1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
|
//===--- MandatoryInlining.cpp - Perform inlining of "transparent" sites --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mandatory-inlining"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Basic/BlotSetVector.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/Devirtualize.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/ImmutableSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using DenseFunctionSet = llvm::DenseSet<SILFunction *>;
using ImmutableFunctionSet = llvm::ImmutableSet<SILFunction *>;
STATISTIC(NumMandatoryInlines,
"Number of function application sites inlined by the mandatory "
"inlining pass");
//===----------------------------------------------------------------------===//
// Printing Helpers
//===----------------------------------------------------------------------===//
extern llvm::cl::opt<bool> SILPrintInliningCallee;
extern llvm::cl::opt<bool> SILPrintInliningCallerBefore;
extern llvm::cl::opt<bool> SILPrintInliningCallerAfter;
extern llvm::cl::opt<bool> EnableVerifyAfterEachInlining;
extern void printInliningDetailsCallee(StringRef passName, SILFunction *caller,
SILFunction *callee);
extern void printInliningDetailsCallerBefore(StringRef passName,
SILFunction *caller,
SILFunction *callee);
extern void printInliningDetailsCallerAfter(StringRef passName,
SILFunction *caller,
SILFunction *callee);
template<typename...T, typename...U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
/// Fixup reference counts after inlining a function call (which is a no-op
/// unless the function is a thick function).
///
/// It is important to note that, we can not assume that the partial apply, the
/// apply site, or the callee value are control dependent in any way. This
/// requires us to need to be very careful. See inline comments.
///
/// Returns true if the stack nesting is invalidated and must be corrected
/// afterwards.
static bool fixupReferenceCounts(
PartialApplyInst *pai, FullApplySite applySite, SILValue calleeValue,
ArrayRef<ParameterConvention> captureArgConventions,
MutableArrayRef<SILValue> capturedArgs, bool isCalleeGuaranteed) {
// We assume that we were passed a slice of our actual argument array. So we
// can use this to copy if we need to.
assert(captureArgConventions.size() == capturedArgs.size());
// FIXME: Can we cache this in between inlining invocations?
DeadEndBlocks deadEndBlocks(pai->getFunction());
SmallVector<SILBasicBlock *, 4> leakingBlocks;
bool invalidatedStackNesting = false;
// Add a copy of each non-address type capture argument to lifetime extend the
// captured argument over at least the inlined function and till the end of a
// box if we have an address. This deals with the possibility of the closure
// being destroyed by an earlier application and thus cause the captured
// argument to be destroyed.
auto loc = RegularLocation::getAutoGeneratedLocation();
for (unsigned i : indices(captureArgConventions)) {
auto convention = captureArgConventions[i];
SILValue &v = capturedArgs[i];
auto *f = applySite.getFunction();
// See if we have a trivial value. In such a case, just continue. We do not
// need to fix up anything.
if (v->getType().isTrivial(*f))
continue;
bool hasOwnership = f->hasOwnership();
switch (convention) {
case ParameterConvention::Indirect_In:
llvm_unreachable("Missing indirect copy");
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Guaranteed:
// FIXME: can these happen?
llvm_unreachable("Missing pack owned<->guaranteed conversions");
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Pack_Inout:
break;
case ParameterConvention::Indirect_In_Guaranteed: {
// Do the same as for Direct_Guaranteed, just the address version.
// (See comment below).
SILBuilderWithScope builder(pai);
auto *stackLoc = builder.createAllocStack(loc, v->getType().getObjectType());
builder.createCopyAddr(loc, v, stackLoc, IsNotTake, IsInitialization);
LinearLifetimeChecker checker(&deadEndBlocks);
bool consumedInLoop = checker.completeConsumingUseSet(
pai, applySite.getCalleeOperand(),
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
builder.createDestroyAddr(loc, stackLoc);
builder.createDeallocStack(loc, stackLoc);
});
if (!consumedInLoop) {
applySite.insertAfterInvocation([&](SILBuilder &builder) {
builder.createDestroyAddr(loc, stackLoc);
builder.createDeallocStack(loc, stackLoc);
});
}
v = stackLoc;
invalidatedStackNesting = true;
break;
}
case ParameterConvention::Direct_Guaranteed: {
// If we have a direct_guaranteed value, the value is being taken by the
// partial_apply at +1, but we are going to invoke the value at +0. So we
// need to copy/borrow the value before the pai and then
// end_borrow/destroy_value at the apply site.
SILValue copy = SILBuilderWithScope(pai).emitCopyValueOperation(loc, v);
SILValue argument = copy;
if (hasOwnership) {
argument = SILBuilderWithScope(pai).createBeginBorrow(loc, argument);
}
// If we need to insert compensating destroys, do so.
//
// NOTE: We use pai here since in non-ossa code emitCopyValueOperation
// returns the operand of the strong_retain which may have a ValueBase
// that is not in the same block. An example of where this is important is
// if we are performing emitCopyValueOperation in non-ossa code on an
// argument when the partial_apply is not in the entrance block. In truth,
// the linear lifetime checker does not /actually/ care what the value is
// (ignoring diagnostic error msgs that we do not care about here), it
// just cares about the block the value is in. In a forthcoming commit, I
// am going to change this to use a different API on the linear lifetime
// checker that makes this clearer.
LinearLifetimeChecker checker(&deadEndBlocks);
bool consumedInLoop = checker.completeConsumingUseSet(
pai, applySite.getCalleeOperand(),
[&](SILBasicBlock::iterator insertPt) {
SILBuilderWithScope builder(insertPt);
if (hasOwnership) {
builder.createEndBorrow(loc, argument);
}
builder.emitDestroyValueOperation(loc, copy);
});
// Since our applySite is in a different loop than our partial apply means
// that our leak code will have lifetime extended the value over the
// loop. So we should /not/ insert a destroy after the apply site. In
// contrast, if we do not have a loop, we must have been compensating for
// uses in the top of a diamond and need to insert a destroy after the
// apply since the leak will just cover the other path.
if (!consumedInLoop) {
applySite.insertAfterInvocation([&](SILBuilder &builder) {
if (hasOwnership) {
builder.createEndBorrow(loc, argument);
}
builder.emitDestroyValueOperation(loc, copy);
});
}
v = argument;
break;
}
// TODO: Do we need to lifetime extend here?
case ParameterConvention::Direct_Unowned: {
v = SILBuilderWithScope(pai).emitCopyValueOperation(loc, v);
// If our consuming partial apply does not post-dominate our
// partial_apply, compute the completion of the post dominance set and if
// that set is non-empty, insert compensating destroys at those places.
//
// NOTE: We use pai here since in non-ossa code emitCopyValueOperation
// returns the operand of the strong_retain which may have a ValueBase
// that is not in the same block. An example of where this is important is
// if we are performing emitCopyValueOperation in non-ossa code on an
// argument when the partial_apply is not in the entrance block. In truth,
// the linear lifetime checker does not /actually/ care what the value is
// (ignoring diagnostic error msgs that we do not care about here), it
// just cares about the block the value is in. In a forthcoming commit, I
// am going to change this to use a different API on the linear lifetime
// checker that makes this clearer.
LinearLifetimeChecker checker(&deadEndBlocks);
checker.completeConsumingUseSet(
pai, applySite.getCalleeOperand(),
[&](SILBasicBlock::iterator insertPt) {
auto loc = RegularLocation::getAutoGeneratedLocation();
SILBuilderWithScope builder(insertPt);
builder.emitDestroyValueOperation(loc, v);
});
// Then insert destroys after the apply site since our value is not being
// consumed as part of the actual apply.
applySite.insertAfterInvocation([&](SILBuilder &builder) {
builder.emitDestroyValueOperation(loc, v);
});
break;
}
// If we have an owned value, we insert a copy here for two reasons:
//
// 1. To balance the consuming argument.
// 2. To lifetime extend the value over the call site in case our partial
// apply has another use that would destroy our value first.
case ParameterConvention::Direct_Owned: {
v = SILBuilderWithScope(pai).emitCopyValueOperation(loc, v);
// If we need to insert compensating destroys, do so.
//
// NOTE: We use pai here since in non-ossa code emitCopyValueOperation
// returns the operand of the strong_retain which may have a ValueBase
// that is not in the same block. An example of where this is important is
// if we are performing emitCopyValueOperation in non-ossa code on an
// argument when the partial_apply is not in the entrance block. In truth,
// the linear lifetime checker does not /actually/ care what the value is
// (ignoring diagnostic error msgs that we do not care about here), it
// just cares about the block the value is in. In a forthcoming commit, I
// am going to change this to use a different API on the linear lifetime
// checker that makes this clearer.
LinearLifetimeChecker checker(&deadEndBlocks);
checker.completeConsumingUseSet(
pai, applySite.getCalleeOperand(),
[&](SILBasicBlock::iterator insertPt) {
auto loc = RegularLocation::getAutoGeneratedLocation();
SILBuilderWithScope builder(insertPt);
builder.emitDestroyValueOperation(loc, v);
});
// NOTE: Unlike with the unowned case above, when we are owned we do not
// need to insert destroys since the apply will consume the value for us.
break;
}
}
}
// Destroy the callee as the apply would have done if our function is not
// callee guaranteed.
if (!isCalleeGuaranteed) {
applySite.insertAfterInvocation([&](SILBuilder &builder) {
builder.emitDestroyValueOperation(loc, calleeValue);
});
}
return invalidatedStackNesting;
}
// Handle the case where the callee of the apply is either a load or a
// project_box that was used by a deleted load. If we fail to optimize,
// return an invalid SILValue.
static SILValue cleanupLoadedCalleeValue(SILValue calleeValue) {
auto calleeSource = calleeValue;
auto *li = dyn_cast<LoadInst>(calleeValue);
if (li) {
calleeSource = li->getOperand();
}
auto *pbi = dyn_cast<ProjectBoxInst>(calleeSource);
if (!pbi)
return SILValue();
auto *abi = dyn_cast<AllocBoxInst>(pbi->getOperand());
if (!abi)
return SILValue();
// The load instruction must have no more uses or a single destroy left to
// erase it.
if (li) {
if (li->getFunction()->hasOwnership()) {
// TODO: What if we have multiple destroy_value? That should be ok.
auto *dvi = li->getSingleUserOfType<DestroyValueInst>();
if (!dvi)
return SILValue();
dvi->eraseFromParent();
} else if (!li->use_empty()) {
return SILValue();
}
li->eraseFromParent();
}
// Look through uses of the alloc box the load is loading from to find up to
// one store and up to one strong release.
PointerUnion<StrongReleaseInst *, DestroyValueInst *> destroy;
destroy = nullptr;
for (Operand *use : abi->getUses()) {
auto *user = use->getUser();
if (destroy.isNull()) {
if (auto *sri = dyn_cast<StrongReleaseInst>(user)) {
destroy = sri;
continue;
}
if (auto *dvi = dyn_cast<DestroyValueInst>(user)) {
destroy = dvi;
continue;
}
}
if (user == pbi)
continue;
return SILValue();
}
StoreInst *si = nullptr;
for (Operand *use : pbi->getUses()) {
if (auto *useSI = dyn_cast_or_null<StoreInst>(use->getUser())) {
si = useSI;
continue;
}
return SILValue();
}
// If we found a store, record its source and erase it.
if (si) {
calleeValue = si->getSrc();
si->eraseFromParent();
} else {
calleeValue = SILValue();
}
// If we found a strong release, replace it with a strong release of the
// source of the store and erase it.
if (destroy) {
if (calleeValue) {
if (auto *sri = destroy.dyn_cast<StrongReleaseInst *>()) {
SILBuilderWithScope(sri).emitStrongReleaseAndFold(sri->getLoc(),
calleeValue);
sri->eraseFromParent();
} else {
auto *dvi = destroy.get<DestroyValueInst *>();
SILBuilderWithScope(dvi).emitDestroyValueAndFold(dvi->getLoc(),
calleeValue);
dvi->eraseFromParent();
}
}
}
assert(pbi->use_empty());
pbi->eraseFromParent();
assert(abi->use_empty());
abi->eraseFromParent();
return calleeValue;
}
/// Removes instructions that create the callee value if they are no
/// longer necessary after inlining.
static void cleanupCalleeValue(SILValue calleeValue,
bool &invalidatedStackNesting) {
if (auto loadedValue = cleanupLoadedCalleeValue(calleeValue))
calleeValue = loadedValue;
calleeValue = lookThroughOwnershipInsts(calleeValue);
// Inline constructor
auto calleeSource = ([&]() -> SILValue {
// Handle partial_apply/thin_to_thick -> convert_function:
// tryDeleteDeadClosure must run before deleting a ConvertFunction that uses
// the PartialApplyInst or ThinToThickFunctionInst. tryDeleteDeadClosure
// will delete any uses of the closure, including a
// convert_escape_to_noescape conversion.
if (auto *cfi = dyn_cast<ConvertFunctionInst>(calleeValue))
return lookThroughOwnershipInsts(cfi->getOperand());
if (auto *cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(calleeValue))
return lookThroughOwnershipInsts(cvt->getOperand());
return lookThroughOwnershipInsts(calleeValue);
})();
if (auto *pai = dyn_cast<PartialApplyInst>(calleeSource)) {
SILValue callee = pai->getCallee();
if (!tryDeleteDeadClosure(pai))
return;
calleeValue = callee;
} else if (auto *tttfi = dyn_cast<ThinToThickFunctionInst>(calleeSource)) {
SILValue callee = tttfi->getCallee();
if (!tryDeleteDeadClosure(tttfi))
return;
calleeValue = callee;
}
invalidatedStackNesting = true;
calleeValue = lookThroughOwnershipInsts(calleeValue);
// Handle function_ref -> convert_function -> partial_apply/thin_to_thick.
if (auto *cfi = dyn_cast<ConvertFunctionInst>(calleeValue)) {
if (isInstructionTriviallyDead(cfi)) {
recursivelyDeleteTriviallyDeadInstructions(cfi, true);
return;
}
}
if (auto *fri = dyn_cast<FunctionRefInst>(calleeValue)) {
if (!fri->use_empty())
return;
fri->eraseFromParent();
}
}
namespace {
/// Cleanup dead closures after inlining.
class ClosureCleanup {
SmallBlotSetVector<SILInstruction *, 4> deadFunctionVals;
public:
/// Set to true if some alloc/dealloc_stack instruction are inserted and at
/// the end of the run stack nesting needs to be corrected.
bool invalidatedStackNesting = false;
/// This regular instruction deletion callback checks for any function-type
/// values that may be unused after deleting the given instruction.
void recordDeadFunction(SILInstruction *deletedInst) {
// If it is a debug instruction, return.
// In this function, we look at operands of an instruction to be
// deleted, and add back the defining instruction of the operands to the
// worklist if it has a function type. This works in general when we are
// deleting dead instructions recursively.
// But we also consider, an instruction with only debug uses as dead.
// And with eraseFromParentWithDebugInsts, we will be deleting a dead
// instruction with its debug instructions. So when we are deleting a debug
// instruction, we may have already deleted its operand's defining
// instruction. So it would be incorrect to add back its operand's defining
// instruction.
if (deletedInst->isDebugInstruction())
return;
// If the deleted instruction was already recorded as a function producer,
// delete it from the map and record its operands instead.
deadFunctionVals.erase(deletedInst);
for (auto &operand : deletedInst->getAllOperands()) {
SILValue operandVal = operand.get();
if (!operandVal->getType().is<SILFunctionType>())
continue;
// Simply record all function-producing instructions used by dead
// code. Checking for a single use would not be precise because
// `deletedInst` could itself use `deadInst` multiple times.
if (auto *deadInst = operandVal->getDefiningInstruction())
deadFunctionVals.insert(deadInst);
}
}
// Note: instructions in the `deadFunctionVals` set may use each other, so the
// set needs to continue to be updated (by this handler) when deleting
// instructions. This assumes that DeadFunctionValSet::erase() is stable.
void cleanupDeadClosures(SILFunction *F) {
for (std::optional<SILInstruction *> I : deadFunctionVals) {
if (!I.has_value() || I.value()->isDeleted())
continue;
if (auto *SVI = dyn_cast<SingleValueInstruction>(I.value()))
cleanupCalleeValue(SVI, invalidatedStackNesting);
}
}
};
} // end of namespace
static void collectPartiallyAppliedArguments(
PartialApplyInst *PAI,
SmallVectorImpl<ParameterConvention> &CapturedArgConventions,
SmallVectorImpl<SILValue> &FullArgs) {
ApplySite Site(PAI);
SILFunctionConventions CalleeConv(Site.getSubstCalleeType(),
PAI->getModule());
for (auto &Arg : PAI->getArgumentOperands()) {
unsigned CalleeArgumentIndex = Site.getCalleeArgIndex(Arg);
assert(CalleeArgumentIndex >= CalleeConv.getSILArgIndexOfFirstParam());
auto ParamInfo = CalleeConv.getParamInfoForSILArg(CalleeArgumentIndex);
CapturedArgConventions.push_back(ParamInfo.getConvention());
FullArgs.push_back(Arg.get());
}
}
static SILValue getLoadedCalleeValue(LoadInst *li) {
auto *pbi = dyn_cast<ProjectBoxInst>(li->getOperand());
if (!pbi)
return SILValue();
auto *abi = dyn_cast<AllocBoxInst>(pbi->getOperand());
if (!abi)
return SILValue();
PointerUnion<StrongReleaseInst *, DestroyValueInst *> destroy =
static_cast<StrongReleaseInst *>(nullptr);
// Look through uses of the alloc box the load is loading from to find up to
// one store and up to one destroy.
for (auto *use : abi->getUses()) {
auto *user = use->getUser();
// Look for our single destroy. If we find it... continue.
if (destroy.isNull()) {
if (auto *sri = dyn_cast<StrongReleaseInst>(user)) {
destroy = sri;
continue;
}
if (auto *dvi = dyn_cast<DestroyValueInst>(user)) {
destroy = dvi;
continue;
}
}
// Ignore our pbi if we find one.
if (user == pbi)
continue;
// Otherwise, we have something that we do not understand. Return
// SILValue().
//
// NOTE: We purposely allow for strong_retain, retain_value, copy_value to
// go down this path since we only want to consider simple boxes that have a
// single post-dominating destroy. So if we have a strong_retain,
// retain_value, or copy_value, we want to bail.
return SILValue();
}
// Make sure that our project_box has a single store user and our load user.
StoreInst *si = nullptr;
for (Operand *use : pbi->getUses()) {
// If this use is our load... continue.
if (use->getUser() == li)
continue;
// Otherwise, see if we have a store...
if (auto *useSI = dyn_cast_or_null<StoreInst>(use->getUser())) {
// If we already have a store, we have a value that is initialized
// multiple times... bail.
if (si)
return SILValue();
// If we do not have a store yet, make sure that it is in the same basic
// block as box. Otherwise bail.
if (useSI->getParent() != abi->getParent())
return SILValue();
// Ok, we found a store in the same block as the box and for which we have
// so far only found one. Stash the store.
si = useSI;
continue;
}
// Otherwise, we have something we do not support... bail.
return SILValue();
}
// If we did not find a store, bail.
if (!si)
return SILValue();
// Otherwise, we have found our callee... the source of our store.
return si->getSrc();
}
static bool convertsThinEscapeToNoescape(ConvertFunctionInst *cv) {
// Example:
// %1 = function_ref @thin_closure_impl : $() -> ()
// %2 = convert_function %1 : $() -> () to $@noescape () -> ()
//
auto fromTy = cv->getOperand()->getType().castTo<SILFunctionType>();
if (fromTy->getExtInfo().hasContext())
return false;
auto toTy = cv->getType().castTo<SILFunctionType>();
auto escapeToTy = toTy->getWithExtInfo(toTy->getExtInfo().withNoEscape(false));
return fromTy == escapeToTy;
}
// PartialApply/ThinToThick -> ConvertFunction patterns are generated
// by @noescape closures.
//
// FIXME: We don't currently handle mismatched return types, however, this
// would be a good optimization to handle and would be as simple as inserting
// a cast.
static SILValue stripFunctionConversions(SILValue CalleeValue) {
// Skip any copies that we see.
CalleeValue = lookThroughOwnershipInsts(CalleeValue);
if (auto *ConvertFn = dyn_cast<ConvertFunctionInst>(CalleeValue)) {
if (ConvertFn->onlyConvertsSubstitutions() ||
ConvertFn->onlyConvertsSendable() ||
convertsThinEscapeToNoescape(ConvertFn)) {
return stripFunctionConversions(ConvertFn->getOperand());
}
return CalleeValue;
}
// Ignore mark_dependence users. A partial_apply [stack] uses them to mark
// the dependence of the trivial closure context value on the captured
// arguments.
if (auto *MD = dyn_cast<MarkDependenceInst>(CalleeValue)) {
while (MD) {
CalleeValue = MD->getValue();
MD = dyn_cast<MarkDependenceInst>(CalleeValue);
}
return CalleeValue;
}
auto *CFI = dyn_cast<ConvertEscapeToNoEscapeInst>(CalleeValue);
if (!CFI)
return lookThroughOwnershipInsts(CalleeValue);
// TODO: Handle argument conversion. All the code in this file needs to be
// cleaned up and generalized. The argument conversion handling in
// optimizeApplyOfConvertFunctionInst should apply to any combine
// involving an apply, not just a specific pattern.
//
// For now, just handle conversion that doesn't affect argument types,
// return types, or throws. We could trivially handle any other
// representation change, but the only one that doesn't affect the ABI and
// matters here is @noescape, so just check for that.
auto FromCalleeTy = CFI->getOperand()->getType().castTo<SILFunctionType>();
auto ToCalleeTy = CFI->getType().castTo<SILFunctionType>();
auto EscapingCalleeTy =
ToCalleeTy->getWithExtInfo(ToCalleeTy->getExtInfo().withNoEscape(false));
if (FromCalleeTy != EscapingCalleeTy)
return lookThroughOwnershipInsts(CalleeValue);
return lookThroughOwnershipInsts(CFI->getOperand());
}
/// Returns the callee SILFunction called at a call site, in the case
/// that the call is transparent (as in, both that the call is marked
/// with the transparent flag and that callee function is actually transparently
/// determinable from the SIL) or nullptr otherwise. This assumes that the SIL
/// is already in SSA form.
///
/// In the case that a non-null value is returned, FullArgs contains effective
/// argument operands for the callee function.
static SILFunction *
getCalleeFunction(SILFunction *F, FullApplySite AI, bool &IsThick,
SmallVectorImpl<ParameterConvention> &CapturedArgConventions,
SmallVectorImpl<SILValue> &FullArgs,
PartialApplyInst *&PartialApply) {
IsThick = false;
PartialApply = nullptr;
CapturedArgConventions.clear();
FullArgs.clear();
// First grab our basic arguments from our apply.
for (SILValue Arg : AI.getArguments())
FullArgs.push_back(Arg);
// Then grab a first approximation of our apply by stripping off all copy
// operations.
SILValue CalleeValue = lookThroughOwnershipInsts(AI.getCallee());
// If after stripping off copy_values, we have a load then see if we the
// function we want to inline has a simple available value through a simple
// alloc_box. Bail otherwise.
if (auto *li = dyn_cast<LoadInst>(CalleeValue)) {
CalleeValue = getLoadedCalleeValue(li);
if (!CalleeValue)
return nullptr;
CalleeValue = lookThroughOwnershipInsts(CalleeValue);
}
// Look through a escape to @noescape conversion.
CalleeValue = stripFunctionConversions(CalleeValue);
// We are allowed to see through exactly one "partial apply" instruction or
// one "thin to thick function" instructions, since those are the patterns
// generated when using auto closures.
if (auto *PAI = dyn_cast<PartialApplyInst>(CalleeValue)) {
// Collect the applied arguments and their convention.
collectPartiallyAppliedArguments(PAI, CapturedArgConventions, FullArgs);
CalleeValue = lookThroughOwnershipInsts(PAI->getCallee());
IsThick = true;
PartialApply = PAI;
} else if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(CalleeValue)) {
CalleeValue = lookThroughOwnershipInsts(TTTFI->getOperand());
IsThick = true;
}
CalleeValue = stripFunctionConversions(CalleeValue);
auto *FRI = dyn_cast<FunctionRefInst>(CalleeValue);
if (!FRI)
return nullptr;
SILFunction *CalleeFunction = FRI->getReferencedFunction();
switch (CalleeFunction->getRepresentation()) {
case SILFunctionTypeRepresentation::Thick:
case SILFunctionTypeRepresentation::Thin:
case SILFunctionTypeRepresentation::Method:
case SILFunctionTypeRepresentation::Closure:
case SILFunctionTypeRepresentation::WitnessMethod:
case SILFunctionTypeRepresentation::KeyPathAccessorGetter:
case SILFunctionTypeRepresentation::KeyPathAccessorSetter:
case SILFunctionTypeRepresentation::KeyPathAccessorEquals:
case SILFunctionTypeRepresentation::KeyPathAccessorHash:
break;
case SILFunctionTypeRepresentation::CFunctionPointer:
case SILFunctionTypeRepresentation::CXXMethod:
case SILFunctionTypeRepresentation::ObjCMethod:
case SILFunctionTypeRepresentation::Block:
return nullptr;
}
// If the CalleeFunction is a not-transparent definition, we can not process
// it.
if (CalleeFunction->isTransparent() == IsNotTransparent)
return nullptr;
// If CalleeFunction is a declaration, see if we can load it.
if (CalleeFunction->empty())
AI.getModule().loadFunction(CalleeFunction, SILModule::LinkingMode::LinkNormal);
// If we fail to load it, bail.
if (CalleeFunction->empty())
return nullptr;
if (!CalleeFunction->canBeInlinedIntoCaller(F->getSerializedKind())) {
if (F->isAnySerialized() &&
!CalleeFunction->hasValidLinkageForFragileRef(F->getSerializedKind())) {
llvm::errs() << "caller: " << F->getName() << "\n";
llvm::errs() << "callee: " << CalleeFunction->getName() << "\n";
llvm_unreachable("Should never be inlining a resilient function into "
"a fragile function");
}
return nullptr;
}
return CalleeFunction;
}
static SILInstruction *tryDevirtualizeApplyHelper(FullApplySite InnerAI,
ClassHierarchyAnalysis *CHA) {
auto NewInst = tryDevirtualizeApply(InnerAI, CHA).first;
if (!NewInst)
return InnerAI.getInstruction();
deleteDevirtualizedApply(InnerAI);
// FIXME: Comments at the use of this helper indicate that devirtualization
// may return SILArgument. Yet here we assert that it must return an
// instruction.
auto newApplyAI = NewInst.getInstruction();
assert(newApplyAI && "devirtualized but removed apply site?");
return newApplyAI;
}
/// Inlines all mandatory inlined functions into the body of a function,
/// first recursively inlining all mandatory apply instructions in those
/// functions into their bodies if necessary.
///
/// \param F the function to be processed
/// \param AI nullptr if this is being called from the top level; the relevant
/// ApplyInst requiring the recursive call when non-null
/// \param FullyInlinedSet the set of all functions already known to be fully
/// processed, to avoid processing them over again
/// \param SetFactory an instance of ImmutableFunctionSet::Factory
/// \param CurrentInliningSet the set of functions currently being inlined in
/// the current call stack of recursive calls
///
/// \returns true if successful, false if failed due to circular inlining.
static bool
runOnFunctionRecursively(SILOptFunctionBuilder &FuncBuilder, SILFunction *F,
FullApplySite AI, DenseFunctionSet &FullyInlinedSet,
ImmutableFunctionSet::Factory &SetFactory,
ImmutableFunctionSet CurrentInliningSet,
ClassHierarchyAnalysis *CHA,
DenseFunctionSet &changedFunctions) {
// Avoid reprocessing functions needlessly.
if (FullyInlinedSet.count(F))
return true;
// Prevent attempt to circularly inline.
if (CurrentInliningSet.contains(F)) {
// This cannot happen on a top-level call, so AI should be non-null.
assert(AI && "Cannot have circular inline without apply");
SILLocation L = AI.getLoc();
assert(L && "Must have location for transparent inline apply");
diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
diag::circular_transparent);
return false;
}
// Add to the current inlining set (immutably, so we only affect the set
// during this call and recursive subcalls).
CurrentInliningSet = SetFactory.add(CurrentInliningSet, F);
SmallVector<ParameterConvention, 16> CapturedArgConventions;
SmallVector<SILValue, 32> FullArgs;
bool invalidatedStackNesting = false;
// Visiting blocks in reverse order avoids revisiting instructions after block
// splitting, which would be quadratic.
for (auto BI = F->rbegin(), BE = F->rend(), nextBB = BI; BI != BE;
BI = nextBB) {
// After inlining, the block iterator will be adjusted to point to the last
// block containing inlined instructions. This way, the inlined function
// body will be reprocessed within the caller's context without revisiting
// any original instructions.
nextBB = std::next(BI);
// While iterating over this block, instructions are inserted and deleted.
// To avoid quadratic block splitting, instructions must be processed in
// reverse order (block splitting reassigned the parent pointer of all
// instructions below the split point).
for (auto II = BI->rbegin(); II != BI->rend(); ++II) {
FullApplySite InnerAI = FullApplySite::isa(&*II);
if (!InnerAI)
continue;
// *NOTE* If devirtualization succeeds, devirtInst may not be InnerAI,
// but a casted result of InnerAI or even a block argument due to
// abstraction changes when calling the witness or class method.
auto *devirtInst = tryDevirtualizeApplyHelper(InnerAI, CHA);
// If devirtualization succeeds, make sure we record that this function
// changed.
if (devirtInst != InnerAI.getInstruction())
changedFunctions.insert(F);
// Restore II to the current apply site.
II = devirtInst->getReverseIterator();
// If the devirtualized call result is no longer a invalid FullApplySite,
// then it has succeeded, but the result is not immediately inlinable.
InnerAI = FullApplySite::isa(devirtInst);
if (!InnerAI)
continue;
SILValue CalleeValue = InnerAI.getCallee();
bool IsThick;
PartialApplyInst *PAI;
SILFunction *CalleeFunction = getCalleeFunction(
F, InnerAI, IsThick, CapturedArgConventions, FullArgs, PAI);
if (!CalleeFunction)
continue;
// Then recursively process it first before trying to inline it.
if (!runOnFunctionRecursively(
FuncBuilder, CalleeFunction, InnerAI, FullyInlinedSet, SetFactory,
CurrentInliningSet, CHA, changedFunctions)) {
// If we failed due to circular inlining, then emit some notes to
// trace back the failure if we have more information.
// FIXME: possibly it could be worth recovering and attempting other
// inlines within this same recursive call rather than simply
// propagating the failure.
if (AI) {
SILLocation L = AI.getLoc();
assert(L && "Must have location for transparent inline apply");
diagnose(F->getModule().getASTContext(), L.getStartSourceLoc(),
diag::note_while_inlining);
}
return false;
}
// Get our list of substitutions.
auto Subs = (PAI
? PAI->getSubstitutionMap()
: InnerAI.getSubstitutionMap());
// Register a callback to record potentially unused function values after
// inlining.
ClosureCleanup closureCleanup;
InstructionDeleter deleter(InstModCallbacks().onNotifyWillBeDeleted(
[&closureCleanup](SILInstruction *I) {
closureCleanup.recordDeadFunction(I);
}));
SILInliner Inliner(FuncBuilder, deleter,
SILInliner::InlineKind::MandatoryInline, Subs);
if (!Inliner.canInlineApplySite(InnerAI))
continue;
// Inline function at I, which also changes I to refer to the first
// instruction inlined in the case that it succeeds. We purposely
// process the inlined body after inlining, because the inlining may
// have exposed new inlining opportunities beyond those present in
// the inlined function when processed independently.
LLVM_DEBUG(llvm::errs() << "Inlining @" << CalleeFunction->getName()
<< " into @" << InnerAI.getFunction()->getName()
<< "\n");
// If we intend to inline a partial_apply function that is not on the
// stack, then we need to balance the reference counts for correctness.
//
// NOTE: If our partial apply is on the stack, it only has point uses (and
// hopefully eventually guaranteed) uses of the captured arguments.
//
// NOTE: If we have a thin_to_thick_function, we do not need to worry
// about such things since a thin_to_thick_function does not capture any
// arguments.
if (PAI && PAI->isOnStack() == PartialApplyInst::NotOnStack) {
bool IsCalleeGuaranteed =
PAI->getType().castTo<SILFunctionType>()->isCalleeGuaranteed();
auto CapturedArgs = MutableArrayRef<SILValue>(FullArgs).take_back(
CapturedArgConventions.size());
// We need to insert the copies before the partial_apply since if we can
// not remove the partial_apply the captured values will be dead by the
// time we hit the call site.
invalidatedStackNesting |= fixupReferenceCounts(PAI, InnerAI,
CalleeValue, CapturedArgConventions,
CapturedArgs, IsCalleeGuaranteed);
}
invalidatedStackNesting |= Inliner.invalidatesStackNesting(InnerAI);
if (SILPrintInliningCallee) {
printInliningDetailsCallee("MandatoryInlining", F, CalleeFunction);
}
if (SILPrintInliningCallerBefore) {
printInliningDetailsCallerBefore("MandatoryInlining", F,
CalleeFunction);
}
// Inlining deletes the apply, and can introduce multiple new basic
// blocks. After this, CalleeValue and other instructions may be invalid.
// nextBB will point to the last inlined block
SILBasicBlock *lastBB =
Inliner.inlineFunction(CalleeFunction, InnerAI, FullArgs);
// When inlining an OSSA function into a non-OSSA function, ownership of
// nonescaping closures is lowered. At that point, they are recognized
// as stack users. Since they weren't recognized as such before, they
// may not satisfy stack discipline. Fix that up now.
invalidatedStackNesting |=
(CalleeFunction->hasOwnership() && !F->hasOwnership());
if (SILPrintInliningCallerAfter) {
printInliningDetailsCallerAfter("MandatoryInlining", F, CalleeFunction);
}
nextBB = lastBB->getReverseIterator();
++NumMandatoryInlines;
deleter.cleanupDeadInstructions();
// The IR is now valid, and trivial dead arguments are removed. However,
// we may be able to remove dead callee computations (e.g. dead
// partial_apply closures).
closureCleanup.cleanupDeadClosures(F);
invalidatedStackNesting |= closureCleanup.invalidatedStackNesting;
// Record that we inlined into this function so that we can invalidate it
// later.
changedFunctions.insert(F);
if (EnableVerifyAfterEachInlining) {
if (invalidatedStackNesting) {
StackNesting::fixNesting(F);
changedFunctions.insert(F);
invalidatedStackNesting = false;
}
F->verify();
}
// Resume inlining within nextBB, which contains only the inlined
// instructions and possibly instructions in the original call block that
// have not yet been visited.
break;
}
}
if (invalidatedStackNesting) {
StackNesting::fixNesting(F);
changedFunctions.insert(F);
}
// Keep track of full inlined functions so we don't waste time recursively
// reprocessing them.
FullyInlinedSet.insert(F);
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
namespace {
class MandatoryInlining : public SILModuleTransform {
/// The entry point to the transformation.
void run() override {
ClassHierarchyAnalysis *CHA = getAnalysis<ClassHierarchyAnalysis>();
SILModule *M = getModule();
bool SILVerifyAll = getOptions().VerifyAll;
DenseFunctionSet FullyInlinedSet;
ImmutableFunctionSet::Factory SetFactory;
DenseFunctionSet changedFunctions;
SILOptFunctionBuilder FuncBuilder(*this);
for (auto &F : *M) {
switch (F.isThunk()) {
case IsThunk_t::IsThunk:
case IsThunk_t::IsReabstractionThunk:
case IsThunk_t::IsSignatureOptimizedThunk:
// Don't inline into most thunks, even transparent callees.
continue;
case IsThunk_t::IsNotThunk:
case IsThunk_t::IsBackDeployedThunk:
// For correctness, inlining _stdlib_isOSVersionAtLeast() when it is
// declared transparent is mandatory in the thunks of @backDeployed
// functions. These thunks will not contain calls to other transparent
// functions.
break;
}
// Skip deserialized functions.
if (F.wasDeserializedCanonical())
continue;
runOnFunctionRecursively(FuncBuilder, &F, FullApplySite(),
FullyInlinedSet, SetFactory,
SetFactory.getEmptySet(), CHA, changedFunctions);
// The inliner splits blocks at call sites. Re-merge trivial branches
// to reestablish a canonical CFG.
if (mergeBasicBlocks(&F)) {
changedFunctions.insert(&F);
}
// If we are asked to perform SIL verify all, perform that now so that we
// can discover the immediate inlining trigger of the problematic
// function.
if (SILVerifyAll) {
F.verify();
}
}
if (getOptions().DebugSerialization)
return;
for (auto *F : changedFunctions) {
invalidateAnalysis(F, SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createMandatoryInlining() {
return new MandatoryInlining();
}
|