to handle this.
if (!Result.has_value())
Result = DIKind::Yes;
return *Result;
}
/// The specified instruction is a use of some number of elements. Determine
/// whether all of the elements touched by the instruction are definitely
/// initialized at this point or not.
bool LifetimeChecker::isInitializedAtUse(const DIMemoryUse &Use,
bool *SuperInitDone,
bool *FailedSelfUse,
bool *FullyUninitialized) {
if (FailedSelfUse) *FailedSelfUse = false;
if (SuperInitDone) *SuperInitDone = true;
if (FullyUninitialized) *FullyUninitialized = true;
// Determine the liveness states of the elements that we care about.
AvailabilitySet Liveness =
getLivenessAtInst(Use.Inst, Use.FirstElement, Use.NumElements);
// If the client wants to know about super.init, check to see if we failed
// it or some other element.
if (Use.FirstElement + Use.NumElements == TheMemory.getNumElements() &&
TheMemory.isAnyDerivedClassSelf() &&
Liveness.get(Liveness.size() - 1) != DIKind::Yes) {
if (SuperInitDone) *SuperInitDone = false;
}
// Check all the results.
bool isFullyInitialized = true;
for (unsigned i = Use.FirstElement, e = i+Use.NumElements;
i != e; ++i) {
if (Liveness.get(i) != DIKind::Yes)
isFullyInitialized = false;
if (FullyUninitialized && Liveness.get(i) != DIKind::No)
*FullyUninitialized = false;
}
if (!isFullyInitialized)
return false;
// If the self.init() or super.init() call threw an error and
// we caught it, self is no longer available.
if (TheMemory.isNonRootClassSelf()) {
if (getSelfInitializedAtInst(Use.Inst) != DIKind::Yes) {
auto SelfLiveness =
getLivenessAtInst(Use.Inst, 0, TheMemory.getNumElements());
if (SelfLiveness.isAllYes()) {
if (FailedSelfUse) *FailedSelfUse = true;
return false;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
static void processMemoryObject(MarkUninitializedInst *I,
BlockStates &blockStates) {
LLVM_DEBUG(llvm::dbgs() << "*** Definite Init looking at: " << *I << "\n");
DIMemoryObjectInfo MemInfo(I);
// Set up the datastructure used to collect the uses of the allocation.
DIElementUseInfo UseInfo;
// Walk the use list of the pointer, collecting them into the Uses array.
collectDIElementUsesFrom(MemInfo, UseInfo);
LifetimeChecker(MemInfo, UseInfo, blockStates).doIt();
}
/// Check that all memory objects that require initialization before use are
/// properly set and transform the code as required for flow-sensitive
/// properties.
static bool checkDefiniteInitialization(SILFunction &Fn) {
LLVM_DEBUG(llvm::dbgs() << "*** Definite Init visiting function: "
<< Fn.getName() << "\n");
bool Changed = false;
BlockStates blockStates(&Fn);
for (auto &BB : Fn) {
for (SILInstruction &inst : BB) {
if (auto *MUI = dyn_cast<MarkUninitializedInst>(&inst)) {
processMemoryObject(MUI, blockStates);
Changed = true;
// mark_uninitialized needs to remain in SIL for mandatory passes which
// follow DI, like LetPropertyLowering.
// It will be eventually removed by RawSILInstLowering.
}
}
}
return Changed;
}
namespace {
/// Perform definitive initialization analysis and promote alloc_box uses into
/// SSA registers for later SSA-based dataflow passes.
class DefiniteInitialization : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
// Don't rerun diagnostics on deserialized functions.
if (getFunction()->wasDeserializedCanonical())
return;
// Walk through and promote all of the alloc_box's that we can.
if (checkDefiniteInitialization(*getFunction())) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createDefiniteInitialization() {
return new DefiniteInitialization();
}
|