1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
|
//===--- DiagnoseUnreachable.cpp - Diagnose unreachable code --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-diagnose-unreachable"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TerminatorUtils.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumBlocksRemoved, "Number of unreachable basic blocks removed");
STATISTIC(NumInstructionsRemoved, "Number of unreachable instructions removed");
STATISTIC(NumTerminatorsFolded, "Number of terminators folded");
STATISTIC(NumBasicBlockArgsPropagated,
"Number of basic block arguments propagated");
template<typename...T, typename...U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc,
diag, std::forward<U>(args)...);
}
enum class UnreachableKind {
FoldedBranch,
FoldedSwitchEnum,
NoreturnCall,
UnavailableEnumElement,
};
/// Information about a folded conditional branch instruction: it's location
/// and whether the condition evaluated to true or false.
struct UnreachableInfo {
UnreachableKind Kind;
/// The location of the instruction that caused the unreachability.
SILLocation Loc;
/// If this is the FoldedBranch kind, specifies if the condition is
/// always true.
bool CondIsAlwaysTrue;
};
/// \class UnreachableUserCodeReportingState Contains extra state we need to
/// communicate from condition branch folding stage to the unreachable blocks
/// removal stage of the path.
///
/// To report unreachable user code, we detect the blocks that contain user
/// code and are not reachable (along any of the preceding paths). Note that we
/// only want to report the first statement on the unreachable path. Keeping
/// the info about which branch folding had produced the unreachable block makes
/// it possible.
class UnreachableUserCodeReportingState {
public:
UnreachableUserCodeReportingState(SILFunction *F) :
PossiblyUnreachableBlocks(F), BlocksWithErrors(F) {}
/// The set of top-level blocks that became immediately unreachable due
/// to conditional branch folding, etc.
///
/// This is a SetVector since several blocks may lead to the same error
/// report and we iterate through these when producing the diagnostic.
BasicBlockSetVector PossiblyUnreachableBlocks;
/// The set of blocks in which we reported unreachable code errors.
/// These are used to ensure that we don't issue duplicate reports.
///
/// Note, this set is different from the PossiblyUnreachableBlocks as these
/// are the blocks that do contain user code and they might not be immediate
/// successors of a folded branch.
BasicBlockSet BlocksWithErrors;
/// A map from the PossiblyUnreachableBlocks to the folded conditional
/// branches that caused each of them to be unreachable. This extra info is
/// used to enhance the diagnostics.
llvm::DenseMap<SILBasicBlock*, UnreachableInfo> MetaMap;
};
/// Propagate/remove basic block input values when all predecessors
/// supply the same arguments.
///
/// NOTE: Since BranchInst always forwards guaranteed and owned parameters the
/// same way (like owned parameters), we do not need to add any special handling
/// for guaranteed parameters here. This is because if all of the incoming
/// values into my guaranteed phi is the same, then we know that said incoming
/// value must dominate the phi by definition.
static void propagateBasicBlockArgs(SILBasicBlock &BB) {
// This functions would simplify the code as following:
//
// bb0:
// br bb2(%1 : $Builtin.Int1, %2 : $Builtin.Int1)
// bb1:
// br bb2(%1 : $Builtin.Int1, %2 : $Builtin.Int1)
// bb2(%3 : $Builtin.Int1, %4 : $Builtin.Int1):
// use(%3 : $Builtin.Int1)
// use(%4 : $Builtin.Int1)
// =>
// bb0:
// br bb2
// bb1:
// br bb2
// bb2:
// use(%1 : $Builtin.Int1)
// use(%2 : $Builtin.Int1)
// If there are no predecessors or no arguments, there is nothing to do.
if (BB.pred_empty() || BB.args_empty())
return;
// Check if all the predecessors supply the same arguments to the BB.
SmallVector<SILValue, 4> Args;
bool checkArgs = false;
for (SILBasicBlock::pred_iterator PI = BB.pred_begin(), PE = BB.pred_end();
PI != PE; ++PI) {
SILBasicBlock *PredB = *PI;
// We are only simplifying cases where all predecessors are
// unconditional branch instructions.
if (!isa<BranchInst>(PredB->getTerminator()))
return;
BranchInst *BI = cast<BranchInst>(PredB->getTerminator());
unsigned Idx = 0;
assert(!BI->getArgs().empty());
for (OperandValueArrayRef::iterator AI = BI->getArgs().begin(),
AE = BI->getArgs().end();
AI != AE; ++AI, ++Idx) {
// When processing the first predecessor, record the arguments.
if (!checkArgs)
Args.push_back(*AI);
else
// On each subsequent predecessor, check the arguments.
if (Args[Idx] != *AI)
return;
}
// After the first branch is processed, the arguments vector is populated.
assert(!Args.empty());
checkArgs = true;
}
// If we've reached this point, the optimization is valid, so optimize.
// We know that the incoming arguments from all predecessors are the same,
// so just use them directly and remove the basic block parameters.
// Drop the arguments from the branch instructions by creating a new branch
// instruction and deleting the old one.
llvm::SmallVector<SILInstruction*, 32> ToBeDeleted;
for (SILBasicBlock::pred_iterator PI = BB.pred_begin(), PE = BB.pred_end();
PI != PE; ++PI) {
SILBasicBlock *PredB = *PI;
BranchInst *BI = cast<BranchInst>(PredB->getTerminator());
SILBuilderWithScope Bldr(PredB, BI);
Bldr.createBranch(BI->getLoc(), BI->getDestBB());
ToBeDeleted.push_back(BI);
}
// Drop the parameters from basic blocks and replace all uses with the passed
// in arguments.
unsigned Idx = 0;
for (SILBasicBlock::arg_iterator AI = BB.args_begin(), AE = BB.args_end();
AI != AE; ++AI, ++Idx) {
// FIXME: These could be further propagatable now, we might want to move
// this to CCP and trigger another round of copy propagation.
SILArgument *Arg = *AI;
// We were able to fold, so all users should use the new folded value.
Arg->replaceAllUsesWith(Args[Idx]);
++NumBasicBlockArgsPropagated;
}
// Remove args from the block.
BB.dropAllArguments();
// The old branch instructions are no longer used, erase them.
recursivelyDeleteTriviallyDeadInstructions(ToBeDeleted, true);
NumInstructionsRemoved += ToBeDeleted.size();
}
static bool constantFoldEnumTerminator(SILBasicBlock &BB,
UnreachableUserCodeReportingState *State,
SwitchEnumTermInst SUI,
EnumElementDecl *TheEnumElem,
EnumInst *EnumInst) {
SILBasicBlock *TheSuccessorBlock = nullptr;
int ReachableBlockIdx = -1;
for (unsigned Idx = 0; Idx < SUI.getNumCases(); ++Idx) {
const EnumElementDecl *EI;
SILBasicBlock *BI;
std::tie(EI, BI) = SUI.getCase(Idx);
if (EI == TheEnumElem) {
TheSuccessorBlock = BI;
ReachableBlockIdx = Idx;
break;
}
}
SILBasicBlock *DB = nullptr;
if (!TheSuccessorBlock) {
if (SUI.hasDefault()) {
DB = SUI.getDefaultBB();
if (!isa<UnreachableInst>(DB->getTerminator())) {
TheSuccessorBlock = DB;
ReachableBlockIdx = SUI.getNumCases();
}
}
}
// Not fully covered switches will be diagnosed later. SILGen represents
// them with a Default basic block with an unreachable instruction.
// We are going to produce an error on all unreachable instructions not
// eliminated by DCE.
if (!TheSuccessorBlock)
return false;
// Replace the switch with a branch to the TheSuccessorBlock.
SILBuilderWithScope B(&BB, SUI);
SILLocation Loc = SUI->getLoc();
if (!TheSuccessorBlock->args_empty()) {
// If the successor block that we are looking at is the default block,
// we create an argument not for the enum case, but for the original
// value.
SILValue branchOperand;
if (TheSuccessorBlock != DB) {
branchOperand = B.createUncheckedEnumData(Loc, EnumInst, TheEnumElem);
} else {
branchOperand = EnumInst;
}
B.createBranch(Loc, TheSuccessorBlock, branchOperand);
} else
B.createBranch(Loc, TheSuccessorBlock);
// Produce diagnostic info if we are not within an inlined function or
// template instantiation.
// FIXME: Do not report if we are within a template instantiation.
assert(ReachableBlockIdx >= 0);
if (Loc.is<RegularLocation>() && State) {
// Find the first unreachable block in the switch so that we could use
// it for better diagnostics.
SILBasicBlock *UnreachableBlock = nullptr;
if (SUI.getNumCases() > 1) {
// More than one case.
UnreachableBlock = (ReachableBlockIdx == 0) ? SUI.getCase(1).second
: SUI.getCase(0).second;
} else {
if (SUI.getNumCases() == 1 && SUI.hasDefault()) {
// One case and a default.
UnreachableBlock = (ReachableBlockIdx == 0) ? SUI.getDefaultBB()
: SUI.getCase(0).second;
}
}
// Generate diagnostic info.
if (UnreachableBlock &&
!State->PossiblyUnreachableBlocks.contains(UnreachableBlock)) {
State->PossiblyUnreachableBlocks.insert(UnreachableBlock);
State->MetaMap.insert(std::pair<SILBasicBlock *, UnreachableInfo>(
UnreachableBlock,
UnreachableInfo{UnreachableKind::FoldedSwitchEnum, Loc, true}));
}
}
LLVM_DEBUG(llvm::dbgs() << "Folding terminator: " << **SUI);
recursivelyDeleteTriviallyDeadInstructions(SUI, true);
++NumTerminatorsFolded;
return true;
}
static bool constantFoldEnumAddrTerminator(
SILBasicBlock &BB, UnreachableUserCodeReportingState *State,
SwitchEnumTermInst SUI, const EnumElementDecl *TheEnumElem) {
SILBasicBlock *TheSuccessorBlock = nullptr;
int ReachableBlockIdx = -1;
for (unsigned Idx = 0; Idx < SUI.getNumCases(); ++Idx) {
const EnumElementDecl *EI;
SILBasicBlock *BI;
std::tie(EI, BI) = SUI.getCase(Idx);
if (EI == TheEnumElem) {
TheSuccessorBlock = BI;
ReachableBlockIdx = Idx;
break;
}
}
SILBasicBlock *DB = nullptr;
if (!TheSuccessorBlock) {
if (SUI.hasDefault()) {
DB = SUI.getDefaultBB();
if (!isa<UnreachableInst>(DB->getTerminator())) {
TheSuccessorBlock = DB;
ReachableBlockIdx = SUI.getNumCases();
}
}
}
// Not fully covered switches will be diagnosed later. SILGen represents
// them with a Default basic block with an unreachable instruction.
// We are going to produce an error on all unreachable instructions not
// eliminated by DCE.
if (!TheSuccessorBlock)
return false;
// Replace the switch with a branch to the TheSuccessorBlock.
SILBuilderWithScope B(&BB, SUI);
SILLocation Loc = SUI->getLoc();
B.createBranch(Loc, TheSuccessorBlock);
// Produce diagnostic info if we are not within an inlined function or
// template instantiation.
// FIXME: Do not report if we are within a template instantiation.
assert(ReachableBlockIdx >= 0);
if (Loc.is<RegularLocation>() && State) {
// Find the first unreachable block in the switch so that we could use
// it for better diagnostics.
SILBasicBlock *UnreachableBlock = nullptr;
if (SUI.getNumCases() > 1) {
// More than one case.
UnreachableBlock = (ReachableBlockIdx == 0) ? SUI.getCase(1).second
: SUI.getCase(0).second;
} else {
if (SUI.getNumCases() == 1 && SUI.hasDefault()) {
// One case and a default.
UnreachableBlock = (ReachableBlockIdx == 0) ? SUI.getDefaultBB()
: SUI.getCase(0).second;
}
}
// Generate diagnostic info.
if (UnreachableBlock &&
!State->PossiblyUnreachableBlocks.contains(UnreachableBlock)) {
State->PossiblyUnreachableBlocks.insert(UnreachableBlock);
State->MetaMap.insert(std::pair<SILBasicBlock *, UnreachableInfo>(
UnreachableBlock,
UnreachableInfo{UnreachableKind::FoldedSwitchEnum, Loc, true}));
}
}
LLVM_DEBUG(llvm::dbgs() << "Folding terminator: " << *SUI);
recursivelyDeleteTriviallyDeadInstructions(SUI, true);
++NumTerminatorsFolded;
return true;
}
static InjectEnumAddrInst *
getAllocStackSingleInitializingInjectEnumAddr(SwitchEnumAddrInst *SEAI) {
auto *stackSlot = dyn_cast<AllocStackInst>(SEAI->getOperand());
if (!stackSlot)
return nullptr;
LLVM_DEBUG(llvm::dbgs() << "Visiting Stack: " << *stackSlot);
InjectEnumAddrInst *singleInitializer = nullptr;
InitEnumDataAddrInst *singleInitializerAddr = nullptr;
SmallVector<Operand *, 16> worklist(stackSlot->use_begin(),
stackSlot->use_end());
LLVM_DEBUG(SWIFT_DEFER { llvm::dbgs() << "Exiting!\n"; });
while (worklist.size()) {
auto *op = worklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << *op->getUser());
if (auto *svi = Projection::isAddressProjection(op->getUser())) {
LLVM_DEBUG(llvm::dbgs() << "Address projection. Continuing\n");
llvm::copy(svi->getUses(), std::back_inserter(worklist));
continue;
}
auto *user = op->getUser();
// Skip our self.
if (user == SEAI) {
LLVM_DEBUG(llvm::dbgs() << "Skipping SEAI.\n");
continue;
}
if (isa<LoadInst>(user) || isa<LoadBorrowInst>(user) ||
isa<DeallocStackInst>(user) || isa<DestroyAddrInst>(user)) {
LLVM_DEBUG(llvm::dbgs() << "Skipping loads/lifetime ends\n");
continue;
}
// If we are reading from the memory we are ok.
if (auto *cai = dyn_cast<CopyAddrInst>(user)) {
if (cai->getDest() == op->get() || cai->isTakeOfSrc() == IsTake) {
LLVM_DEBUG(llvm::dbgs() << "Found cai taking from src. Bailing!\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << "Skipping!\n");
continue;
}
// Stash the initializer addr. We want to make sure it doesn't
// escape after we process.
if (auto *iedai = dyn_cast<InitEnumDataAddrInst>(user)) {
if (singleInitializerAddr) {
LLVM_DEBUG(llvm::dbgs() << "Multiple InitEnumDataAddrInst?!\n");
return nullptr;
}
singleInitializerAddr = iedai;
LLVM_DEBUG(llvm::dbgs() << "Continuing\n");
continue;
}
if (auto *ieai = dyn_cast<InjectEnumAddrInst>(user)) {
// If single initializer is already set,
if (singleInitializer) {
LLVM_DEBUG(llvm::dbgs() << "Multiple InitEnumDataAddrInst?!\n");
return nullptr;
}
singleInitializer = ieai;
LLVM_DEBUG(llvm::dbgs() << "Continuing\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Bailing at end of loop!\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << "After Loop\n");
// If we didn't find a single initializer bail. We were initialized
// multiple times suggesting we are not actually looking at a SILGen
// temporary.
if (!singleInitializer) {
LLVM_DEBUG(llvm::dbgs() << "Did not find single initializer! Bailing!\n");
return nullptr;
}
// If we didn't have an addr, then it means we had a case without a
// payload.
if (!singleInitializerAddr) {
assert(!singleInitializer->getElement()->hasAssociatedValues());
LLVM_DEBUG(llvm::dbgs()
<< "Did not find single initializer addr! Bailing!\n");
return singleInitializer;
}
// Otherwise, make sure we are initialized only once and never
// escape.
llvm::copy(singleInitializerAddr->getUses(), std::back_inserter(worklist));
bool foundInitializer = false;
while (worklist.size()) {
auto *op = worklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Read only check for: " << *op->getUser());
// Look through projections.
if (auto *svi = Projection::isAddressProjection(op->getUser())) {
llvm::copy(svi->getUses(), std::back_inserter(worklist));
continue;
}
// Skip memory initializing operands. We should only ever see one
// since SILGen always initializes temporary allocations (our
// target) that way.
if (isa<StoreInst>(op->getUser())) {
if (foundInitializer) {
LLVM_DEBUG(llvm::dbgs() << "Found multiple initializers! Bailing!\n");
return nullptr;
}
foundInitializer = true;
continue;
}
if (auto *cai = dyn_cast<CopyAddrInst>(op->getUser())) {
if (cai->getDest() != op->get() ||
cai->isInitializationOfDest() != IsInitialization) {
return nullptr;
}
if (foundInitializer) {
LLVM_DEBUG(llvm::dbgs() << "Found multiple initializers! Bailing!\n");
return nullptr;
}
foundInitializer = true;
continue;
}
// Anything else consider unacceptable.
LLVM_DEBUG(llvm::dbgs() << "Found unknown addr initializer\n");
return nullptr;
}
// If we did not find a single address initializer, bail.
if (!foundInitializer)
return nullptr;
return singleInitializer;
}
static bool constantFoldTerminator(SILBasicBlock &BB,
UnreachableUserCodeReportingState *State) {
TermInst *TI = BB.getTerminator();
// Process conditional branches with constant conditions.
if (auto *CBI = dyn_cast<CondBranchInst>(TI)) {
SILValue V = CBI->getCondition();
SILLocation Loc = CBI->getLoc();
if (IntegerLiteralInst *ConstCond =
dyn_cast_or_null<IntegerLiteralInst>(V)) {
SILBuilderWithScope B(&BB, CBI);
// Determine which of the successors is unreachable and create a new
// terminator that only branches to the reachable successor.
SILBasicBlock *UnreachableBlock = nullptr;
bool CondIsTrue = false;
if (ConstCond->getValue() == APInt(1, /*value*/ 0, false)) {
B.createBranch(Loc, CBI->getFalseBB(), CBI->getFalseArgs());
UnreachableBlock = CBI->getTrueBB();
} else {
assert(ConstCond->getValue() == APInt(1, /*value*/ 1, false) &&
"Our representation of true/false does not match.");
B.createBranch(Loc, CBI->getTrueBB(), CBI->getTrueArgs());
UnreachableBlock = CBI->getFalseBB();
CondIsTrue = true;
}
recursivelyDeleteTriviallyDeadInstructions(TI, true);
++NumInstructionsRemoved;
// Produce an unreachable code warning for this basic block if it
// contains user code (only if we are not within an inlined function or a
// template instantiation).
// FIXME: Do not report if we are within a template instantiation.
// FIXME: Checking for LabeledConditionalStmt is a hack; it's meant to
// catch cases where we have a #available or similar non-expression
// condition that was trivially true or false. In these cases we expect
// the unreachable block to be reachable on another platform and shouldn't
// emit any warnings about it; if this is not the case it's Sema's
// responsibility to warn about it.
if (Loc.is<RegularLocation>() && State &&
!State->PossiblyUnreachableBlocks.contains(UnreachableBlock) &&
!Loc.isASTNode<LabeledConditionalStmt>()) {
// If this is the first time we see this unreachable block, store it
// along with the folded branch info.
State->PossiblyUnreachableBlocks.insert(UnreachableBlock);
State->MetaMap.insert(
std::pair<SILBasicBlock*, UnreachableInfo>(
UnreachableBlock,
UnreachableInfo{UnreachableKind::FoldedBranch, Loc, CondIsTrue}));
}
++NumTerminatorsFolded;
return true;
}
}
// Constant fold switch enum.
// %1 = enum $Bool, #Bool.false!unionelt
// switch_enum %1 : $Bool, case #Bool.true!unionelt: bb1,
// case #Bool.false!unionelt: bb2
// =>
// br bb2
if (auto *SEI = dyn_cast<SwitchEnumInst>(TI)) {
if (auto *TheEnum = dyn_cast<EnumInst>(SEI->getOperand())) {
return constantFoldEnumTerminator(BB, State, SEI, TheEnum->getElement(),
TheEnum);
}
}
if (auto *SEAI = dyn_cast<SwitchEnumAddrInst>(TI)) {
// We look for an alloc_stack that never escapes and that is initialized
// only once. This ensures we only need to find one initialization. This is
// a common pattern when unwrapping optional values in transparent
// functions.
//
// TODO: This needs a better name.
if (auto *IEAI = getAllocStackSingleInitializingInjectEnumAddr(SEAI)) {
return constantFoldEnumAddrTerminator(BB, State, SEAI,
IEAI->getElement());
}
}
// Constant fold switch int.
// %1 = integer_literal $Builtin.Int64, 2
// switch_value %1 : $Builtin.Int64, case 1: bb1, case 2: bb2
// =>
// br bb2
if (auto *SUI = dyn_cast<SwitchValueInst>(TI)) {
if (IntegerLiteralInst *SwitchVal =
dyn_cast<IntegerLiteralInst>(SUI->getOperand())) {
SILBasicBlock *TheSuccessorBlock = nullptr;
for (unsigned Idx = 0; Idx < SUI->getNumCases(); ++Idx) {
APInt AI;
SILValue EI;
SILBasicBlock *BI;
std::tie(EI, BI) = SUI->getCase(Idx);
// TODO: Check that EI is really an IntegerLiteralInst
AI = dyn_cast<IntegerLiteralInst>(EI)->getValue();
if (AI == SwitchVal->getValue())
TheSuccessorBlock = BI;
}
if (!TheSuccessorBlock)
if (SUI->hasDefault())
TheSuccessorBlock = SUI->getDefaultBB();
// Add the branch instruction with the block.
if (TheSuccessorBlock) {
SILBuilderWithScope B(&BB, TI);
B.createBranch(TI->getLoc(), TheSuccessorBlock);
recursivelyDeleteTriviallyDeadInstructions(TI, true);
++NumTerminatorsFolded;
return true;
}
// TODO: Warn on unreachable user code here as well.
}
}
return false;
}
/// Check if this instruction corresponds to user-written code.
static bool isUserCode(const SILInstruction *I) {
SILLocation Loc = I->getLoc();
if (Loc.isAutoGenerated())
return false;
// Branch instructions are not user code. These could belong to the control
// flow statement we are folding (ex: while loop).
// Also, unreachable instructions are not user code, they are "expected" in
// unreachable blocks.
if ((isa<BranchInst>(I) || isa<UnreachableInst>(I)) &&
Loc.is<RegularLocation>())
return false;
// If the instruction corresponds to user-written return or some other
// statement, we know it corresponds to user code.
if (Loc.is<RegularLocation>() || Loc.is<ReturnLocation>())
return !Loc.isImplicit();
return false;
}
static void setOutsideBlockUsesToUndef(SILInstruction *I) {
if (!I->hasUsesOfAnyResult())
return;
SILBasicBlock *BB = I->getParent();
// Replace all uses outside of I's basic block by undef.
llvm::SmallVector<Operand *, 16> Uses;
for (auto result : I->getResults())
Uses.append(result->use_begin(), result->use_end());
for (auto *Use : Uses)
if (Use->getUser()->getParent() != BB)
Use->set(SILUndef::get(Use->get()));
}
static SILInstruction *getAsCallToNoReturn(SILInstruction *I) {
if (auto *AI = dyn_cast<ApplyInst>(I))
if (AI->isCalleeNoReturn())
return AI;
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
if (BI->getModule().isNoReturnBuiltinOrIntrinsic(BI->getName()))
return BI;
}
// These appear in accessors for stored properties with uninhabited
// type. Since a type containing an uninhabited stored property is
// itself uninhabited, we treat these identically to fatalError(), etc.
if (auto *SEI = dyn_cast<StructExtractInst>(I)) {
if (SEI->getType().getASTType()->isUninhabited())
return SEI;
}
if (auto *SEAI = dyn_cast<StructElementAddrInst>(I)) {
if (SEAI->getType().getASTType()->isUninhabited())
return SEAI;
}
return nullptr;
}
static SILInstruction *getPrecedingCallToNoReturn(SILBasicBlock &BB) {
// All the predecessors must satisfy this condition; pick the first
// as a representative. SILGen doesn't actually re-use blocks for
// the normal edge, but it's good to be prepared.
SILInstruction *first = nullptr;
for (auto i = BB.pred_begin(), e = BB.pred_end(); i != e; ++i) {
SILBasicBlock *predBB = *i;
// As a precaution, bail out if we have a self-loop. It's not
// clear what transformations (if any) on naive SILGen output
// would ever produce that, but still, don't do it. It's probably
// only possible in code that's already otherwise provable to be
// unreachable.
if (predBB == &BB) return nullptr;
// The predecessor must be the normal edge from a try_apply
// that invokes a noreturn function.
if (auto TAI = dyn_cast<TryApplyInst>((*i)->getTerminator())) {
if (TAI->isCalleeNoReturn() &&
TAI->isNormalSuccessorRef(i.getSuccessorRef())) {
if (!first) first = TAI;
continue;
}
}
return nullptr;
}
return first;
}
static bool isUnavailableCodeReachedCall(SILInstruction *I) {
if (auto *AI = dyn_cast<ApplyInst>(I))
if (AI->hasSemantics(SEMANTICS_UNAVAILABLE_CODE_REACHED))
return true;
return false;
}
static bool simplifyBlocksWithCallsToNoReturn(SILBasicBlock &BB,
UnreachableUserCodeReportingState *State) {
auto I = BB.begin(), E = BB.end();
bool DiagnosedUnreachableCode = false;
SILInstruction *NoReturnCall = nullptr;
// Collection of all instructions that should be deleted.
llvm::SmallVector<SILInstruction*, 32> ToBeDeleted;
// If all of the predecessor blocks end in a try_apply to a noreturn
// function, the entire block is dead.
NoReturnCall = getPrecedingCallToNoReturn(BB);
// Diagnose the unreachable code within the same block as the call to
// noreturn.
auto diagnoseUnreachableCode = [&](SILInstruction *noReturnCall,
SILInstruction *currInst) {
if (DiagnosedUnreachableCode)
return false;
// If current instruction belongs to the no-return call itself, skip it.
//
// It could happen when i.e. result has to be copied to be passed to
// some call.
if (currInst->getLoc().hasSameSourceLocation(noReturnCall->getLoc()))
return false;
if (!isUserCode(currInst))
return false;
// If we have an instruction that is an end_borrow, ignore it. This
// happens when passing a guaranteed argument through generic code paths
// to no return functions.
if (isa<EndBorrowInst>(currInst))
return false;
// If no-return instruction is not something we can point in code or
// it's an explicit cast, skip it.
if (!noReturnCall->getLoc().is<RegularLocation>() ||
noReturnCall->getLoc().isASTNode<ExplicitCastExpr>())
return false;
// If the no-return instruction is a call to the unavailable code reached
// diagnostic function then we assume that the call was inserted by the
// compiler because the function is semantically unavailable. Diagnosing the
// user written body of the function as unreachable would be redundant.
if (isUnavailableCodeReachedCall(noReturnCall))
return false;
diagnose(BB.getModule().getASTContext(), currInst->getLoc().getSourceLoc(),
diag::unreachable_code);
diagnose(BB.getModule().getASTContext(),
noReturnCall->getLoc().getSourceLoc(),
diag::call_to_noreturn_note);
return true;
};
// Does this block contain a call to a noreturn function?
while (I != E) {
auto *CurrentInst = &*I;
// Move the iterator before we remove instructions to avoid iterator
// invalidation issues.
++I;
// Remove all instructions following the noreturn call.
if (NoReturnCall) {
// We will need to delete the instruction later on.
ToBeDeleted.push_back(CurrentInst);
DiagnosedUnreachableCode |=
diagnoseUnreachableCode(NoReturnCall, CurrentInst);
// We are going to bluntly remove these instructions. Change uses in
// different basic blocks to undef. This is safe because all control flow
// created by transparent inlining of functions applications after a call
// to a 'noreturn' function is control dependent on the call to the
// noreturn function and therefore dead.
setOutsideBlockUsesToUndef(CurrentInst);
++NumInstructionsRemoved;
continue;
}
// Check if this instruction is the first call to noreturn in this block.
if (!NoReturnCall) {
NoReturnCall = getAsCallToNoReturn(CurrentInst);
}
}
if (!NoReturnCall)
return false;
// If the call is to the 'unreachable' builtin, then remove the call,
// as it is redundant with the actual unreachable terminator.
if (auto Builtin = dyn_cast<BuiltinInst>(NoReturnCall)) {
if (Builtin->getName().str() == "unreachable")
ToBeDeleted.push_back(NoReturnCall);
}
// Record the diagnostic info.
if (!DiagnosedUnreachableCode &&
NoReturnCall->getLoc().is<RegularLocation>() && State){
for (auto SI = BB.succ_begin(), SE = BB.succ_end(); SI != SE; ++SI) {
SILBasicBlock *UnreachableBlock = *SI;
if (!State->PossiblyUnreachableBlocks.contains(UnreachableBlock)) {
// If this is the first time we see this unreachable block, store it
// along with the noreturn call info.
State->PossiblyUnreachableBlocks.insert(UnreachableBlock);
State->MetaMap.insert(
std::pair<SILBasicBlock*, UnreachableInfo>(
UnreachableBlock,
UnreachableInfo{UnreachableKind::NoreturnCall,
NoReturnCall->getLoc(), true }));
}
}
}
auto *Scope = NoReturnCall->getDebugScope();
recursivelyDeleteTriviallyDeadInstructions(ToBeDeleted, true);
NumInstructionsRemoved += ToBeDeleted.size();
// Add an unreachable terminator. The terminator has an invalid source
// location to signal to the DataflowDiagnostic pass that this code does
// not correspond to user code.
// Share the scope with the preceding BB. This causes the debug info to be
// much smaller and easier to read, but otherwise has no effect.
SILBuilder B(&BB);
B.setCurrentDebugScope(Scope);
B.createUnreachable(ArtificialUnreachableLocation());
return true;
}
/// Replaces `switch_enum` / `switch_enum_addr` instructions that have cases
/// matching unavailable enum elements with new instructions that have those
/// cases removed since unavailable enum elements cannot be instantiated at
/// run time.
///
/// If this pass removes a case, it will add a default case that traps if there
/// was not already an existing default case. This artificial default case
/// serves two purposes. The first is to ensure the new switch instruction still
/// "covers" the entire enum as required by SIL verification (this analysis
/// could be changed in the future to ignore unavailable elements). Secondly,
/// the trapping default case may help developers catch issues at runtime where
/// UB has been invoked and an unavailable element has been instantiated
/// unexpectedly. Ideally, this debugging aid would be available consistently,
/// but since we cannot leave any references to the unavailable elements in SIL
/// it is not possible to transform switch instructions that already have
/// default cases in such a way that unavailable elements would be detected.
static bool eliminateSwitchDispatchOnUnavailableElements(
SILBasicBlock &BB, UnreachableUserCodeReportingState *State) {
SwitchEnumTermInst SWI(BB.getTerminator());
if (!SWI)
return false;
EnumDecl *ED = SWI->getOperand(0)->getType().getEnumOrBoundGenericEnum();
assert(ED && "operand is not an enum");
// No need to check the instruction if all elements are available.
if (!ED->hasCasesUnavailableDuringLowering())
return false;
ASTContext &ctx = BB.getModule().getASTContext();
SILLocation Loc = SWI->getLoc();
bool DidRemoveUnavailableCase = false;
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 4> NewCaseBBs;
for (unsigned i : range(SWI.getNumCases())) {
auto CaseBB = SWI.getCase(i);
auto availableAtr = CaseBB.first->getAttrs().getUnavailable(ctx);
if (availableAtr && availableAtr->isUnconditionallyUnavailable()) {
// Mark the basic block as potentially unreachable.
SILBasicBlock *UnreachableBlock = CaseBB.second;
if (!State->PossiblyUnreachableBlocks.contains(UnreachableBlock)) {
// If this is the first time we see this unreachable block, store it.
State->PossiblyUnreachableBlocks.insert(UnreachableBlock);
State->MetaMap.insert(
{UnreachableBlock,
UnreachableInfo{UnreachableKind::UnavailableEnumElement, Loc,
true}});
}
DidRemoveUnavailableCase = true;
} else {
NewCaseBBs.push_back(CaseBB);
}
}
if (!DidRemoveUnavailableCase)
return false;
// Since at least one case was removed, we need to add a default case that
// traps if there isn't already an existing default case. The resulting SIL
// will have a structure that matches what SILGen would have produced for a
// switch statment that was written in source with unavailable cases
// unhandled.
SILBasicBlock *DefaultBB = SWI.getDefaultBBOrNull().getPtrOrNull();
bool DidCreateDefault = false;
if (!DefaultBB) {
DefaultBB = BB.getParent()->createBasicBlock();
SILLocation genLoc = Loc.asAutoGenerated();
SILBuilder B(DefaultBB);
B.createUnconditionalFail(genLoc, "unexpected enum value");
B.createUnreachable(genLoc);
DidCreateDefault = true;
}
if (isa<SwitchEnumInst>(*SWI)) {
auto *SEI = SILBuilderWithScope(SWI).createSwitchEnum(
Loc, SWI.getOperand(), DefaultBB, NewCaseBBs);
if (DidCreateDefault)
SEI->createDefaultResult();
} else {
assert(isa<SwitchEnumAddrInst>(*SWI) && "unknown switch_enum instruction");
SILBuilderWithScope(SWI).createSwitchEnumAddr(Loc, SWI.getOperand(),
DefaultBB, NewCaseBBs);
}
SWI->eraseFromParent();
return true;
}
/// Issue an "unreachable code" diagnostic if the blocks contains or
/// leads to another block that contains user code.
///
/// Note, we rely on SILLocation information to determine if SILInstructions
/// correspond to user code.
static bool diagnoseUnreachableBlock(
SILBasicBlock &B, SILModule &M,
const BasicBlockSet &Reachable,
UnreachableUserCodeReportingState *State, SILBasicBlock *TopLevelB,
BasicBlockSet &Visited) {
if (Visited.contains(&B))
return false;
Visited.insert(&B);
assert(State);
for (auto I = B.begin(), E = B.end(); I != E; ++I) {
SILLocation Loc = I->getLoc();
// If we've reached an implicit return, we have not found any user code and
// can stop searching for it.
if (Loc.is<ImplicitReturnLocation>() || Loc.isAutoGenerated())
return false;
// Check if the instruction corresponds to user-written code, also make
// sure we don't report an error twice for the same instruction.
if (isUserCode(&*I) && !State->BlocksWithErrors.contains(&B)) {
// Emit the diagnostic.
auto BrInfoIter = State->MetaMap.find(TopLevelB);
assert(BrInfoIter != State->MetaMap.end());
auto BrInfo = BrInfoIter->second;
switch (BrInfo.Kind) {
case (UnreachableKind::FoldedBranch):
// Emit the diagnostic on the unreachable block and emit the
// note on the branch responsible for the unreachable code.
diagnose(M.getASTContext(), Loc.getSourceLoc(), diag::unreachable_code);
diagnose(M.getASTContext(), BrInfo.Loc.getSourceLoc(),
diag::unreachable_code_branch, BrInfo.CondIsAlwaysTrue);
break;
case (UnreachableKind::FoldedSwitchEnum): {
// If we are warning about a switch condition being a constant, the main
// emphasis should be on the condition (to ensure we have a single
// message per switch).
const SwitchStmt *SS = BrInfo.Loc.getAsASTNode<SwitchStmt>();
if (!SS)
break;
assert(SS);
const Expr *SE = SS->getSubjectExpr();
diagnose(M.getASTContext(), SE->getLoc(), diag::switch_on_a_constant);
diagnose(M.getASTContext(), Loc.getSourceLoc(),
diag::unreachable_code_note);
break;
}
case (UnreachableKind::NoreturnCall): {
// Specialcase when we are warning about unreachable code after a call
// to a noreturn function.
if (!BrInfo.Loc.isASTNode<ExplicitCastExpr>() &&
!BrInfo.Loc.isSILFile()) {
assert(BrInfo.Loc.isASTNode<ApplyExpr>());
diagnose(M.getASTContext(), Loc.getSourceLoc(),
diag::unreachable_code);
diagnose(M.getASTContext(), BrInfo.Loc.getSourceLoc(),
diag::call_to_noreturn_note);
}
break;
}
case (UnreachableKind::UnavailableEnumElement): {
// Don't diagnose blocks removed because they were only reachable from
// a case matching an unavailable enum element.
break;
}
}
// Record that we've reported this unreachable block to avoid duplicates
// in the future.
State->BlocksWithErrors.insert(&B);
return true;
}
}
// This block could be empty if it's terminator has been folded.
if (B.empty())
return false;
// If we have not found user code in this block, inspect it's successors.
// Check if at least one of the successors contains user code.
for (auto I = B.succ_begin(), E = B.succ_end(); I != E; ++I) {
SILBasicBlock *SB = *I;
bool HasReachablePred = false;
for (auto PI = SB->pred_begin(), PE = SB->pred_end(); PI != PE; ++PI) {
if (Reachable.contains(*PI))
HasReachablePred = true;
}
// If all of the predecessors of this successor are unreachable, check if
// it contains user code.
if (!HasReachablePred && diagnoseUnreachableBlock(*SB, M, Reachable,
State, TopLevelB, Visited))
return true;
}
return false;
}
static bool removeUnreachableBlocks(SILFunction &F, SILModule &M,
UnreachableUserCodeReportingState *State) {
if (F.empty())
return false;
BasicBlockSet Reachable(&F);
SmallVector<SILBasicBlock*, 128> Worklist;
Worklist.push_back(&F.front());
Reachable.insert(&F.front());
unsigned numReachableBlocks = 1;
// Collect all reachable blocks by walking the successors.
do {
SILBasicBlock *BB = Worklist.pop_back_val();
for (auto SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) {
if (Reachable.insert(*SI)) {
Worklist.push_back(*SI);
++numReachableBlocks;
}
}
} while (!Worklist.empty());
// If everything is reachable, we are done.
if (numReachableBlocks == F.size())
return false;
// Diagnose user written unreachable code.
if (State) {
for (auto BI = State->PossiblyUnreachableBlocks.begin(),
BE = State->PossiblyUnreachableBlocks.end(); BI != BE; ++BI) {
SILBasicBlock *BB = *BI;
if (!Reachable.contains(BB)) {
BasicBlockSet visited(&F);
diagnoseUnreachableBlock(**BI, M, Reachable, State, BB, visited);
}
}
}
// Remove references from the dead blocks.
for (auto I = F.begin(), E = F.end(); I != E; ++I) {
SILBasicBlock *BB = &*I;
if (Reachable.contains(BB))
continue;
// Drop references to other blocks.
recursivelyDeleteTriviallyDeadInstructions(BB->getTerminator(), true);
++NumInstructionsRemoved;
}
// Delete dead instructions and everything that could become dead after
// their deletion.
llvm::SmallVector<SILInstruction*, 32> ToBeDeleted;
for (auto BI = F.begin(), BE = F.end(); BI != BE; ++BI)
if (!Reachable.contains(&*BI))
for (auto I = BI->begin(), E = BI->end(); I != E; ++I)
ToBeDeleted.push_back(&*I);
recursivelyDeleteTriviallyDeadInstructions(ToBeDeleted, true);
NumInstructionsRemoved += ToBeDeleted.size();
// Delete the dead blocks.
for (auto I = F.begin(), E = F.end(); I != E;) {
SILBasicBlock *BB = &*I;
++I;
if (!Reachable.contains(BB)) {
F.eraseBlock(BB);
++NumBlocksRemoved;
}
}
return true;
}
/// Scan the function for any calls to noreturn functions. If we find one,
/// change the block to have an unreachable instruction right after it, and
/// diagnose any user code after it as being unreachable. This pass happens
/// before the definite initialization pass so that it doesn't see infeasible
/// control flow edges.
static void performNoReturnFunctionProcessing(SILFunction &Fn,
SILFunctionTransform *T) {
LLVM_DEBUG(llvm::errs() << "*** No return function processing: "
<< Fn.getName() << "\n");
bool Changed = false;
for (auto &BB : Fn) {
// Remove instructions from the basic block after a call to a noreturn
// function.
Changed |= simplifyBlocksWithCallsToNoReturn(BB, nullptr);
}
if (Changed) {
removeUnreachableBlocks(Fn);
T->invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
static void diagnoseUnreachable(SILFunction &Fn) {
LLVM_DEBUG(llvm::errs() << "*** Diagnose Unreachable processing: "
<< Fn.getName() << "\n");
UnreachableUserCodeReportingState State(&Fn);
for (auto &BB : Fn) {
// Simplify the blocks with terminators that rely on constant conditions.
if (constantFoldTerminator(BB, &State))
continue;
// Remove instructions from the basic block after a call to a noreturn
// function.
if (simplifyBlocksWithCallsToNoReturn(BB, &State))
continue;
// Remove the cases of switch_enum / switch_enum_addr instructions that
// match unavailable enum elements.
if (eliminateSwitchDispatchOnUnavailableElements(BB, &State))
continue;
}
// Remove unreachable blocks.
removeUnreachableBlocks(Fn, Fn.getModule(), &State);
for (auto &BB : Fn) {
propagateBasicBlockArgs(BB);
}
for (auto &BB : Fn) {
// Simplify the blocks with terminators that rely on constant conditions.
if (constantFoldTerminator(BB, &State)) {
continue;
}
// Remove instructions from the basic block after a call to a noreturn
// function.
if (simplifyBlocksWithCallsToNoReturn(BB, &State))
continue;
// Remove the cases of switch_enum / switch_enum_addr instructions that
// match unavailable enum elements.
if (eliminateSwitchDispatchOnUnavailableElements(BB, &State))
continue;
}
// Remove unreachable blocks.
removeUnreachableBlocks(Fn, Fn.getModule(), &State);
}
// External entry point for other passes, which must do their own invalidation.
void swift::performSILDiagnoseUnreachable(SILModule *M) {
for (auto &Fn : *M)
diagnoseUnreachable(Fn);
}
namespace {
class NoReturnFolding : public SILFunctionTransform {
void run() override {
// Don't rerun diagnostics on deserialized functions.
if (getFunction()->wasDeserializedCanonical())
return;
performNoReturnFunctionProcessing(*getFunction(), this);
}
};
} // end anonymous namespace
SILTransform *swift::createNoReturnFolding() {
return new NoReturnFolding();
}
namespace {
// This pass reruns on deserialized SIL because diagnostic constant propagation
// can expose unreachable blocks which are then removed by this pass.
class DiagnoseUnreachable : public SILFunctionTransform {
void run() override {
diagnoseUnreachable(*getFunction());
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
};
} // end anonymous namespace
SILTransform *swift::createDiagnoseUnreachable() {
return new DiagnoseUnreachable();
}
|