1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
//==-------- DiagnoseLifetimeIssues.cpp - Diagnose lifetime issues ---------==//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements a diagnostic pass that prints a warning if an object is
// stored to a weak property (or is weakly captured) and destroyed before the
// property (or captured reference) is ever used again.
// This can happen if the programmer relies on the lexical scope to keep an
// object alive, but copy-propagation can shrink the object's lifetime to its
// last use.
// For example:
//
// func test() {
// let k = Klass()
// // k is deallocated immediately after the closure capture (a store_weak).
// functionWithClosure({ [weak k] in
// // crash!
// k!.foo()
// })
// }
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "diagnose-lifetime-issues"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Demangling/Demangler.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Debug.h"
using namespace swift;
namespace {
/// Performs the analysis and prints the warnings.
class DiagnoseLifetimeIssues {
enum State {
/// There are no hidden uses which could keep the object alive.
DoesNotEscape,
/// For example, in case the object is stored somewhere.
CanEscape,
/// The object is stored to a weak reference field.
/// Implies ``DoesNotEscape``.
IsStoredWeakly
};
/// To avoid quadratic complexity in the rare corener case of very deep
/// callgraphs, with pass down references.
static constexpr int maxCallDepth = 8;
SILFunction *function = nullptr;
/// The liveness of the object in question, computed in visitUses.
BitfieldRef<SSAPrunedLiveness> liveness;
/// All weak stores of the object, which are found in visitUses.
llvm::SmallVector<SILInstruction *, 8> weakStores;
/// A cache for function argument states of called functions.
///
/// We could also cache this information in an Analysis, so that it persists
/// over runs of this pass for different functions. But computing the state
/// is very cheap and we avoid worst case scenarios with maxCallDepth. So it's
/// probably not worth doing it.
llvm::DenseMap<SILFunctionArgument *, State> argumentStates;
State visitUses(SILValue def, bool updateLivenessAndWeakStores, int callDepth);
State getArgumentState(ApplySite ai, Operand *applyOperand, int callDepth);
void reportDeadStore(SILInstruction *allocationInst);
public:
DiagnoseLifetimeIssues(SILFunction *function) : function(function) {}
void diagnose();
};
/// Returns true if def is an owned value resulting from an object allocation.
static bool isAllocation(SILInstruction *inst) {
auto *svi = dyn_cast<SingleValueInstruction>(inst);
if (!svi)
return false;
if (svi->getOwnershipKind() != OwnershipKind::Owned)
return false;
if (isa<AllocRefInst>(svi))
return true;
// Check if it's a call to an allocating initializer.
if (auto *applyInst = dyn_cast<ApplyInst>(svi)) {
SILFunction *callee = applyInst->getReferencedFunctionOrNull();
if (!callee)
return false;
Demangle::StackAllocatedDemangler<1024> demangler;
Demangle::Node *root = demangler.demangleSymbol(callee->getName());
return root && root->getKind() == Demangle::Node::Kind::Global &&
root->getFirstChild()->getKind() == Demangle::Node::Kind::Allocator;
}
return false;
}
/// Returns true if \p inst is a call of an ObjC setter to a weak property.
static bool isStoreObjcWeak(SILInstruction *inst, Operand *op) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply || apply->getNumArguments() < 1)
return false;
if (&apply->getArgumentOperands()[0] != op)
return false;
auto *method = dyn_cast<ObjCMethodInst>(apply->getCallee());
if (!method)
return false;
Decl *decl = method->getMember().getDecl();
auto *accessor = dyn_cast<AccessorDecl>(decl);
if (!accessor)
return false;
auto *var = dyn_cast<VarDecl>(accessor->getStorage());
if (!var)
return false;
ClangNode clangNode = var->getClangNode();
if (!clangNode)
return false;
auto *objcDecl = dyn_cast_or_null<clang::ObjCPropertyDecl>(clangNode.getAsDecl());
if (!objcDecl)
return false;
return objcDecl->getSetterKind() == clang::ObjCPropertyDecl::Weak;
}
/// Transitively iterates over all uses of \p def and - if \p
/// updateLivenessAndWeakStores is true - adds them to self.liveness.
/// If any weak stores are seen, add them to self.weakStores (also only if
/// \p updateLivenessAndWeakStores is true).
///
/// Returns the state of \p def. See DiagnoseLifetimeIssues::State.
DiagnoseLifetimeIssues::State DiagnoseLifetimeIssues::
visitUses(SILValue def, bool updateLivenessAndWeakStores, int callDepth) {
SmallPtrSet<SILValue, 32> defUseVisited;
SmallVector<SILValue, 32> defUseVector;
auto pushDef = [&](SILValue value) {
if (defUseVisited.insert(value).second)
defUseVector.push_back(value);
};
pushDef(def);
bool foundWeakStore = false;
while (!defUseVector.empty()) {
SILValue value = defUseVector.pop_back_val();
for (Operand *use : value->getUses()) {
auto *user = use->getUser();
// Recurse through copies and enums. Enums are important because the
// operand of a store_weak is always an Optional.
if (isa<CopyValueInst>(user)) {
pushDef(cast<SingleValueInstruction>(user));
continue;
}
if (isa<StoreWeakInst>(user) || isStoreObjcWeak(user, use)) {
if (updateLivenessAndWeakStores)
weakStores.push_back(user);
foundWeakStore = true;
continue;
}
if (ApplySite ai = ApplySite::isa(user)) {
// Try to get information from the called function.
switch (getArgumentState(ai, use, callDepth)) {
case DoesNotEscape:
if (updateLivenessAndWeakStores)
liveness->updateForUse(user, /*lifetimeEnding*/ false);
break;
case CanEscape:
return CanEscape;
case IsStoredWeakly:
if (updateLivenessAndWeakStores)
weakStores.push_back(user);
foundWeakStore = true;
}
continue;
}
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
break;
case OperandOwnership::TrivialUse:
llvm_unreachable("this operand cannot handle ownership");
// Conservatively treat a conversion to an unowned value as a pointer
// escape. Is it legal to canonicalize ForwardingUnowned?
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
return CanEscape;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
if (updateLivenessAndWeakStores)
liveness->updateForUse(user, /*lifetimeEnding*/ false);
break;
case OperandOwnership::GuaranteedForwarding:
case OperandOwnership::ForwardingConsume:
// TermInst includes ReturnInst, which is generally an escape.
// If this is called as part of getArgumentState, then it is not really
// an escape, but we don't currently follow returned values.
if (isa<TermInst>(user))
return CanEscape;
for (SILValue result : user->getResults()) {
// This assumes that forwarding to a trivial value cannot extend the
// lifetime. This way, simply projecting a trivial value out of an
// aggregate isn't considered an escape.
if (result->getOwnershipKind() == OwnershipKind::None)
continue;
pushDef(result);
}
continue;
case OperandOwnership::DestroyingConsume:
// destroy_value does not force pruned liveness (but store etc. does).
if (!isa<DestroyValueInst>(user))
return CanEscape;
break;
case OperandOwnership::Borrow: {
if (updateLivenessAndWeakStores &&
(liveness->updateForBorrowingOperand(use) !=
InnerBorrowKind::Contained)) {
return CanEscape;
}
BorrowingOperand borrowOper(use);
if (borrowOper.hasBorrowIntroducingUser()) {
if (auto *beginBorrow = dyn_cast<BeginBorrowInst>(user))
pushDef(beginBorrow);
else
return CanEscape;
}
break;
}
case OperandOwnership::EndBorrow:
continue;
case OperandOwnership::InteriorPointer:
// Treat most interior pointers as escapes until they can be audited.
// But if the interior pointer cannot be used to copy the parent
// reference, then it does not need to be considered an escape.
if (isa<RefElementAddrInst>(user)) {
continue;
}
return CanEscape;
case OperandOwnership::Reborrow:
return CanEscape;
}
}
}
return foundWeakStore ? IsStoredWeakly : DoesNotEscape;
}
/// Visits uses of an apply argument in the called function.
DiagnoseLifetimeIssues::State DiagnoseLifetimeIssues::
getArgumentState(ApplySite ai, Operand *applyOperand, int callDepth) {
if (callDepth >= maxCallDepth)
return CanEscape;
if (!FullApplySite::isa(ai.getInstruction()))
return CanEscape;
SILFunction *callee = ai.getReferencedFunctionOrNull();
if (!callee || callee->empty())
return CanEscape;
if (!ai.isArgumentOperand(*applyOperand))
return CanEscape;
SILBasicBlock *entryBlock = callee->getEntryBlock();
unsigned calleeIdx = ai.getCalleeArgIndex(*applyOperand);
auto *arg = cast<SILFunctionArgument>(entryBlock->getArgument(calleeIdx));
// Check if we already cached the analysis result.
auto iter = argumentStates.find(arg);
if (iter != argumentStates.end())
return iter->second;
// Before we continue with the recursion, already set a (conservative) state.
// This avoids infinite recursion in case of a cycle in the callgraph.
argumentStates[arg] = CanEscape;
State argState = visitUses(arg, /*updateLivenessAndWeakStores*/ false,
callDepth + 1);
argumentStates[arg] = argState;
return argState;
}
/// Returns true if \p inst is outside the pruned \p liveness.
static bool isOutOfLifetime(SILInstruction *inst, SSAPrunedLiveness &liveness) {
// Check if the lifetime of the stored object ends at the store_weak.
//
// A more sophisticated analysis would be to check if there are no
// (potential) loads from the store's destination address after the store,
// but within the object's liferange. But without a good alias analysis (and
// we don't want to use AliasAnalysis in a mandatory pass) it's practically
// impossible that a use of the object is not a potential load. So we would
// always see a potential load if the lifetime of the object goes beyond the
// store_weak.
return !liveness.isWithinBoundary(inst);
}
/// Reports a warning if the stored object \p storedObj is never loaded within
/// the lifetime of the stored object.
void DiagnoseLifetimeIssues::reportDeadStore(SILInstruction *allocationInst) {
BitfieldRef<SSAPrunedLiveness>::StackState livenessBitfieldContainer(
liveness, allocationInst->getFunction());
weakStores.clear();
SILValue storedDef = cast<SingleValueInstruction>(allocationInst);
liveness->initializeDef(storedDef);
// Compute the canonical lifetime of storedDef, like the copy-propagation pass
// would do.
State state = visitUses(storedDef, /*updateLivenessAndWeakStores*/ true,
/*callDepth*/ 0);
// If the allocation escapes (e.g. it is stored somewhere), we should not
// give a warning, because it can be a false alarm. The allocation could be
// kept alive by references we don't see.
if (state == CanEscape)
return;
assert((state == IsStoredWeakly) == !weakStores.empty());
for (SILInstruction *storeInst : weakStores) {
if (isOutOfLifetime(storeInst, *liveness)) {
// Issue the warning.
storeInst->getModule().getASTContext().Diags.diagnose(
storeInst->getLoc().getSourceLoc(), diag::warn_dead_weak_store);
}
}
}
/// Prints warnings for dead weak stores in \p function.
void DiagnoseLifetimeIssues::diagnose() {
for (SILBasicBlock &block : *function) {
for (SILInstruction &inst : block) {
// Only for allocations we know that a destroy will actually deallocate
// the object. Otherwise the object could be kept alive by other
// references and we would issue a false alarm.
if (isAllocation(&inst))
reportDeadStore(&inst);
}
}
}
//===----------------------------------------------------------------------===//
// The function pass
//===----------------------------------------------------------------------===//
class DiagnoseLifetimeIssuesPass : public SILFunctionTransform {
public:
DiagnoseLifetimeIssuesPass() {}
private:
void run() override {
SILFunction *function = getFunction();
// Don't rerun diagnostics on deserialized functions.
if (function->wasDeserializedCanonical())
return;
if (!function->hasOwnership())
return;
DiagnoseLifetimeIssues diagnoser(function);
diagnoser.diagnose();
}
};
} // end anonymous namespace
SILTransform *swift::createDiagnoseLifetimeIssues() {
return new DiagnoseLifetimeIssuesPass();
}
|