1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
|
//===--- MoveOnlyAddressCheckerUtils.cpp ----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Move Only Checking of Addresses
/// -------------------------------
///
/// In this file, we implement move checking of addresses. This allows for the
/// compiler to perform move checking of address only lets, vars, inout args,
/// and mutating self.
///
/// Move Address Checking in Swift
/// ------------------------------
///
/// In order to not have to rewrite all of SILGen to avoid copies, Swift has
/// taken an approach where SILGen marks moveonly addresses with a special
/// marker instruction and emits copies when it attempts to access move only
/// addresses. Then this algorithm fixed up SILGen's output by analyzing the
/// memory uses of a marked memory root location recursively using AccessPath
/// based analyses and then attempting to transform those uses based off of the
/// marked kind into one of a few variants of "simple move only address form"
/// (see below for more information). If the pass is unable to reason that it
/// can safely transform the uses into said form, we emit a diagnostic stating
/// the error to the user. If we emit said diagnostic, we then bail early. If we
/// do not emit a diagnostic, we then transform the IR so that the move only
/// address uses are in said form. This then guarantees that despite SILGen
/// emitting move only types with copies, in the end, our move only types are
/// never copied. As an additional check, once the pass has run we emit an extra
/// diagnostic if we find any copies of move only types so that the user can be
/// sure that any accepted program does not copy move only types.
///
/// Simple Move Only Address Form
/// -----------------------------
///
/// We define a memory location to be in "simple move only address" form (SMOA
/// form for ease of typing) to mean that along any path from an init of the
/// address to a consume of the address, all uses are guaranteed to be semantic
/// "borrow uses" instead of semantic "copy uses". Additionally, SMOA does not
/// consider destroy_addr to be a true consuming use since it will rewrite
/// destroy_addr as necessary so the consuming uses are defined by consuming
/// uses modulo destroy_addr.
///
/// An example of a memory location in "simple move only address form" is the
/// following:
///
/// ```
/// // Memory is defined
/// %0 = alloc_stack $Type
///
/// // Initial initialization.
/// store %input to [init] %0 : $Type
///
/// // Sequence of borrow uses.
/// %1 = load_borrow %0 : $Type
/// apply %f(%1) : $@convention(thin) (@guaranteed Type) -> ()
/// end_borrow %1
/// apply %f2(%0) : $@convention(thin) (@in_guaranteed Type) -> ()
///
/// // Assign is ok since we are just consuming the value.
/// store %input2 to [assign] %0 : $*Type
///
/// // More borrow uses.
/// %3 = load_borrow %0 : $*Type
/// apply %f(%3) : $@convention(thin) (@guaranteed Type) -> ()
/// end_borrow %1
/// apply %f2(%0) : $@convention(thin) (@in_guaranteed Type) -> ()
///
/// // Final destroy
/// destroy_addr %0 : $Type
/// ```
///
/// An example of an instruction not in SMOA form is:
///
/// ```
/// // Memory is defined
/// %0 = alloc_stack $Type
///
/// // Initial initialization.
/// store %input to [init] %0 : $*Type
///
/// // Perform a load + copy of %0 to pass as an argument to %f.
/// %1 = load [copy] %0 : $*Type
/// apply %f(%1) : $@convention(thin) (@guaranteed Type) -> ()
/// destroy_value %1 : $Type
///
/// // Initialize other variable.
/// %otherVar = alloc_stack $Type
/// copy_addr %0 to [initialization] %otherVar : $*Type
/// ...
///
/// // Final destroy that is not part of the use set.
/// destroy_addr %0 : $*Type
/// ```
///
/// The variants of SMOA form can be classified by the specific
/// mark_unresolved_non_copyable_value kind put on the checker mark
/// instruction and are as follows:
///
/// 1. no_consume_or_assign. This means that the address can only be consumed by
/// destroy_addr and otherwise is only read from. This simulates guaranteed
/// semantics.
///
/// 2. consumable_and_assignable. This means that the address can be consumed
/// (e.x.: take/pass to a +1 function) or assigned to. Additionally, the value
/// is supposed to have its lifetime end along all program paths locally in the
/// function. This simulates a local var's semantics.
///
/// 3. assignable_but_not_consumable. This means that the address can be
/// assigned over, but cannot be taken from. It additionally must have a valid
/// value in it and the end of its lifetime. This simulates accesses to class
/// fields, globals, and escaping mutable captures where we want the user to be
/// able to update the value, but allowing for escapes of the value would break
/// memory safety. In all cases where this is used, the
/// mark_unresolved_non_copyable_value is used as the initial def of the value
/// lifetime. Example:
///
/// 4. initable_but_not_consumable. This means that the address can only be
/// initialized once but cannot be taken from or assigned over. It is assumed
/// that the initial def will always be the mark_unresolved_non_copyable_value
/// and that the value will be uninitialized at that point. Example:
///
/// Algorithm Stages In Detail
/// --------------------------
///
/// To implement this, our algorithm works in 4 stages: a use classification
/// stage, a dataflow stage, and then depending on success/failure one of two
/// transform stages.
///
/// Use Classification Stage
/// ~~~~~~~~~~~~~~~~~~~~~~~~
///
/// Here we use an AccessPath based analysis to transitively visit all uses of
/// our marked address and classify a use as one of the following kinds of uses:
///
/// * init - store [init], copy_addr [init] %dest.
/// * destroy - destroy_addr.
/// * pureTake - load [take], copy_addr [take] %src.
/// * copyTransformableToTake - certain load [copy], certain copy_addr ![take]
/// %src of a temporary %dest.
/// * reinit - store [assign], copy_addr ![init] %dest
/// * borrow - load_borrow, a load [copy] without consuming uses.
/// * livenessOnly - a read only use of the address.
///
/// We classify these by adding them to several disjoint SetVectors which track
/// membership.
///
/// When we classify an instruction as copyTransformableToTake, we perform some
/// extra preprocessing to determine if we can actually transform this copy to a
/// take. This means that we:
///
/// 1. For loads, we perform object move only checking. If we find a need for
/// multiple copies, we emit an error. If we find no extra copies needed, we
/// classify the load [copy] as a take if it has any last consuming uses and a
/// borrow if it only has destroy_addr consuming uses.
///
/// 2. For copy_addr, we pattern match if a copy_addr is initializing a "simple
/// temporary" (an alloc_stack with only one use that initializes it, a
/// copy_addr [init] in the same block). In this case, if the copy_addr only has
/// destroy_addr consuming uses, we treat it as a borrow... otherwise, we treat
/// it as a take. If we find any extra initializations, we fail the visitor so
/// we emit a "I don't understand this error" so that users report this case and
/// we can extend it as appropriate.
///
/// If we fail in either case, if we emit an error, we bail early with success
/// so we can assume invariants later in the dataflow stages that make the
/// dataflow easier.
///
/// Dataflow Stage
/// ~~~~~~~~~~~~~~
///
/// To perform our dataflow, we take our classified uses and initialize field
/// sensitive pruned liveness with the data. We then use field sensitive pruned
/// liveness and our check kinds to determine if all of our copy uses that could
/// not be changed into borrows are on the liveness boundary of the memory. If
/// they are within the liveness boundary, then we know a copy is needed and we
/// emit an error to the user. Otherwise, we know that we can change them
/// semantically into a take.
///
/// Success Transformation
/// ~~~~~~~~~~~~~~~~~~~~~~
///
/// Now that we know that we can change our address into "simple move only
/// address form", we transform the IR in the following way:
///
/// 1. Any load [copy] that are classified as borrows are changed to
/// load_borrow.
/// 2. Any load [copy] that are classified as takes are changed to load [take].
/// 3. Any copy_addr [init] temporary allocation are eliminated with their
/// destroy_addr. All uses are placed on the source address.
/// 4. Any destroy_addr that is paired with a copyTransformableToTake is
/// eliminated.
///
/// Fail Transformation
/// ~~~~~~~~~~~~~~~~~~~
///
/// If we emit any diagnostics, we loop through the function one last time after
/// we are done processing and convert all load [copy]/copy_addr of move only
/// types into their explicit forms. We take a little more compile time, but we
/// are going to fail anyways at this point, so it is ok to do so since we will
/// fail before attempting to codegen into LLVM IR.
///
/// Final Black Box Checks on Success
/// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
///
/// Finally since we want to be able to guarantee to users 100% that the
/// compiler will reject programs even if the checker gives a false success for
/// some reason due to human compiler writer error, we do a last pass over the
/// IR and emit an error diagnostic on any copies of move only types that we
/// see. The error states to the user that this is a compiler bug and to file a
/// bug report. Since it is a completely separate, simple implementation, this
/// gives the user of our implementation the confidence to know that the
/// compiler even in the face of complexity in the checker will emit correct
/// code.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-move-only-checker"
#include "swift/AST/AccessScope.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/Debug.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/Basic/SmallBitVector.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockData.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/Consumption.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/FieldSensitivePrunedLiveness.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OSSALifetimeCompletion.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILArgumentConvention.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/ClosureScope.h"
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/NonLocalAccessBlockAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "MoveOnlyAddressCheckerUtils.h"
#include "MoveOnlyBorrowToDestructureUtils.h"
#include "MoveOnlyDiagnostics.h"
#include "MoveOnlyObjectCheckerUtils.h"
#include "MoveOnlyTypeUtils.h"
#include "MoveOnlyUtils.h"
#include <utility>
using namespace swift;
using namespace swift::siloptimizer;
llvm::cl::opt<bool> DisableMoveOnlyAddressCheckerLifetimeExtension(
"move-only-address-checker-disable-lifetime-extension",
llvm::cl::init(false),
llvm::cl::desc("Disable the lifetime extension of non-consumed fields of "
"move-only values."));
//===----------------------------------------------------------------------===//
// MARK: Utilities
//===----------------------------------------------------------------------===//
struct RAIILLVMDebug {
StringRef str;
RAIILLVMDebug(StringRef str) : str(str) {
LLVM_DEBUG(llvm::dbgs() << "===>>> Starting " << str << '\n');
}
RAIILLVMDebug(StringRef str, SILInstruction *u) : str(str) {
LLVM_DEBUG(llvm::dbgs() << "===>>> Starting " << str << ":" << *u);
}
~RAIILLVMDebug() {
LLVM_DEBUG(llvm::dbgs() << "===<<< Completed " << str << '\n');
}
};
static void insertDebugValueBefore(SILInstruction *insertPt,
DebugVarCarryingInst debugVar,
llvm::function_ref<SILValue ()> operand) {
if (!debugVar) {
return;
}
auto varInfo = debugVar.getVarInfo();
if (!varInfo) {
return;
}
SILBuilderWithScope debugInfoBuilder(insertPt);
debugInfoBuilder.setCurrentDebugScope(debugVar->getDebugScope());
debugInfoBuilder.createDebugValue(debugVar->getLoc(), operand(), *varInfo,
false, UsesMoveableValueDebugInfo);
}
static void convertMemoryReinitToInitForm(SILInstruction *memInst,
DebugVarCarryingInst debugVar) {
SILValue dest;
switch (memInst->getKind()) {
default:
llvm_unreachable("unsupported?!");
case SILInstructionKind::CopyAddrInst: {
auto *cai = cast<CopyAddrInst>(memInst);
cai->setIsInitializationOfDest(IsInitialization_t::IsInitialization);
dest = cai->getDest();
break;
}
case SILInstructionKind::StoreInst: {
auto *si = cast<StoreInst>(memInst);
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
dest = si->getDest();
break;
}
}
// Insert a new debug_value instruction after the reinitialization, so that
// the debugger knows that the variable is in a usable form again.
insertDebugValueBefore(memInst->getNextInstruction(), debugVar,
[&]{ return debugVar.getOperandForDebugValueClone(); });
}
/// Is this a reinit instruction that we know how to convert into its init form.
static bool isReinitToInitConvertibleInst(SILInstruction *memInst) {
switch (memInst->getKind()) {
default:
return false;
case SILInstructionKind::CopyAddrInst: {
auto *cai = cast<CopyAddrInst>(memInst);
return !cai->isInitializationOfDest();
}
case SILInstructionKind::StoreInst: {
auto *si = cast<StoreInst>(memInst);
return si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign;
}
}
}
using ScopeRequiringFinalInit = DiagnosticEmitter::ScopeRequiringFinalInit;
/// If \p markedAddr's operand must be initialized at the end of the scope it
/// introduces, visit those scope ending ends.
///
/// Examples:
/// (1) inout function argument. Must be initialized at function exit.
///
/// sil [ossa] @f : $(inout MOV) -> ()
/// entry(%addr : $*MOV):
/// ...
/// return %t : $() // %addr must be initialized here
///
/// (2) coroutine. Must be initialized at end_apply/abort_apply.
///
/// (%addr, %token) = begin_apply ... -> @yields @inout MOV
/// bbN:
/// end_apply %token // %addr must be initialized here
/// bbM:
/// abort_apply %token // %addr must be initialized here
///
/// (3) modify access. Must be initialized at end_access.
///
/// %addr = begin_access [modify] %location
///
/// end_access %addr // %addr must be initialized here
///
/// To enforce this requirement, function exiting instructions are treated as
/// liveness uses of such addresses, ensuring that the address is initialized at
/// that point.
static bool visitScopeEndsRequiringInit(
MarkUnresolvedNonCopyableValueInst *markedAddr,
llvm::function_ref<void(SILInstruction *, ScopeRequiringFinalInit)> visit) {
SILValue operand = markedAddr->getOperand();
// TODO: This should really be a property of the marker instruction.
switch (markedAddr->getCheckKind()) {
case MarkUnresolvedNonCopyableValueInst::CheckKind::
AssignableButNotConsumable:
case MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable:
break;
case MarkUnresolvedNonCopyableValueInst::CheckKind::InitableButNotConsumable:
case MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign:
return false;
case MarkUnresolvedNonCopyableValueInst::CheckKind::Invalid:
llvm_unreachable("invalid check!?");
}
// Look through wrappers.
if (auto m = dyn_cast<CopyableToMoveOnlyWrapperAddrInst>(operand)) {
operand = m->getOperand();
}
// Check for inout types of arguments that are marked with consumable and
// assignable.
if (auto *fArg = dyn_cast<SILFunctionArgument>(operand)) {
switch (fArg->getArgumentConvention()) {
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_Out:
case SILArgumentConvention::Indirect_In_Guaranteed:
case SILArgumentConvention::Direct_Guaranteed:
case SILArgumentConvention::Direct_Owned:
case SILArgumentConvention::Direct_Unowned:
case SILArgumentConvention::Pack_Guaranteed:
case SILArgumentConvention::Pack_Owned:
case SILArgumentConvention::Pack_Out:
return false;
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Pack_Inout:
LLVM_DEBUG(llvm::dbgs() << "Found inout arg: " << *fArg);
SmallVector<SILBasicBlock *, 8> exitBlocks;
markedAddr->getFunction()->findExitingBlocks(exitBlocks);
for (auto *block : exitBlocks) {
visit(block->getTerminator(), ScopeRequiringFinalInit::InoutArgument);
}
return true;
}
}
// Check for yields from a modify coroutine.
if (auto bai =
dyn_cast_or_null<BeginApplyInst>(operand->getDefiningInstruction())) {
for (auto *inst : bai->getTokenResult()->getUsers()) {
assert(isa<EndApplyInst>(inst) || isa<AbortApplyInst>(inst));
visit(inst, ScopeRequiringFinalInit::Coroutine);
}
return true;
}
// Check for modify accesses.
if (auto access = dyn_cast<BeginAccessInst>(operand)) {
if (access->getAccessKind() != SILAccessKind::Modify) {
return false;
}
for (auto *inst : access->getEndAccesses()) {
visit(inst, ScopeRequiringFinalInit::ModifyMemoryAccess);
}
return true;
}
return false;
}
static bool isCopyableValue(SILValue value) {
if (value->getType().isMoveOnly())
return false;
if (auto *m = dyn_cast<MoveOnlyWrapperToCopyableAddrInst>(value))
return false;
return true;
}
//===----------------------------------------------------------------------===//
// MARK: Find Candidate Mark Must Checks
//===----------------------------------------------------------------------===//
void swift::siloptimizer::
searchForCandidateAddressMarkUnresolvedNonCopyableValueInsts(
SILFunction *fn, PostOrderAnalysis *poa,
llvm::SmallSetVector<MarkUnresolvedNonCopyableValueInst *, 32>
&moveIntroducersToProcess,
DiagnosticEmitter &diagnosticEmitter) {
auto *po = poa->get(fn);
for (auto *block : po->getPostOrder()) {
for (auto &ii : llvm::make_range(block->rbegin(), block->rend())) {
auto *mmci = dyn_cast<MarkUnresolvedNonCopyableValueInst>(&ii);
if (!mmci || !mmci->hasMoveCheckerKind() || !mmci->getType().isAddress())
continue;
moveIntroducersToProcess.insert(mmci);
}
}
}
//===----------------------------------------------------------------------===//
// MARK: Use State
//===----------------------------------------------------------------------===//
namespace {
struct UseState {
MarkUnresolvedNonCopyableValueInst *address;
DominanceInfo *const domTree;
// FIXME: [partial_consume_of_deiniting_aggregate_with_drop_deinit] Keep track
// of the projections out of which a use emerges and use that to tell
// whether a particular partial consume is allowed.
//
// For example, give the TransitiveAddressWalker's worklist a
// client-dependent context and look in that to determine whether a
// relevant drop_deinit has been seen when erroring on partial
// destructuring.
bool sawDropDeinit = false;
using InstToBitMap =
llvm::SmallMapVector<SILInstruction *, SmallBitVector, 4>;
std::optional<unsigned> cachedNumSubelements;
/// The blocks that consume fields of the value.
///
/// A map from blocks to a bit vector recording which fields were destroyed
/// in each.
llvm::SmallMapVector<SILBasicBlock *, SmallBitVector, 8> consumingBlocks;
/// A map from destroy_addr to the part of the type that it destroys.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> destroys;
/// Maps a non-consuming use to the part of the type that it requires
/// liveness for.
InstToBitMap nonconsumingUses;
/// A map from a load [copy] or load [take] that we determined must be
/// converted to a load_borrow to the part of the type tree that it needs to
/// borrow.
///
/// NOTE: This does not include actual load_borrow which are treated
/// just as liveness uses.
///
/// NOTE: load_borrow that we actually copy, we canonicalize early to a load
/// [copy] + begin_borrow so that we do not need to convert load_borrow to a
/// normal load when rewriting.
llvm::SmallMapVector<SILInstruction *, TypeTreeLeafTypeRange, 4> borrows;
/// A copy_addr, load [copy], or load [take] that we determine is semantically
/// truly a take mapped to the part of the type tree that it needs to use.
///
/// DISCUSSION: A copy_addr [init] or load [copy] are considered actually
/// takes if they are not destroyed with a destroy_addr/destroy_value. We
/// consider them to be takes since after the transform they must be a take.
///
/// Importantly, these we know are never copied and are only consumed once.
InstToBitMap takeInsts;
/// A map from a copy_addr, load [copy], or load [take] that we determine
/// semantically are true copies to the part of the type tree they must copy.
///
/// DISCUSSION: One of these instructions being a true copy means that their
/// result or destination is used in a way that some sort of extra copy is
/// needed. Example:
///
/// %0 = load [take] %addr
/// %1 = copy_value %0
/// consume(%0)
/// consume(%1)
///
/// Notice how the load [take] above semantically requires a copy since it was
/// consumed twice even though SILGen emitted it as a load [take].
///
/// We represent these separately from \p takeInsts since:
///
/// 1.
InstToBitMap copyInsts;
/// A map from an instruction that initializes memory to the description of
/// the part of the type tree that it initializes.
InstToBitMap initInsts;
SmallFrozenMultiMap<SILInstruction *, SILValue, 8> initToValueMultiMap;
/// memInstMustReinitialize insts. Contains both insts like copy_addr/store
/// [assign] that are reinits that we will convert to inits and true reinits.
InstToBitMap reinitInsts;
SmallFrozenMultiMap<SILInstruction *, SILValue, 8> reinitToValueMultiMap;
/// The set of drop_deinits of this mark_unresolved_non_copyable_value
llvm::SmallSetVector<SILInstruction *, 2> dropDeinitInsts;
/// Instructions indicating the end of a scope at which addr must be
/// initialized.
///
/// Adding such instructions to liveness forces the value to be initialized at
/// them as required.
///
/// See visitScopeEndsRequiringInit.
llvm::MapVector<SILInstruction *, ScopeRequiringFinalInit>
scopeEndsRequiringInit;
/// We add debug_values to liveness late after we diagnose, but before we
/// hoist destroys to ensure that we do not hoist destroys out of access
/// scopes.
DebugValueInst *debugValue = nullptr;
UseState(DominanceInfo *domTree) : domTree(domTree) {}
SILFunction *getFunction() const { return address->getFunction(); }
/// The number of fields in the exploded type.
unsigned getNumSubelements() {
if (!cachedNumSubelements) {
cachedNumSubelements = TypeSubElementCount(address);
}
return *cachedNumSubelements;
}
SmallBitVector &getOrCreateAffectedBits(SILInstruction *inst,
InstToBitMap &map) {
auto iter = map.find(inst);
if (iter == map.end()) {
iter = map.insert({inst, SmallBitVector(getNumSubelements())}).first;
}
return iter->second;
}
void setAffectedBits(SILInstruction *inst, SmallBitVector const &bits,
InstToBitMap &map) {
getOrCreateAffectedBits(inst, map) |= bits;
}
void setAffectedBits(SILInstruction *inst, TypeTreeLeafTypeRange range,
InstToBitMap &map) {
range.setBits(getOrCreateAffectedBits(inst, map));
}
void recordLivenessUse(SILInstruction *inst, SmallBitVector const &bits) {
setAffectedBits(inst, bits, nonconsumingUses);
}
void recordLivenessUse(SILInstruction *inst, TypeTreeLeafTypeRange range) {
setAffectedBits(inst, range, nonconsumingUses);
}
void recordReinitUse(SILInstruction *inst, SILValue value,
TypeTreeLeafTypeRange range) {
reinitToValueMultiMap.insert(inst, value);
setAffectedBits(inst, range, reinitInsts);
}
void recordInitUse(SILInstruction *inst, SILValue value,
TypeTreeLeafTypeRange range) {
initToValueMultiMap.insert(inst, value);
setAffectedBits(inst, range, initInsts);
}
void recordTakeUse(SILInstruction *inst, TypeTreeLeafTypeRange range) {
setAffectedBits(inst, range, takeInsts);
}
void recordCopyUse(SILInstruction *inst, TypeTreeLeafTypeRange range) {
setAffectedBits(inst, range, copyInsts);
}
/// Returns true if this is an instruction that is used by the pass to ensure
/// that we reinit said argument if we consumed it in a region of code.
///
/// Example:
///
/// 1. In the case of an inout argument, this will contain the terminator
/// instruction.
/// 2. In the case of a ref_element_addr or a global, this will contain the
/// end_access.
std::optional<ScopeRequiringFinalInit>
isImplicitEndOfLifetimeLivenessUses(SILInstruction *inst) const {
auto iter = scopeEndsRequiringInit.find(inst);
if (iter == scopeEndsRequiringInit.end()) {
return std::nullopt;
}
return {iter->second};
}
/// Returns true if the given instruction is within the same block as a reinit
/// and precedes a reinit instruction in that block.
bool precedesReinitInSameBlock(SILInstruction *inst) const {
SILBasicBlock *block = inst->getParent();
llvm::SmallSetVector<SILInstruction *, 8> sameBlockReinits;
// First, search for all reinits that are within the same block.
for (auto &reinit : reinitInsts) {
if (reinit.first->getParent() != block)
continue;
sameBlockReinits.insert(reinit.first);
}
if (sameBlockReinits.empty())
return false;
// Walk down from the given instruction to see if we encounter a reinit.
for (auto ii = std::next(inst->getIterator()); ii != block->end(); ++ii) {
if (sameBlockReinits.contains(&*ii))
return true;
}
return false;
}
void clear() {
address = nullptr;
cachedNumSubelements = std::nullopt;
consumingBlocks.clear();
destroys.clear();
nonconsumingUses.clear();
borrows.clear();
copyInsts.clear();
takeInsts.clear();
initInsts.clear();
initToValueMultiMap.reset();
reinitInsts.clear();
reinitToValueMultiMap.reset();
dropDeinitInsts.clear();
scopeEndsRequiringInit.clear();
debugValue = nullptr;
}
void dump() {
llvm::dbgs() << "AddressUseState!\n";
llvm::dbgs() << "Destroys:\n";
for (auto pair : destroys) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "LivenessUses:\n";
for (auto pair : nonconsumingUses) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Borrows:\n";
for (auto pair : borrows) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Takes:\n";
for (auto pair : takeInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Copies:\n";
for (auto pair : copyInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Inits:\n";
for (auto pair : initInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "Reinits:\n";
for (auto pair : reinitInsts) {
llvm::dbgs() << *pair.first;
}
llvm::dbgs() << "DropDeinits:\n";
for (auto *inst : dropDeinitInsts) {
llvm::dbgs() << *inst;
}
llvm::dbgs() << "Implicit End Of Lifetime Liveness Users:\n";
for (auto pair : scopeEndsRequiringInit) {
llvm::dbgs() << pair.first;
}
llvm::dbgs() << "Debug Value User:\n";
if (debugValue) {
llvm::dbgs() << *debugValue;
}
}
void freezeMultiMaps() {
initToValueMultiMap.setFrozen();
reinitToValueMultiMap.setFrozen();
}
SmallBitVector &getOrCreateConsumingBlock(SILBasicBlock *block) {
auto iter = consumingBlocks.find(block);
if (iter == consumingBlocks.end()) {
iter =
consumingBlocks.insert({block, SmallBitVector(getNumSubelements())})
.first;
}
return iter->second;
}
void recordConsumingBlock(SILBasicBlock *block, TypeTreeLeafTypeRange range) {
auto &consumingBits = getOrCreateConsumingBlock(block);
range.setBits(consumingBits);
}
void recordConsumingBlock(SILBasicBlock *block, SmallBitVector &bits) {
auto &consumingBits = getOrCreateConsumingBlock(block);
consumingBits |= bits;
}
void
initializeLiveness(FieldSensitiveMultiDefPrunedLiveRange &prunedLiveness);
void initializeImplicitEndOfLifetimeLivenessUses() {
visitScopeEndsRequiringInit(address, [&](auto *inst, auto kind) {
LLVM_DEBUG(llvm::dbgs()
<< " Adding scope end as liveness user: " << *inst);
scopeEndsRequiringInit[inst] = kind;
});
}
bool isConsume(SILInstruction *inst, SmallBitVector const &bits) const {
{
auto iter = takeInsts.find(inst);
if (iter != takeInsts.end()) {
if (bits.anyCommon(iter->second))
return true;
}
}
{
auto iter = copyInsts.find(inst);
if (iter != copyInsts.end()) {
if (bits.anyCommon(iter->second))
return true;
}
}
return false;
}
bool isCopy(SILInstruction *inst, const SmallBitVector &bv) const {
auto iter = copyInsts.find(inst);
if (iter != copyInsts.end()) {
if (bv.anyCommon(iter->second))
return true;
}
return false;
}
bool isLivenessUse(SILInstruction *inst, SmallBitVector const &bits) const {
{
auto iter = nonconsumingUses.find(inst);
if (iter != nonconsumingUses.end()) {
if (bits.anyCommon(iter->second))
return true;
}
}
{
auto iter = borrows.find(inst);
if (iter != borrows.end()) {
if (iter->second.intersects(bits))
return true;
}
}
if (!isReinitToInitConvertibleInst(inst)) {
auto iter = reinitInsts.find(inst);
if (iter != reinitInsts.end()) {
if (bits.anyCommon(iter->second))
return true;
}
}
// An "inout terminator use" is an implicit liveness use of the entire
// value. This is because we need to ensure that our inout value is
// reinitialized along exit paths.
if (scopeEndsRequiringInit.count(inst))
return true;
return false;
}
bool isInitUse(SILInstruction *inst, const SmallBitVector &requiredBits) const {
{
auto iter = initInsts.find(inst);
if (iter != initInsts.end()) {
if (requiredBits.anyCommon(iter->second))
return true;
}
}
if (isReinitToInitConvertibleInst(inst)) {
auto iter = reinitInsts.find(inst);
if (iter != reinitInsts.end()) {
if (requiredBits.anyCommon(iter->second))
return true;
}
}
return false;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// MARK: Partial Apply Utilities
//===----------------------------------------------------------------------===//
static bool findNonEscapingPartialApplyUses(PartialApplyInst *pai,
TypeTreeLeafTypeRange leafRange,
UseState &useState) {
StackList<Operand *> worklist(pai->getFunction());
for (auto *use : pai->getUses())
worklist.push_back(use);
LLVM_DEBUG(llvm::dbgs() << "Searching for partial apply uses!\n");
while (!worklist.empty()) {
auto *use = worklist.pop_back_val();
if (use->isTypeDependent())
continue;
auto *user = use->getUser();
// These instructions do not cause us to escape.
if (isIncidentalUse(user) || isa<DestroyValueInst>(user))
continue;
// Look through these instructions.
if (isa<BeginBorrowInst>(user) || isa<CopyValueInst>(user) ||
isa<MoveValueInst>(user) ||
// If we capture this partial_apply in another partial_apply, then we
// know that said partial_apply must not have escaped the value since
// otherwise we could not have an inout_aliasable argument or be
// on_stack. Process it recursively so that we treat uses of that
// partial_apply and applies of that partial_apply as uses of our
// partial_apply.
//
// We have this separately from the other look through sections so that
// we can make it clearer what we are doing here.
isa<PartialApplyInst>(user) ||
// Likewise with convert_function. Any valid function conversion that
// doesn't prevent stack promotion of the closure must retain the
// invariants on its transitive uses.
isa<ConvertFunctionInst>(user)) {
for (auto *use : cast<SingleValueInstruction>(user)->getUses())
worklist.push_back(use);
continue;
}
// If we have a mark_dependence and are the value, look through the
// mark_dependence.
if (auto *mdi = dyn_cast<MarkDependenceInst>(user)) {
if (mdi->getValue() == use->get()) {
for (auto *use : mdi->getUses())
worklist.push_back(use);
continue;
}
}
if (auto apply = FullApplySite::isa(user)) {
// If we apply the function or pass the function off to an apply, then we
// need to treat the function application as a liveness use of the
// variable since if the partial_apply is invoked within the function
// application, we may access the captured variable.
useState.recordLivenessUse(user, leafRange);
if (apply.beginsCoroutineEvaluation()) {
// If we have a coroutine, we need to treat the abort_apply and
// end_apply as liveness uses since once we execute one of those
// instructions, we have returned control to the coroutine which means
// that we could then access the captured variable again.
auto *bai = cast<BeginApplyInst>(user);
SmallVector<EndApplyInst *, 4> endApplies;
SmallVector<AbortApplyInst *, 4> abortApplies;
bai->getCoroutineEndPoints(endApplies, abortApplies);
for (auto *eai : endApplies)
useState.recordLivenessUse(eai, leafRange);
for (auto *aai : abortApplies)
useState.recordLivenessUse(aai, leafRange);
}
continue;
}
LLVM_DEBUG(
llvm::dbgs()
<< "Found instruction we did not understand... returning false!\n");
LLVM_DEBUG(llvm::dbgs() << "Instruction: " << *user);
return false;
}
return true;
}
void UseState::initializeLiveness(
FieldSensitiveMultiDefPrunedLiveRange &liveness) {
assert(liveness.getNumSubElements() == getNumSubelements());
// We begin by initializing all of our init uses.
for (auto initInstAndValue : initInsts) {
LLVM_DEBUG(llvm::dbgs() << "Found def: " << *initInstAndValue.first);
liveness.initializeDef(initInstAndValue.first, initInstAndValue.second);
}
// If we have a reinitInstAndValue that we are going to be able to convert
// into a simple init, add it as an init. We are going to consider the rest of
// our reinit uses to be liveness uses.
for (auto reinitInstAndValue : reinitInsts) {
if (isReinitToInitConvertibleInst(reinitInstAndValue.first)) {
LLVM_DEBUG(llvm::dbgs() << "Found def: " << *reinitInstAndValue.first);
liveness.initializeDef(reinitInstAndValue.first,
reinitInstAndValue.second);
}
}
// FIXME: Whether the initial use is an initialization ought to be entirely
// derivable from the CheckKind of the mark instruction.
// Then check if our markedValue is from an argument that is in,
// in_guaranteed, inout, or inout_aliasable, consider the marked address to be
// the initialization point.
bool beginsInitialized = false;
{
SILValue operand = address->getOperand();
if (auto *c = dyn_cast<CopyableToMoveOnlyWrapperAddrInst>(operand))
operand = c->getOperand();
if (auto *fArg = dyn_cast<SILFunctionArgument>(operand)) {
switch (fArg->getArgumentConvention()) {
case swift::SILArgumentConvention::Indirect_In:
case swift::SILArgumentConvention::Indirect_In_Guaranteed:
case swift::SILArgumentConvention::Indirect_Inout:
case swift::SILArgumentConvention::Indirect_InoutAliasable:
// We need to add our address to the initInst array to make sure that
// later invariants that we assert upon remain true.
LLVM_DEBUG(
llvm::dbgs()
<< "Found in/in_guaranteed/inout/inout_aliasable argument as "
"an init... adding mark_unresolved_non_copyable_value as "
"init!\n");
// We cheat here slightly and use our address's operand.
beginsInitialized = true;
break;
case swift::SILArgumentConvention::Indirect_Out:
llvm_unreachable("Should never have out addresses here");
case swift::SILArgumentConvention::Direct_Owned:
case swift::SILArgumentConvention::Direct_Unowned:
case swift::SILArgumentConvention::Direct_Guaranteed:
case swift::SILArgumentConvention::Pack_Inout:
case swift::SILArgumentConvention::Pack_Guaranteed:
case swift::SILArgumentConvention::Pack_Owned:
case swift::SILArgumentConvention::Pack_Out:
llvm_unreachable("Working with addresses");
}
}
}
// A read or write access always begins on an initialized value.
if (auto access = dyn_cast<BeginAccessInst>(address->getOperand())) {
switch (access->getAccessKind()) {
case SILAccessKind::Deinit:
case SILAccessKind::Read:
case SILAccessKind::Modify:
LLVM_DEBUG(llvm::dbgs()
<< "Found move only arg closure box use... "
"adding mark_unresolved_non_copyable_value as init!\n");
beginsInitialized = true;
break;
case SILAccessKind::Init:
break;
}
}
// See if our address is from a closure guaranteed box that we did not promote
// to an address. In such a case, just treat our
// mark_unresolved_non_copyable_value as the init of our value.
if (auto *projectBox = dyn_cast<ProjectBoxInst>(stripAccessMarkers(address->getOperand()))) {
if (auto *fArg = dyn_cast<SILFunctionArgument>(projectBox->getOperand())) {
if (fArg->isClosureCapture()) {
assert(fArg->getArgumentConvention() ==
SILArgumentConvention::Direct_Guaranteed &&
"Just a paranoid assert check to make sure this code is thought "
"about if we change the convention in some way");
// We need to add our address to the initInst array to make sure that
// later invariants that we assert upon remain true.
LLVM_DEBUG(llvm::dbgs()
<< "Found move only arg closure box use... "
"adding mark_unresolved_non_copyable_value as init!\n");
beginsInitialized = true;
}
} else if (auto *box = dyn_cast<AllocBoxInst>(
lookThroughOwnershipInsts(projectBox->getOperand()))) {
LLVM_DEBUG(llvm::dbgs()
<< "Found move only var allocbox use... "
"adding mark_unresolved_non_copyable_value as init!\n");
beginsInitialized = true;
}
}
// Check if our address is from a ref_element_addr. In such a case, we treat
// the mark_unresolved_non_copyable_value as the initialization.
if (auto *refEltAddr = dyn_cast<RefElementAddrInst>(
stripAccessMarkers(address->getOperand()))) {
LLVM_DEBUG(llvm::dbgs()
<< "Found ref_element_addr use... "
"adding mark_unresolved_non_copyable_value as init!\n");
beginsInitialized = true;
}
// Check if our address is from a global_addr. In such a case, we treat the
// mark_unresolved_non_copyable_value as the initialization.
if (auto *globalAddr =
dyn_cast<GlobalAddrInst>(stripAccessMarkers(address->getOperand()))) {
LLVM_DEBUG(llvm::dbgs()
<< "Found global_addr use... "
"adding mark_unresolved_non_copyable_value as init!\n");
beginsInitialized = true;
}
if (auto *ptai = dyn_cast<PointerToAddressInst>(
stripAccessMarkers(address->getOperand()))) {
assert(ptai->isStrict());
LLVM_DEBUG(llvm::dbgs()
<< "Found pointer to address use... "
"adding mark_unresolved_non_copyable_value as init!\n");
beginsInitialized = true;
}
if (auto *bai = dyn_cast_or_null<BeginApplyInst>(
stripAccessMarkers(address->getOperand())->getDefiningInstruction())) {
LLVM_DEBUG(llvm::dbgs()
<< "Adding accessor coroutine begin_apply as init!\n");
beginsInitialized = true;
}
if (auto *eai = dyn_cast<UncheckedTakeEnumDataAddrInst>(
stripAccessMarkers(address->getOperand()))) {
LLVM_DEBUG(llvm::dbgs()
<< "Adding enum projection as init!\n");
beginsInitialized = true;
}
// Assume a strict check of a temporary or formal access is initialized
// before the check.
if (auto *asi = dyn_cast<AllocStackInst>(
stripAccessMarkers(address->getOperand()));
asi && address->isStrict()) {
LLVM_DEBUG(llvm::dbgs()
<< "Adding strict-marked alloc_stack as init!\n");
beginsInitialized = true;
}
// Assume a strict-checked value initialized before the check.
if (address->isStrict()) {
LLVM_DEBUG(llvm::dbgs()
<< "Adding strict marker as init!\n");
beginsInitialized = true;
}
// Assume a value whose deinit has been dropped has been initialized.
if (auto *ddi = dyn_cast<DropDeinitInst>(address->getOperand())) {
LLVM_DEBUG(llvm::dbgs()
<< "Adding copyable_to_move_only_wrapper as init!\n");
beginsInitialized = true;
}
// Assume a value wrapped in a MoveOnlyWrapper is initialized.
if (auto *m2c = dyn_cast<CopyableToMoveOnlyWrapperAddrInst>(address->getOperand())) {
LLVM_DEBUG(llvm::dbgs()
<< "Adding copyable_to_move_only_wrapper as init!\n");
beginsInitialized = true;
}
if (beginsInitialized) {
recordInitUse(address, address, liveness.getTopLevelSpan());
liveness.initializeDef(SILValue(address), liveness.getTopLevelSpan());
}
// Now that we have finished initialization of defs, change our multi-maps
// from their array form to their map form.
liveness.finishedInitializationOfDefs();
LLVM_DEBUG(llvm::dbgs() << "Liveness with just inits:\n";
liveness.print(llvm::dbgs()));
for (auto initInstAndValue : initInsts) {
// If our init inst is a store_borrow, treat the end_borrow as liveness
// uses.
//
// NOTE: We do not need to check for access scopes here since store_borrow
// can only apply to alloc_stack today.
if (auto *sbi = dyn_cast<StoreBorrowInst>(initInstAndValue.first)) {
// We can only store_borrow if our mark_unresolved_non_copyable_value is a
// no_consume_or_assign.
assert(address->getCheckKind() == MarkUnresolvedNonCopyableValueInst::
CheckKind::NoConsumeOrAssign &&
"store_borrow implies no_consume_or_assign since we cannot "
"consume a borrowed inited value");
for (auto *ebi : sbi->getEndBorrows()) {
liveness.updateForUse(ebi, initInstAndValue.second,
false /*lifetime ending*/);
}
}
}
// Now at this point, we have defined all of our defs so we can start adding
// uses to the liveness.
for (auto reinitInstAndValue : reinitInsts) {
recordConsumingBlock(reinitInstAndValue.first->getParent(),
reinitInstAndValue.second);
if (!isReinitToInitConvertibleInst(reinitInstAndValue.first)) {
liveness.updateForUse(reinitInstAndValue.first, reinitInstAndValue.second,
false /*lifetime ending*/);
LLVM_DEBUG(llvm::dbgs() << "Added liveness for reinit: "
<< *reinitInstAndValue.first;
liveness.print(llvm::dbgs()));
}
}
// Then add all of the takes that we saw propagated up to the top of our
// block. Since we have done this for all of our defs
for (auto takeInstAndValue : takeInsts) {
liveness.updateForUse(takeInstAndValue.first, takeInstAndValue.second,
true /*lifetime ending*/);
recordConsumingBlock(takeInstAndValue.first->getParent(),
takeInstAndValue.second);
LLVM_DEBUG(llvm::dbgs()
<< "Added liveness for take: " << *takeInstAndValue.first;
liveness.print(llvm::dbgs()));
}
for (auto copyInstAndValue : copyInsts) {
liveness.updateForUse(copyInstAndValue.first, copyInstAndValue.second,
true /*lifetime ending*/);
recordConsumingBlock(copyInstAndValue.first->getParent(),
copyInstAndValue.second);
LLVM_DEBUG(llvm::dbgs()
<< "Added liveness for copy: " << *copyInstAndValue.first;
liveness.print(llvm::dbgs()));
}
for (auto destroyInstAndValue : destroys) {
recordConsumingBlock(destroyInstAndValue.first->getParent(),
destroyInstAndValue.second);
}
// Do the same for our borrow and liveness insts.
for (auto livenessInstAndValue : borrows) {
liveness.updateForUse(livenessInstAndValue.first,
livenessInstAndValue.second,
false /*lifetime ending*/);
auto *li = cast<LoadInst>(livenessInstAndValue.first);
auto accessPathWithBase =
AccessPathWithBase::computeInScope(li->getOperand());
if (auto *beginAccess =
dyn_cast<BeginAccessInst>(accessPathWithBase.base)) {
for (auto *endAccess : beginAccess->getEndAccesses()) {
liveness.updateForUse(endAccess, livenessInstAndValue.second,
false /*lifetime ending*/);
}
}
// NOTE: We used to add the destroy_value of our loads here to liveness. We
// instead add them to the livenessUses array so that we can successfully
// find them later when performing a forward traversal to find them for
// error purposes.
LLVM_DEBUG(llvm::dbgs() << "Added liveness for borrow: "
<< *livenessInstAndValue.first;
liveness.print(llvm::dbgs()));
}
auto updateForLivenessAccess = [&](BeginAccessInst *beginAccess,
const SmallBitVector &livenessMask) {
for (auto *endAccess : beginAccess->getEndAccesses()) {
liveness.updateForUse(endAccess, livenessMask, false /*lifetime ending*/);
}
};
for (auto livenessInstAndValue : nonconsumingUses) {
if (auto *lbi = dyn_cast<LoadBorrowInst>(livenessInstAndValue.first)) {
auto accessPathWithBase =
AccessPathWithBase::computeInScope(lbi->getOperand());
if (auto *beginAccess =
dyn_cast_or_null<BeginAccessInst>(accessPathWithBase.base)) {
updateForLivenessAccess(beginAccess, livenessInstAndValue.second);
} else {
for (auto *ebi : lbi->getEndBorrows()) {
liveness.updateForUse(ebi, livenessInstAndValue.second,
false /*lifetime ending*/);
}
}
} else if (auto *bai = dyn_cast<BeginAccessInst>(livenessInstAndValue.first)) {
updateForLivenessAccess(bai, livenessInstAndValue.second);
} else {
liveness.updateForUse(livenessInstAndValue.first,
livenessInstAndValue.second,
false /*lifetime ending*/);
}
LLVM_DEBUG(llvm::dbgs() << "Added liveness for livenessInst: "
<< *livenessInstAndValue.first;
liveness.print(llvm::dbgs()));
}
// Finally, if we have an inout argument or an access scope associated with a
// ref_element_addr or global_addr, add a liveness use of the entire value on
// the implicit end lifetime instruction. For inout this is terminators for
// ref_element_addr, global_addr it is the end_access instruction.
for (auto pair : scopeEndsRequiringInit) {
liveness.updateForUse(pair.first, TypeTreeLeafTypeRange(address),
false /*lifetime ending*/);
LLVM_DEBUG(llvm::dbgs() << "Added liveness for scope end: " << pair.first;
liveness.print(llvm::dbgs()));
}
LLVM_DEBUG(llvm::dbgs() << "Final Liveness:\n"; liveness.print(llvm::dbgs()));
}
//===----------------------------------------------------------------------===//
// MARK: Global Block State
//===----------------------------------------------------------------------===//
namespace {
struct BlockState {
using Map = llvm::DenseMap<SILBasicBlock *, BlockState>;
/// This is either the liveness up or take up inst that projects
/// up. We set this state according to the following rules:
///
/// 1. If we are tracking a takeUp, we always take it even if we have a
/// livenessUp.
///
/// 2. If we have a livenessUp and do not have a take up, we track that
/// instead.
///
/// The reason why we do this is that we want to catch use after frees when
/// non-consuming uses are later than a consuming use.
SILInstruction *userUp;
/// If we are init down, then we know that we can not transfer our take
/// through this block and should stop traversing.
bool isInitDown;
BlockState() : userUp(nullptr) {}
BlockState(SILInstruction *userUp, bool isInitDown)
: userUp(userUp), isInitDown(isInitDown) {}
};
} // namespace
//===----------------------------------------------------------------------===//
// MARK: Forward Declaration of Main Checker
//===----------------------------------------------------------------------===//
namespace {
struct ConsumeInfo {
/// Map blocks on the lifetime boundary to the last consuming instruction.
llvm::MapVector<SILBasicBlock *,
SmallVector<std::pair<SILInstruction *, SmallBitVector>, 1>>
finalBlockConsumes;
bool isFrozen = false;
public:
void print(llvm::raw_ostream &os) const {
for (auto &blockInstRangePairVector : finalBlockConsumes) {
os << "Dumping state for block bb"
<< blockInstRangePairVector.first->getDebugID() << '\n';
for (auto &instRangePairVector : blockInstRangePairVector.second) {
auto *inst = instRangePairVector.first;
if (!inst)
continue;
os << "Inst: " << *inst;
os << "Range: " << instRangePairVector.second;
os << '\n';
}
}
}
void clear() {
finalBlockConsumes.clear();
isFrozen = false;
}
/// This is expensive! Only use it in debug mode!
bool hasUnclaimedConsumes() const {
assert(isFrozen);
bool foundAny = false;
for (auto range : finalBlockConsumes) {
for (auto elt : range.second) {
foundAny |= bool(elt.first);
}
}
return foundAny;
}
void recordFinalConsume(SILInstruction *inst, SmallBitVector const &bits) {
assert(!isFrozen);
auto *block = inst->getParent();
auto iter = finalBlockConsumes.find(block);
if (iter == finalBlockConsumes.end()) {
iter = finalBlockConsumes.insert({block, {}}).first;
}
LLVM_DEBUG(llvm::dbgs() << "Recorded Final Consume: " << *inst);
for (auto &pair : iter->second) {
if (pair.first == inst) {
pair.second |= bits;
return;
}
}
iter->second.emplace_back(inst, bits);
}
void finishRecordingFinalConsumes() {
assert(!isFrozen);
for (auto &pair : finalBlockConsumes) {
llvm::stable_sort(
pair.second,
[](const std::pair<SILInstruction *, SmallBitVector> &lhs,
const std::pair<SILInstruction *, SmallBitVector> &rhs) {
return lhs.first < rhs.first;
});
}
isFrozen = true;
LLVM_DEBUG(llvm::dbgs() << "Final recorded consumes!\n";
print(llvm::dbgs()));
}
// Return true if this instruction is marked as a final consume point of the
// current def's live range. A consuming instruction can only be claimed once
// because instructions like `tuple` can consume the same value via multiple
// operands.
//
// Can only be used once frozen.
bool claimConsume(SILInstruction *inst, SmallBitVector const &bits) {
assert(isFrozen);
bool claimedConsume = false;
auto &iter = finalBlockConsumes[inst->getParent()];
for (unsigned i : indices(iter)) {
auto &instRangePair = iter[i];
if (instRangePair.first == inst && instRangePair.second == bits) {
instRangePair.first = nullptr;
claimedConsume = true;
LLVM_DEBUG(llvm::dbgs() << "Claimed consume: " << *inst);
}
}
return claimedConsume;
}
ConsumeInfo() {}
ConsumeInfo(CanonicalOSSAConsumeInfo const &) = delete;
ConsumeInfo &operator=(ConsumeInfo const &) = delete;
};
struct MoveOnlyAddressCheckerPImpl {
bool changed = false;
SILFunction *fn;
/// A set of mark_unresolved_non_copyable_value that we are actually going to
/// process.
llvm::SmallSetVector<MarkUnresolvedNonCopyableValueInst *, 32>
moveIntroducersToProcess;
/// The instruction deleter used by \p canonicalizer.
InstructionDeleter deleter;
/// State to run CanonicalizeOSSALifetime.
OSSACanonicalizer canonicalizer;
/// Per mark must check address use state.
UseState addressUseState;
/// Diagnostic emission routines wrapped around a consuming use cache. This
/// ensures that we only emit a single error per use per marked value.
DiagnosticEmitter &diagnosticEmitter;
/// Information about destroys that we use when inserting destroys.
ConsumeInfo consumes;
DeadEndBlocksAnalysis *deba;
/// PostOrderAnalysis used by the BorrowToDestructureTransform.
PostOrderAnalysis *poa;
/// Allocator used by the BorrowToDestructureTransform.
borrowtodestructure::IntervalMapAllocator &allocator;
MoveOnlyAddressCheckerPImpl(
SILFunction *fn, DiagnosticEmitter &diagnosticEmitter,
DominanceInfo *domTree, PostOrderAnalysis *poa,
DeadEndBlocksAnalysis *deba,
borrowtodestructure::IntervalMapAllocator &allocator)
: fn(fn), deleter(), canonicalizer(fn, domTree, deleter),
addressUseState(domTree), diagnosticEmitter(diagnosticEmitter),
deba(deba), poa(poa), allocator(allocator) {
deleter.setCallbacks(std::move(
InstModCallbacks().onDelete([&](SILInstruction *instToDelete) {
if (auto *mvi =
dyn_cast<MarkUnresolvedNonCopyableValueInst>(instToDelete))
moveIntroducersToProcess.remove(mvi);
instToDelete->eraseFromParent();
})));
diagnosticEmitter.initCanonicalizer(&canonicalizer);
}
/// Search through the current function for candidate
/// mark_unresolved_non_copyable_value [noimplicitcopy]. If we find one that
/// does not fit a pattern that we understand, emit an error diagnostic
/// telling the programmer that the move checker did not know how to recognize
/// this code pattern.
///
/// Returns true if we emitted a diagnostic. Returns false otherwise.
bool searchForCandidateMarkUnresolvedNonCopyableValueInsts();
/// Emits an error diagnostic for \p markedValue.
void performObjectCheck(MarkUnresolvedNonCopyableValueInst *markedValue);
bool performSingleCheck(MarkUnresolvedNonCopyableValueInst *markedValue);
void insertDestroysOnBoundary(MarkUnresolvedNonCopyableValueInst *markedValue,
FieldSensitiveMultiDefPrunedLiveRange &liveness,
FieldSensitivePrunedLivenessBoundary &boundary);
void rewriteUses(MarkUnresolvedNonCopyableValueInst *markedValue,
FieldSensitiveMultiDefPrunedLiveRange &liveness,
const FieldSensitivePrunedLivenessBoundary &boundary);
/// Identifies and diagnoses reinitializations that are reachable from a
/// discard statement.
void checkForReinitAfterDiscard();
void handleSingleBlockDestroy(SILInstruction *destroy, bool isReinit);
};
class ExtendUnconsumedLiveness {
UseState addressUseState;
FieldSensitiveMultiDefPrunedLiveRange &liveness;
FieldSensitivePrunedLivenessBoundary &boundary;
enum class DestroyKind {
Destroy,
Take,
Reinit,
};
using DestroysCollection =
llvm::SmallMapVector<SILInstruction *, DestroyKind, 8>;
using ConsumingBlocksCollection = SmallPtrSetVector<SILBasicBlock *, 8>;
public:
ExtendUnconsumedLiveness(UseState addressUseState,
FieldSensitiveMultiDefPrunedLiveRange &liveness,
FieldSensitivePrunedLivenessBoundary &boundary)
: addressUseState(addressUseState), liveness(liveness),
boundary(boundary) {}
void run();
void runOnField(unsigned element, DestroysCollection &destroys,
ConsumingBlocksCollection &consumingBlocks);
private:
bool hasDefAfter(SILInstruction *inst, unsigned element);
bool isLiveAtBegin(SILBasicBlock *block, unsigned element, bool isLiveAtEnd,
DestroysCollection const &destroys);
bool
shouldAddDestroyToLiveness(SILInstruction *destroy, unsigned element,
BasicBlockSet const &consumedAtExitBlocks,
BasicBlockSetVector const &consumedAtEntryBlocks);
void addPreviousInstructionToLiveness(SILInstruction *inst, unsigned element);
};
} // namespace
//===----------------------------------------------------------------------===//
// MARK: CopiedLoadBorrowElimination
//===----------------------------------------------------------------------===//
namespace {
struct CopiedLoadBorrowEliminationState {
SILFunction *fn;
StackList<LoadBorrowInst *> targets;
CopiedLoadBorrowEliminationState(SILFunction *fn) : fn(fn), targets(fn) {}
void process() {
if (targets.empty())
return;
while (!targets.empty()) {
auto *lbi = targets.pop_back_val();
SILBuilderWithScope builder(lbi);
SILValue li = builder.emitLoadValueOperation(
lbi->getLoc(), lbi->getOperand(), LoadOwnershipQualifier::Copy);
SILValue borrow = builder.createBeginBorrow(lbi->getLoc(), li);
for (auto *ebi : lbi->getEndBorrows()) {
auto *next = ebi->getNextInstruction();
SILBuilderWithScope builder(next);
auto loc = RegularLocation::getAutoGeneratedLocation();
builder.emitDestroyValueOperation(loc, li);
}
lbi->replaceAllUsesWith(borrow);
lbi->eraseFromParent();
}
LLVM_DEBUG(llvm::dbgs() << "After Load Borrow Elim. Func Dump Start! ";
fn->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << "After Load Borrow Elim. Func Dump End!\n");
}
};
static TransitiveAddressWalkerTransitiveUseVisitation
shouldVisitAsEndPointUse(Operand *op) {
// If an access is static and marked as "no nested conflict", we use that
// in switch codegen to mark an opaque sub-access that move-only checking
// should not look through.
if (auto *bai = dyn_cast<BeginAccessInst>(op->getUser())) {
if (bai->getEnforcement() == SILAccessEnforcement::Static &&
bai->hasNoNestedConflict()) {
return TransitiveAddressWalkerTransitiveUseVisitation::OnlyUser;
}
}
// A drop_deinit consumes the deinit bit.
if (isa<DropDeinitInst>(op->getUser())) {
return TransitiveAddressWalkerTransitiveUseVisitation::BothUserAndUses;
}
// An unchecked_take_enum_data_addr consumes all bits except the remaining
// element's.
if (isa<UncheckedTakeEnumDataAddrInst>(op->getUser())) {
return TransitiveAddressWalkerTransitiveUseVisitation::BothUserAndUses;
}
return TransitiveAddressWalkerTransitiveUseVisitation::OnlyUses;
}
/// An early transform that we run to convert any load_borrow that are copied
/// directly or that have any subelement that is copied to a load [copy]. This
/// lets the rest of the optimization handle these as appropriate.
struct CopiedLoadBorrowEliminationVisitor
: public TransitiveAddressWalker<CopiedLoadBorrowEliminationVisitor> {
CopiedLoadBorrowEliminationState &state;
CopiedLoadBorrowEliminationVisitor(CopiedLoadBorrowEliminationState &state)
: state(state) {}
CopiedLoadBorrowEliminationVisitor::TransitiveUseVisitation
visitTransitiveUseAsEndPointUse(Operand *op) {
return shouldVisitAsEndPointUse(op);
}
bool visitUse(Operand *op) {
LLVM_DEBUG(llvm::dbgs() << "CopiedLBElim visiting ";
llvm::dbgs() << " User: " << *op->getUser());
auto *lbi = dyn_cast<LoadBorrowInst>(op->getUser());
if (!lbi)
return true;
LLVM_DEBUG(llvm::dbgs() << "Found load_borrow: " << *lbi);
StackList<Operand *> useWorklist(lbi->getFunction());
for (auto *use : lbi->getUses())
useWorklist.push_back(use);
bool shouldConvertToLoadCopy = false;
while (!useWorklist.empty()) {
auto *nextUse = useWorklist.pop_back_val();
switch (nextUse->getOperandOwnership()) {
case OperandOwnership::NonUse:
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
continue;
// These might be uses that we need to perform a destructure or insert
// struct_extracts for.
case OperandOwnership::TrivialUse:
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::InteriorPointer:
case OperandOwnership::BitwiseEscape: {
// Look through copy_value of a move only value. We treat copy_value of
// copyable values as normal uses.
if (auto *cvi = dyn_cast<CopyValueInst>(nextUse->getUser())) {
if (!isCopyableValue(cvi->getOperand())) {
shouldConvertToLoadCopy = true;
break;
}
}
continue;
}
case OperandOwnership::ForwardingConsume:
case OperandOwnership::DestroyingConsume: {
if (auto *dvi = dyn_cast<DestroyValueInst>(nextUse->getUser())) {
auto value = dvi->getOperand();
auto *pai = dyn_cast_or_null<PartialApplyInst>(
value->getDefiningInstruction());
if (pai && pai->isOnStack()) {
// A destroy_value of an on_stack partial apply isn't actually a
// consuming use--it closes a borrow scope.
continue;
}
}
// We can only hit this if our load_borrow was copied.
llvm_unreachable("We should never hit this");
}
case OperandOwnership::GuaranteedForwarding: {
SmallVector<SILValue, 8> forwardedValues;
auto *fn = nextUse->getUser()->getFunction();
ForwardingOperand(nextUse).visitForwardedValues([&](SILValue value) {
if (value->getType().isTrivial(fn))
return true;
forwardedValues.push_back(value);
return true;
});
// If we do not have any forwarded values, just continue.
if (forwardedValues.empty())
continue;
while (!forwardedValues.empty()) {
for (auto *use : forwardedValues.pop_back_val()->getUses())
useWorklist.push_back(use);
}
continue;
}
case OperandOwnership::Borrow:
LLVM_DEBUG(llvm::dbgs() << " Found recursive borrow!\n");
// Look through borrows.
for (auto value : nextUse->getUser()->getResults()) {
for (auto *use : value->getUses()) {
useWorklist.push_back(use);
}
}
continue;
case OperandOwnership::EndBorrow:
LLVM_DEBUG(llvm::dbgs() << " Found end borrow!\n");
continue;
case OperandOwnership::Reborrow:
llvm_unreachable("Unsupported for now?!");
}
if (shouldConvertToLoadCopy)
break;
}
LLVM_DEBUG(llvm::dbgs()
<< "Load Borrow was copied: "
<< (shouldConvertToLoadCopy ? "true" : "false") << '\n');
if (!shouldConvertToLoadCopy)
return true;
state.targets.push_back(lbi);
return true;
}
};
} // namespace
//===----------------------------------------------------------------------===//
// MARK: Partial Consume/Reinit Checking
//===----------------------------------------------------------------------===//
static bool hasExplicitFixedLayoutAnnotation(NominalTypeDecl *nominal) {
return nominal->getAttrs().hasAttribute<FixedLayoutAttr>() ||
nominal->getAttrs().hasAttribute<FrozenAttr>();
}
static std::optional<PartialMutationError>
shouldEmitPartialMutationErrorForType(SILType ty, NominalTypeDecl *nominal,
SILFunction *fn) {
// A non-frozen type can't be partially mutated within code built in its
// defining module if that code will be emitted into a client.
if (fn->getLinkage() == SILLinkage::PublicNonABI &&
nominal->getFormalAccess() < AccessLevel::Public &&
nominal->isUsableFromInline() &&
!hasExplicitFixedLayoutAnnotation(nominal)) {
return {PartialMutationError::nonfrozenUsableFromInlineType(ty, *nominal)};
}
// Otherwise, a type can be mutated partially in its defining module.
if (nominal->getModuleContext() == fn->getModule().getSwiftModule())
return std::nullopt;
// It's defined in another module and used here; it has to be visible.
assert(nominal
->getFormalAccessScope(
/*useDC=*/fn->getDeclContext(),
/*treatUsableFromInlineAsPublic=*/true)
.isPublicOrPackage());
// Partial mutation is supported only for frozen/fixed-layout types from
// other modules.
if (hasExplicitFixedLayoutAnnotation(nominal))
return std::nullopt;
return {PartialMutationError::nonfrozenImportedType(ty, *nominal)};
}
/// Whether an error should be emitted in response to a partial consumption.
static std::optional<PartialMutationError>
shouldEmitPartialMutationError(UseState &useState, PartialMutation::Kind kind,
SILInstruction *user, SILType useType,
TypeTreeLeafTypeRange usedBits) {
SILFunction *fn = useState.getFunction();
// We walk down from our ancestor to our projection, emitting an error if
// any of our types have a deinit.
auto iterType = useState.address->getType();
if (iterType.isMoveOnlyWrapped())
return {};
TypeOffsetSizePair pair(usedBits);
auto targetType = useType;
TypeOffsetSizePair iterPair(iterType, fn);
LLVM_DEBUG(llvm::dbgs() << " Iter Type: " << iterType << '\n'
<< " Target Type: " << targetType << '\n');
// Allowing full object consumption in a deinit is still not allowed.
if (iterType == targetType && !isa<DropDeinitInst>(user)) {
// Don't allow whole-value consumption of `self` from a `deinit`.
if (!fn->getModule().getASTContext().LangOpts
.hasFeature(Feature::ConsumeSelfInDeinit)
&& kind == PartialMutation::Kind::Consume
&& useState.sawDropDeinit
// TODO: Revisit this when we introduce deinits on enums.
&& !targetType.getEnumOrBoundGenericEnum()) {
LLVM_DEBUG(llvm::dbgs() << " IterType is TargetType in deinit! "
"Not allowed yet");
return {PartialMutationError::consumeDuringDeinit(iterType)};
}
LLVM_DEBUG(llvm::dbgs() << " IterType is TargetType! Exiting early "
"without emitting error!\n");
return {};
}
auto feature = partialMutationFeature(kind);
if (feature &&
!fn->getModule().getASTContext().LangOpts.hasFeature(*feature) &&
!isa<DropDeinitInst>(user)) {
LLVM_DEBUG(llvm::dbgs()
<< " " << getFeatureName(*feature) << " disabled!\n");
// If the types equal, just bail early.
// Emit the error.
return {PartialMutationError::featureDisabled(iterType, kind)};
}
LLVM_DEBUG(llvm::dbgs() << " MoveOnlyPartialConsumption enabled!\n");
// Otherwise, walk the type looking for the deinit and visibility.
while (iterType != targetType) {
// If we have a nominal type as our parent type, see if it has a
// deinit. We know that it must be non-copyable since copyable types
// cannot contain non-copyable types and that our parent root type must be
// an enum, tuple, or struct.
if (auto *nom = iterType.getNominalOrBoundGenericNominal()) {
if (auto error = shouldEmitPartialMutationErrorForType(
iterType, nom, user->getFunction())) {
return error;
}
// FIXME: [partial_consume_of_deiniting_aggregate_with_drop_deinit] The
// second half of this condition should consider whether this
// user's projection path and whether this value had its deinit
// dropped.
auto isAllowedPartialConsume =
(kind == PartialMutation::Kind::Consume) && useState.sawDropDeinit &&
(nom ==
useState.address->getType().getNominalOrBoundGenericNominal());
if (nom->getValueTypeDestructor() && !isAllowedPartialConsume) {
// If we find one, emit an error since we are going to have to extract
// through the deinit. Emit a nice error saying what it is. Since we
// are emitting an error, we do a bit more work and construct the
// actual projection string.
return {PartialMutationError::hasDeinit(iterType, *nom)};
}
}
// Otherwise, walk one level towards our child type. We unconditionally
// unwrap since we should never fail here due to earlier checking.
std::tie(iterPair, iterType) =
*pair.walkOneLevelTowardsChild(iterPair, iterType, fn);
}
return {};
}
static bool checkForPartialMutation(UseState &useState,
DiagnosticEmitter &diagnosticEmitter,
PartialMutation::Kind kind,
SILInstruction *user, SILType useType,
TypeTreeLeafTypeRange usedBits,
PartialMutation partialMutateKind) {
// We walk down from our ancestor to our projection, emitting an error if
// any of our types have a deinit.
auto error =
shouldEmitPartialMutationError(useState, kind, user, useType, usedBits);
if (!error)
return false;
diagnosticEmitter.emitCannotPartiallyMutateError(
useState.address, error.value(), user, usedBits, partialMutateKind);
return true;
}
namespace {
struct PartialReinitChecker {
UseState &useState;
DiagnosticEmitter &diagnosticEmitter;
PartialReinitChecker(UseState &useState, DiagnosticEmitter &diagnosticEmitter)
: useState(useState), diagnosticEmitter(diagnosticEmitter) {}
void
performPartialReinitChecking(FieldSensitiveMultiDefPrunedLiveRange &liveness);
};
} // namespace
void PartialReinitChecker::performPartialReinitChecking(
FieldSensitiveMultiDefPrunedLiveRange &liveness) {
// Perform checks that rely on liveness information.
for (auto initToValues : useState.initToValueMultiMap.getRange()) {
LLVM_DEBUG(llvm::dbgs() << "Checking init: " << *initToValues.first);
bool emittedError = false;
for (SILValue value : initToValues.second) {
LLVM_DEBUG(llvm::dbgs() << " Checking operand value: " << value);
// By computing the bits here directly, we do not need to worry about
// having to split contiguous ranges into separate representable SILTypes.
SmallBitVector neededElements(useState.getNumSubelements());
SmallVector<TypeTreeLeafTypeRange, 2> ranges;
TypeTreeLeafTypeRange::get(value, useState.address, ranges);
for (auto range : ranges) {
for (unsigned index : range.getRange()) {
emittedError = !liveness.findEarlierConsumingUse(
initToValues.first, index,
[&](SILInstruction *consumingInst) -> bool {
return !checkForPartialMutation(
useState, diagnosticEmitter, PartialMutation::Kind::Reinit,
initToValues.first, value->getType(),
TypeTreeLeafTypeRange(index, index + 1),
PartialMutation::reinit(*consumingInst));
});
// If we emitted an error for this index break. We only want to emit
// one error per value.
if (emittedError)
break;
}
}
// If we emitted an error for this value break. We only want to emit one
// error per instruction.
if (emittedError)
break;
}
}
for (auto reinitToValues : useState.reinitToValueMultiMap.getRange()) {
if (!isReinitToInitConvertibleInst(reinitToValues.first))
continue;
LLVM_DEBUG(llvm::dbgs() << "Checking reinit: " << *reinitToValues.first);
bool emittedError = false;
for (SILValue value : reinitToValues.second) {
LLVM_DEBUG(llvm::dbgs() << " Checking operand value: " << value);
// By computing the bits here directly, we do not need to worry about
// having to split contiguous ranges into separate representable SILTypes.
SmallBitVector neededElements(useState.getNumSubelements());
SmallVector<TypeTreeLeafTypeRange, 2> ranges;
TypeTreeLeafTypeRange::get(value, useState.address, ranges);
for (auto range : ranges) {
for (unsigned index : range.getRange()) {
emittedError = !liveness.findEarlierConsumingUse(
reinitToValues.first, index,
[&](SILInstruction *consumingInst) -> bool {
return !checkForPartialMutation(
useState, diagnosticEmitter, PartialMutation::Kind::Reinit,
reinitToValues.first, value->getType(),
TypeTreeLeafTypeRange(index, index + 1),
PartialMutation::reinit(*consumingInst));
});
if (emittedError)
break;
}
}
if (emittedError)
break;
}
}
}
//===----------------------------------------------------------------------===//
// MARK: GatherLexicalLifetimeUseVisitor
//===----------------------------------------------------------------------===//
namespace {
/// Visit all of the uses of value in preparation for running our algorithm.
struct GatherUsesVisitor : public TransitiveAddressWalker<GatherUsesVisitor> {
MoveOnlyAddressCheckerPImpl &moveChecker;
UseState &useState;
MarkUnresolvedNonCopyableValueInst *markedValue;
DiagnosticEmitter &diagnosticEmitter;
// Pruned liveness used to validate that load [take]/load [copy] can be
// converted to load_borrow without violating exclusivity.
BitfieldRef<SSAPrunedLiveness> liveness;
GatherUsesVisitor(MoveOnlyAddressCheckerPImpl &moveChecker,
UseState &useState,
MarkUnresolvedNonCopyableValueInst *markedValue,
DiagnosticEmitter &diagnosticEmitter)
: moveChecker(moveChecker), useState(useState), markedValue(markedValue),
diagnosticEmitter(diagnosticEmitter) {}
bool visitUse(Operand *op);
TransitiveUseVisitation visitTransitiveUseAsEndPointUse(Operand *op);
void reset(MarkUnresolvedNonCopyableValueInst *address) {
useState.address = address;
}
void clear() { useState.clear(); }
/// For now always markedValue. If we start using this for move address
/// checking, we need to check against the operand of the markedValue. This is
/// because for move checking, our marker is placed along the variables
/// initialization so we are always going to have all later uses from the
/// marked value. For the move operator though we will want this to be the
/// base address that we are checking which should be the operand of the mark
/// must check value.
SILValue getRootAddress() const { return markedValue; }
ASTContext &getASTContext() {
return markedValue->getFunction()->getASTContext();
}
/// Returns true if we emitted an error.
bool checkForExclusivityHazards(LoadInst *li) {
BitfieldRef<SSAPrunedLiveness>::StackState state(liveness,
li->getFunction());
LLVM_DEBUG(llvm::dbgs() << "Checking for exclusivity hazards for: " << *li);
// Grab our access path with in scope. We want to find the inner most access
// scope.
auto accessPathWithBase =
AccessPathWithBase::computeInScope(li->getOperand());
auto accessPath = accessPathWithBase.accessPath;
// TODO: Make this a we don't understand error.
assert(accessPath.isValid() && "Invalid access path?!");
auto *bai = dyn_cast<BeginAccessInst>(accessPathWithBase.base);
if (!bai) {
LLVM_DEBUG(llvm::dbgs()
<< " No begin access... so no exclusivity violation!\n");
return false;
}
bool emittedError = false;
liveness->initializeDef(bai);
liveness->computeSimple();
for (auto *consumingUse : li->getConsumingUses()) {
if (!liveness->areUsesWithinBoundary(
{consumingUse},
moveChecker.deba->get(consumingUse->getFunction()))) {
diagnosticEmitter.emitAddressExclusivityHazardDiagnostic(
markedValue, consumingUse->getUser());
emittedError = true;
}
}
return emittedError;
}
void onError(Operand *op) {
LLVM_DEBUG(llvm::dbgs() << " Found use unrecognized by the walker!\n";
op->getUser()->print(llvm::dbgs()));
}
};
} // end anonymous namespace
GatherUsesVisitor::TransitiveUseVisitation
GatherUsesVisitor::visitTransitiveUseAsEndPointUse(Operand *op) {
return shouldVisitAsEndPointUse(op);
}
// Filter out recognized uses that do not write to memory.
//
// TODO: Ensure that all of the conditional-write logic below is encapsulated in
// mayWriteToMemory and just call that instead. Possibly add additional
// verification that visitAccessPathUses recognizes all instructions that may
// propagate pointers (even though they don't write).
bool GatherUsesVisitor::visitUse(Operand *op) {
// If this operand is for a dependent type, then it does not actually access
// the operand's address value. It only uses the metatype defined by the
// operation (e.g. open_existential).
if (op->isTypeDependent()) {
return true;
}
if (isa<DropDeinitInst>(op->getUser())) {
// FIXME: [partial_consume_of_deiniting_aggregate_with_drop_deinit] Once
// drop_deinits are handled properly, this should be deleted.
useState.sawDropDeinit = true;
}
// For convenience, grab the user of op.
auto *user = op->getUser();
LLVM_DEBUG(llvm::dbgs() << "Visiting user: " << *user;);
// First check if we have init/reinit. These are quick/simple.
if (noncopyable::memInstMustInitialize(op)) {
LLVM_DEBUG(llvm::dbgs() << "Found init: " << *user);
// TODO: What about copy_addr of itself. We really should just pre-process
// those maybe.
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordInitUse(user, op->get(), leafRange);
}
return true;
}
if (noncopyable::memInstMustReinitialize(op)) {
LLVM_DEBUG(llvm::dbgs() << "Found reinit: " << *user);
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordReinitUse(user, op->get(), leafRange);
}
return true;
}
// Then handle destroy_addr specially. We want to as part of our dataflow to
// ignore destroy_addr, so we need to track it separately from other uses.
if (auto *dvi = dyn_cast<DestroyAddrInst>(user)) {
LLVM_DEBUG(llvm::dbgs() << "Found destroy_addr: " << *dvi);
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.destroys.insert({dvi, leafRange});
}
return true;
}
// Ignore dealloc_stack.
if (isa<DeallocStackInst>(user))
return true;
// Ignore end_access.
if (isa<EndAccessInst>(user))
return true;
// Ignore sanitizer markers.
if (auto bu = dyn_cast<BuiltinInst>(user)) {
if (bu->getBuiltinKind() == BuiltinValueKind::TSanInoutAccess) {
return true;
}
}
// This visitor looks through store_borrow instructions but does visit the
// end_borrow of the store_borrow. If we see such an end_borrow, register the
// store_borrow instead. Since we use sets, if we visit multiple end_borrows,
// we will only record the store_borrow once.
if (auto *ebi = dyn_cast<EndBorrowInst>(user)) {
if (auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand())) {
LLVM_DEBUG(llvm::dbgs() << "Found store_borrow: " << *sbi);
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordInitUse(user, op->get(), leafRange);
}
return true;
}
}
if (auto *di = dyn_cast<DebugValueInst>(user)) {
// Save the debug_value if it is attached directly to this
// mark_unresolved_non_copyable_value. If the underlying storage we're
// checking is immutable, then the access being checked is not confined to
// an explicit access, but every other use of the storage must also be
// immutable, so it is fine if we see debug_values or other uses that aren't
// directly related to the current marked use; they will have to behave
// compatibly anyway.
if (di->getOperand() == getRootAddress()) {
useState.debugValue = di;
}
return true;
}
// At this point, we have handled all of the non-loadTakeOrCopy/consuming
// uses.
if (auto *copyAddr = dyn_cast<CopyAddrInst>(user)) {
assert(op->getOperandNumber() == CopyAddrInst::Src &&
"Should have dest above in memInstMust{Rei,I}nitialize");
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
// If we have a non-move only type, just treat this as a liveness use.
if (isCopyableValue(copyAddr->getSrc())) {
LLVM_DEBUG(llvm::dbgs()
<< "Found copy of copyable type. Treating as liveness use! "
<< *user);
useState.recordLivenessUse(user, leafRange);
continue;
}
if (markedValue->getCheckKind() ==
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign) {
if (isa<ProjectBoxInst>(
stripAccessMarkers(markedValue->getOperand()))) {
LLVM_DEBUG(llvm::dbgs()
<< "Found mark must check [nocopy] use of escaping box: "
<< *user);
diagnosticEmitter.emitAddressEscapingClosureCaptureLoadedAndConsumed(
markedValue);
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "Found mark must check [nocopy] error: " << *user);
diagnosticEmitter.emitAddressDiagnosticNoCopy(markedValue, copyAddr);
continue;
}
// TODO: Add borrow checking here like below.
// If we have a copy_addr, we are either going to have a take or a
// copy... in either case, this copy_addr /is/ going to be a consuming
// operation. Make sure to check if we semantically destructure.
checkForPartialMutation(useState, diagnosticEmitter,
PartialMutation::Kind::Consume, op->getUser(),
op->get()->getType(), leafRange,
PartialMutation::consume());
if (copyAddr->isTakeOfSrc()) {
LLVM_DEBUG(llvm::dbgs() << "Found take: " << *user);
useState.recordTakeUse(user, leafRange);
} else {
LLVM_DEBUG(llvm::dbgs() << "Found copy: " << *user);
useState.recordCopyUse(user, leafRange);
}
}
return true;
}
// Then find load [copy], load [take] that are really takes since we need
// copies for the loaded value. If we find that we need copies at that level
// (due to e.x.: multiple consuming uses), we emit an error and bail. This
// ensures that later on, we can assume that all of our load [take], load
// [copy] actually follow move semantics at the object level and thus are
// viewed as a consume requiring a copy. This is important since SILGen often
// emits code of this form and we need to recognize it as a copy of the
// underlying var.
if (auto *li = dyn_cast<LoadInst>(user)) {
// Before we do anything, see if this load is of a copyable field or is a
// trivial load. If it is, then we just treat this as a liveness requiring
// use.
auto qualifier = li->getOwnershipQualifier();
if (qualifier == LoadOwnershipQualifier::Trivial || isCopyableValue(li)) {
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
switch (qualifier) {
case LoadOwnershipQualifier::Unqualified:
llvm_unreachable("unqualified load in ossa!?");
case LoadOwnershipQualifier::Take:
useState.recordTakeUse(user, leafRange);
break;
case LoadOwnershipQualifier::Copy:
LLVM_FALLTHROUGH;
case LoadOwnershipQualifier::Trivial:
useState.recordLivenessUse(user, leafRange);
break;
}
}
return true;
}
// We must have a load [take] or load [copy] here since we are in OSSA.
OSSACanonicalizer::LivenessState livenessState(moveChecker.canonicalizer,
li);
unsigned numDiagnostics =
moveChecker.diagnosticEmitter.getDiagnosticCount();
// Before we do anything, run the borrow to destructure transform to reduce
// copies through borrows.
BorrowToDestructureTransform borrowToDestructure(
moveChecker.allocator, markedValue, li, moveChecker.diagnosticEmitter,
moveChecker.poa);
if (!borrowToDestructure.transform()) {
assert(moveChecker.diagnosticEmitter
.didEmitCheckerDoesntUnderstandDiagnostic());
LLVM_DEBUG(llvm::dbgs()
<< "Failed to perform borrow to destructure transform!\n");
return false;
}
// If we emitted an error diagnostic, do not transform further and instead
// mark that we emitted an early diagnostic and return true.
if (numDiagnostics != moveChecker.diagnosticEmitter.getDiagnosticCount()) {
LLVM_DEBUG(llvm::dbgs() << "Emitting borrow to destructure error!\n");
return true;
}
// Now, validate that what we will transform into a take isn't a take that
// would invalidate a field that has a deinit.
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to compute leaf range for: " << *op->get());
return false;
}
// Canonicalize the lifetime of the load [take], load [copy].
LLVM_DEBUG(llvm::dbgs() << "Running copy propagation!\n");
moveChecker.changed |= moveChecker.canonicalizer.canonicalize();
// Export the drop_deinit's discovered by the ObjectChecker into the
// AddressChecker to preserve it for later use. We need to do this since
// the ObjectChecker's state gets cleared after running on this LoadInst.
for (auto *dropDeinit : moveChecker.canonicalizer.getDropDeinitUses())
moveChecker.addressUseState.dropDeinitInsts.insert(dropDeinit);
// If we are asked to perform no_consume_or_assign checking or
// assignable_but_not_consumable checking, if we found any consumes of our
// load, then we need to emit an error.
auto checkKind = markedValue->getCheckKind();
if (checkKind != MarkUnresolvedNonCopyableValueInst::CheckKind::
ConsumableAndAssignable) {
if (moveChecker.canonicalizer.foundAnyConsumingUses()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found mark must check [nocopy] error: " << *user);
auto operand = stripAccessMarkers(markedValue->getOperand());
auto *fArg = dyn_cast<SILFunctionArgument>(operand);
auto *ptrToAddr = dyn_cast<PointerToAddressInst>(operand);
// If we have a closure captured that we specialized, we should have a
// no consume or assign and should emit a normal guaranteed diagnostic.
if (fArg && fArg->isClosureCapture() &&
fArg->getArgumentConvention().isInoutConvention()) {
assert(
checkKind ==
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign);
moveChecker.diagnosticEmitter.emitObjectGuaranteedDiagnostic(
markedValue);
return true;
}
// If we have a function argument that is no_consume_or_assign and we do
// not have any partial apply uses, then we know that we have a use of
// an address only borrowed parameter that we need to
if ((fArg || ptrToAddr) &&
checkKind == MarkUnresolvedNonCopyableValueInst::CheckKind::
NoConsumeOrAssign &&
!moveChecker.canonicalizer.hasPartialApplyConsumingUse()) {
moveChecker.diagnosticEmitter.emitObjectGuaranteedDiagnostic(
markedValue);
return true;
}
// Finally try to emit either a global or class field error...
if (!moveChecker.diagnosticEmitter
.emitGlobalOrClassFieldLoadedAndConsumed(markedValue)) {
// And otherwise if we failed emit an escaping closure error.
moveChecker.diagnosticEmitter
.emitAddressEscapingClosureCaptureLoadedAndConsumed(markedValue);
}
return true;
}
// If set, this will tell the checker that we can change this load into
// a load_borrow.
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
LLVM_DEBUG(llvm::dbgs() << "Found potential borrow: " << *user);
if (checkForExclusivityHazards(li)) {
LLVM_DEBUG(llvm::dbgs() << "Found exclusivity violation?!\n");
return true;
}
for (auto leafRange : leafRanges) {
useState.borrows.insert({user, leafRange});
// If we had a load [copy], borrow then we know that all of its destroys
// must have been destroy_value. So we can just gather up those
// destroy_value and use then to create liveness to ensure that our
// value is alive over the entire borrow scope we are going to create.
LLVM_DEBUG(llvm::dbgs() << "Adding destroys from load as liveness uses "
"since they will become end_borrows.\n");
for (auto *consumeUse : li->getConsumingUses()) {
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
useState.recordLivenessUse(dvi, leafRange);
}
}
return true;
}
// First check if we had any consuming uses that actually needed a
// copy. This will always be an error and we allow the user to recompile
// and eliminate the error. This just allows us to rely on invariants
// later.
if (moveChecker.canonicalizer.foundConsumingUseRequiringCopy()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found that load at object level requires copies!\n");
// If we failed to understand how to perform the check or did not find
// any targets... continue. In the former case we want to fail with a
// checker did not understand diagnostic later and in the former, we
// succeeded.
// Otherwise, emit the diagnostic.
moveChecker.diagnosticEmitter.emitObjectOwnedDiagnostic(markedValue);
LLVM_DEBUG(llvm::dbgs() << "Emitted early object level diagnostic.\n");
return true;
}
for (auto leafRange : leafRanges) {
if (!moveChecker.canonicalizer.foundFinalConsumingUses()) {
LLVM_DEBUG(llvm::dbgs() << "Found potential borrow inst: " << *user);
if (checkForExclusivityHazards(li)) {
LLVM_DEBUG(llvm::dbgs() << "Found exclusivity violation?!\n");
return true;
}
useState.borrows.insert({user, leafRange});
// If we had a load [copy], borrow then we know that all of its destroys
// must have been destroy_value. So we can just gather up those
// destroy_value and use then to create liveness to ensure that our
// value is alive over the entire borrow scope we are going to create.
LLVM_DEBUG(llvm::dbgs() << "Adding destroys from load as liveness uses "
"since they will become end_borrows.\n");
for (auto *consumeUse : li->getConsumingUses()) {
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
useState.recordLivenessUse(dvi, leafRange);
}
} else {
// Now that we know that we are going to perform a take, perform a
// checkForDestructure.
checkForPartialMutation(useState, diagnosticEmitter,
PartialMutation::Kind::Consume, op->getUser(),
op->get()->getType(), leafRange,
PartialMutation::consume());
// If we emitted an error diagnostic, do not transform further and
// instead mark that we emitted an early diagnostic and return true.
if (numDiagnostics !=
moveChecker.diagnosticEmitter.getDiagnosticCount()) {
LLVM_DEBUG(llvm::dbgs()
<< "Emitting destructure through deinit error!\n");
return true;
}
// If we had a load [copy], store this into the copy list. These are the
// things that we must merge into destroy_addr or reinits after we are
// done checking. The load [take] are already complete and good to go.
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
LLVM_DEBUG(llvm::dbgs() << "Found take inst: " << *user);
useState.recordTakeUse(user, leafRange);
} else {
LLVM_DEBUG(llvm::dbgs() << "Found copy inst: " << *user);
useState.recordCopyUse(user, leafRange);
}
}
}
return true;
}
// Now that we have handled or loadTakeOrCopy, we need to now track our
// additional pure takes.
if (noncopyable::memInstMustConsume(op)) {
// If we don't have a consumeable and assignable check kind, then we can't
// consume. Emit an error.
//
// NOTE: Since SILGen eagerly loads loadable types from memory, this
// generally will only handle address only types.
if (markedValue->getCheckKind() != MarkUnresolvedNonCopyableValueInst::
CheckKind::ConsumableAndAssignable) {
auto *fArg = dyn_cast<SILFunctionArgument>(
stripAccessMarkers(markedValue->getOperand()));
if (fArg && fArg->isClosureCapture() && fArg->getType().isAddress()) {
moveChecker.diagnosticEmitter.emitPromotedBoxArgumentError(markedValue,
fArg);
} else {
moveChecker.diagnosticEmitter
.emitAddressEscapingClosureCaptureLoadedAndConsumed(markedValue);
}
return true;
}
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
// Now check if we have a destructure through deinit. If we do, emit an
// error.
unsigned numDiagnostics =
moveChecker.diagnosticEmitter.getDiagnosticCount();
checkForPartialMutation(useState, diagnosticEmitter,
PartialMutation::Kind::Consume, op->getUser(),
op->get()->getType(), leafRange,
PartialMutation::consume());
if (numDiagnostics !=
moveChecker.diagnosticEmitter.getDiagnosticCount()) {
LLVM_DEBUG(llvm::dbgs()
<< "Emitting destructure through deinit error!\n");
return true;
}
LLVM_DEBUG(llvm::dbgs() << "Pure consuming use: " << *user);
useState.recordTakeUse(user, leafRange);
}
return true;
}
if (auto fas = FullApplySite::isa(user)) {
switch (fas.getArgumentConvention(*op)) {
case SILArgumentConvention::Indirect_In_Guaranteed: {
LLVM_DEBUG(llvm::dbgs() << "in_guaranteed argument to function application\n");
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordLivenessUse(user, leafRange);
}
return true;
}
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_In:
case SILArgumentConvention::Indirect_Out:
case SILArgumentConvention::Direct_Unowned:
case SILArgumentConvention::Direct_Owned:
case SILArgumentConvention::Direct_Guaranteed:
case SILArgumentConvention::Pack_Inout:
case SILArgumentConvention::Pack_Owned:
case SILArgumentConvention::Pack_Guaranteed:
case SILArgumentConvention::Pack_Out:
break;
}
}
if (auto *yi = dyn_cast<YieldInst>(user)) {
if (yi->getYieldInfoForOperand(*op).isGuaranteed()) {
LLVM_DEBUG(llvm::dbgs() << "coroutine yield\n");
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordLivenessUse(user, leafRange);
}
return true;
}
}
if (auto *pas = dyn_cast<PartialApplyInst>(user)) {
if (auto *fArg = dyn_cast<SILFunctionArgument>(
stripAccessMarkers(markedValue->getOperand()))) {
// If we are processing an inout convention and we emitted an error on the
// partial_apply, we shouldn't process this
// mark_unresolved_non_copyable_value, but squelch the compiler doesn't
// understand error.
if (fArg->getArgumentConvention().isInoutConvention() &&
pas->getCalleeFunction()->hasSemanticsAttr(
semantics::NO_MOVEONLY_DIAGNOSTICS)) {
LLVM_DEBUG(llvm::dbgs() << "has no_moveonly_diagnostics attribute!\n");
diagnosticEmitter.emitEarlierPassEmittedDiagnostic(markedValue);
return false;
}
}
// If our partial apply takes this parameter as an inout parameter and it
// has the no move only diagnostics marker on it, do not emit an error
// either.
if (auto *f = pas->getCalleeFunction()) {
if (f->hasSemanticsAttr(semantics::NO_MOVEONLY_DIAGNOSTICS)) {
if (ApplySite(pas).getCaptureConvention(*op).isInoutConvention()) {
LLVM_DEBUG(llvm::dbgs() << "has no_moveonly_diagnostics attribute!\n");
diagnosticEmitter.emitEarlierPassEmittedDiagnostic(markedValue);
return false;
}
}
}
if (pas->isOnStack() ||
ApplySite(pas).getArgumentConvention(*op).isInoutConvention()) {
LLVM_DEBUG(llvm::dbgs() << "Found on stack partial apply or inout usage!\n");
// On-stack partial applications and their final consumes are always a
// liveness use of their captures.
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
return false;
}
for (auto leafRange : leafRanges) {
// Attempt to find calls of the non-escaping partial apply and places
// where the partial apply is passed to a function. We treat those as
// liveness uses. If we find a use we don't understand, we return false
// here.
if (!findNonEscapingPartialApplyUses(pas, leafRange, useState)) {
LLVM_DEBUG(llvm::dbgs() << "Failed to understand use of a "
"non-escaping partial apply?!\n");
return false;
}
}
return true;
}
}
if (auto *explicitCopy = dyn_cast<ExplicitCopyAddrInst>(op->getUser())) {
assert(op->getOperandNumber() == ExplicitCopyAddrInst::Src &&
"Dest should have been handled earlier");
assert(!explicitCopy->isTakeOfSrc() &&
"If we had a take of src, this should have already been identified "
"as a must consume");
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordLivenessUse(user, leafRange);
}
return true;
}
if (auto *fixLifetime = dyn_cast<FixLifetimeInst>(op->getUser())) {
LLVM_DEBUG(llvm::dbgs() << "fix_lifetime use\n");
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordLivenessUse(user, leafRange);
}
return true;
}
if (auto *access = dyn_cast<BeginAccessInst>(op->getUser())) {
switch (access->getAccessKind()) {
// Treat an opaque read access as a borrow liveness use for the duration
// of the access.
case SILAccessKind::Read: {
LLVM_DEBUG(llvm::dbgs() << "begin_access [read]\n");
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordLivenessUse(user, leafRange);
}
return true;
}
// Treat a deinit access as a consume of the entire value.
case SILAccessKind::Deinit:
llvm_unreachable("should have been handled by `memInstMustConsume`");
case SILAccessKind::Init:
case SILAccessKind::Modify:
llvm_unreachable("should look through these kinds of accesses currently");
}
}
if (auto *seai = dyn_cast<SwitchEnumAddrInst>(user)) {
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to form leaf type range!\n");
return false;
}
for (auto leafRange : leafRanges) {
useState.recordLivenessUse(user, leafRange);
}
return true;
}
// If we don't fit into any of those categories, just track as a liveness
// use. We assume all such uses must only be reads to the memory. So we assert
// to be careful.
LLVM_DEBUG(llvm::dbgs() << "Found liveness use: " << *user);
SmallVector<TypeTreeLeafTypeRange, 2> leafRanges;
TypeTreeLeafTypeRange::get(op, getRootAddress(), leafRanges);
if (!leafRanges.size()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute leaf range!\n");
return false;
}
#ifndef NDEBUG
if (user->mayWriteToMemory()) {
// TODO: `unchecked_take_enum_addr` should inherently be understood as
// non-side-effecting when it's nondestructive.
auto ue = dyn_cast<UncheckedTakeEnumDataAddrInst>(user);
if (!ue || ue->isDestructive()) {
llvm::errs() << "Found a write classified as a liveness use?!\n";
llvm::errs() << "Use: " << *user;
llvm_unreachable("standard failure");
}
}
#endif
for (auto leafRange : leafRanges) {
useState.recordLivenessUse(user, leafRange);
}
return true;
}
//===----------------------------------------------------------------------===//
// MARK: Global Dataflow
//===----------------------------------------------------------------------===//
namespace {
using InstLeafTypePair = std::pair<SILInstruction *, TypeTreeLeafTypeRange>;
using InstOptionalLeafTypePair =
std::pair<SILInstruction *, std::optional<TypeTreeLeafTypeRange>>;
/// Post process the found liveness and emit errors if needed. TODO: Better
/// name.
struct GlobalLivenessChecker {
UseState &addressUseState;
DiagnosticEmitter &diagnosticEmitter;
FieldSensitiveMultiDefPrunedLiveRange &liveness;
SmallBitVector livenessVector;
bool hadAnyErrorUsers = false;
GlobalLivenessChecker(UseState &addressUseState,
DiagnosticEmitter &diagnosticEmitter,
FieldSensitiveMultiDefPrunedLiveRange &liveness)
: addressUseState(addressUseState), diagnosticEmitter(diagnosticEmitter),
liveness(liveness) {}
/// Returns true if we emitted any errors.
bool compute();
bool testInstVectorLiveness(UseState::InstToBitMap &instsToTest);
void clear() {
livenessVector.clear();
hadAnyErrorUsers = false;
}
};
} // namespace
bool GlobalLivenessChecker::testInstVectorLiveness(
UseState::InstToBitMap &instsToTest) {
bool emittedDiagnostic = false;
for (auto takeInstAndValue : instsToTest) {
LLVM_DEBUG(llvm::dbgs() << " Checking: " << *takeInstAndValue.first);
// Check if we are in the boundary...
// If the bit vector does not contain any set bits, then we know that we did
// not have any boundary violations for any leaf node of our root value.
if (!liveness.isWithinBoundary(takeInstAndValue.first,
takeInstAndValue.second)) {
// TODO: Today, we don't tell the user the actual field itself where the
// violation occurred and just instead just shows the two instructions. We
// could be more specific though...
LLVM_DEBUG(llvm::dbgs() << " Not within the boundary.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< " Within the boundary! Emitting an error\n");
// Ok, we have an error and via the bit vector know which specific leaf
// elements of our root type were within the per field boundary. We need to
// go find the next reachable use that overlap with its sub-element. We only
// emit a single error per use even if we get multiple sub elements that
// match it. That helps reduce the amount of errors.
//
// DISCUSSION: It is important to note that this follows from the separation
// of concerns behind this pass: we have simplified how we handle liveness
// by losing this information. That being said, since we are erroring it is
// ok that we are taking a little more time since we are not going to
// codegen this code.
//
// That being said, set the flag that we saw at least one error, so we can
// exit early after this loop.
hadAnyErrorUsers = true;
// B/c of the separation of concerns with our liveness, we now need to walk
// blocks to go find the specific later takes that are reachable from this
// take. It is ok that we are doing a bit more work here since we are going
// to exit and not codegen.
auto *errorUser = takeInstAndValue.first;
auto errorSpan = takeInstAndValue.second;
// First walk from errorUser to the end of the block, looking for a take or
// a liveness use. If we find a single block error, emit the error and
// continue.
if (errorUser != errorUser->getParent()->getTerminator()) {
bool foundSingleBlockError = false;
for (auto ii = std::next(errorUser->getIterator()),
ie = errorUser->getParent()->end();
ii != ie; ++ii) {
if (addressUseState.isConsume(&*ii, errorSpan)) {
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &*ii, errorUser, true /*is consuming*/);
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
if (addressUseState.isLivenessUse(&*ii, errorSpan)) {
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &*ii, errorUser, false /*is consuming*/,
addressUseState.isImplicitEndOfLifetimeLivenessUses(&*ii));
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
// Check if we have a non-consuming liveness use.
//
// DISCUSSION: In certain cases, we only represent uses like end_borrow
// in liveness and not in address use state. This ensures that we
// properly emit a diagnostic in these cases.
//
// TODO: We should include liveness uses of the load_borrow itself in an
// array and emit an error on those instead since it would be a better
// error than using end_borrow here.
{
if (liveness.isInterestingUserOfKind(
&*ii, FieldSensitivePrunedLiveness::NonLifetimeEndingUse,
errorSpan)) {
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &*ii, errorUser,
false /*is consuming*/,
addressUseState.isImplicitEndOfLifetimeLivenessUses(&*ii));
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
}
if (addressUseState.isInitUse(&*ii, errorSpan)) {
llvm::errs() << "Should not have errored if we see an init?! Init: "
<< *ii;
llvm_unreachable("Standard compiler error");
}
}
if (foundSingleBlockError)
continue;
}
// If we didn't find a single block error, then we need to go search for our
// liveness error in successor blocks. We know that this means that our
// current block must be live out. Do a quick check just to be careful.
using IsLive = FieldSensitivePrunedLiveBlocks::IsLive;
SmallVector<IsLive, 8> isLiveArray;
#ifndef NDEBUG
liveness.getBlockLiveness(errorUser->getParent(), errorSpan, isLiveArray);
assert(llvm::all_of(
isLiveArray,
[](IsLive liveness) { return liveness = IsLive::LiveOut; }) &&
"Should be live out?!");
isLiveArray.clear();
#endif
BasicBlockWorklist worklist(errorUser->getFunction());
for (auto *succBlock : errorUser->getParent()->getSuccessorBlocks())
worklist.pushIfNotVisited(succBlock);
LLVM_DEBUG(llvm::dbgs() << "Performing forward traversal from errorUse "
"looking for the cause of liveness!\n");
llvm::SmallSetVector<SILInstruction *, 1> violatingInst;
bool foundSingleBlockError = false;
while (auto *block = worklist.pop()) {
LLVM_DEBUG(llvm::dbgs()
<< "Visiting block: bb" << block->getDebugID() << "\n");
SWIFT_DEFER { isLiveArray.clear(); };
liveness.getBlockLiveness(block, takeInstAndValue.second, isLiveArray);
// If we hit an init or dead along all bits in the block, we do not need
// to process further successors.
bool shouldVisitSuccessors = false;
// Now search forward for uses.
for (auto isLive : isLiveArray) {
switch (isLive) {
case IsLive::Dead:
case IsLive::DeadToLiveEdge:
LLVM_DEBUG(llvm::dbgs() << " Dead block!\n");
// Ignore a dead block. Our error use could not be in such a block.
//
// This can happen for instance along an exit block of a loop where
// the error use is within the loop.
continue;
case IsLive::LiveOut: {
LLVM_DEBUG(llvm::dbgs() << " Live out block!\n");
// If we see a live out block that is also a def block, skip.
SmallBitVector defBits(addressUseState.getNumSubelements());
liveness.isDefBlock(block, errorSpan, defBits);
if (!(defBits & errorSpan).none()) {
LLVM_DEBUG(llvm::dbgs() << " Also a def block; skipping!\n");
continue;
}
[[clang::fallthrough]];
}
case IsLive::LiveWithin:
if (isLive == IsLive::LiveWithin)
LLVM_DEBUG(llvm::dbgs() << " Live within block!\n");
bool foundInit = false;
for (auto &blockInst : *block) {
LLVM_DEBUG(llvm::dbgs() << " Inst: " << blockInst);
if (addressUseState.isConsume(&blockInst, errorSpan)) {
LLVM_DEBUG(llvm::dbgs() << " Is consume!\n");
diagnosticEmitter.emitAddressDiagnostic(addressUseState.address,
&blockInst, errorUser,
true /*is consuming*/);
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
if (addressUseState.isLivenessUse(&blockInst, errorSpan)) {
LLVM_DEBUG(llvm::dbgs() << " Is liveness use!\n");
diagnosticEmitter.emitAddressDiagnostic(
addressUseState.address, &blockInst, errorUser,
false /*is consuming*/,
addressUseState.isImplicitEndOfLifetimeLivenessUses(
&blockInst));
foundSingleBlockError = true;
emittedDiagnostic = true;
break;
}
// If we find an init use for this bit... just break.
if (addressUseState.isInitUse(&blockInst, errorSpan)) {
foundInit = true;
break;
}
}
// If we did not find an init and visited the entire block... we need
// to visit successors for at least one bit.
if (!foundInit)
shouldVisitSuccessors = true;
assert((isLive == IsLive::LiveOut || foundSingleBlockError ||
foundInit) &&
"Should either have a pure live out, found an init, or we "
"should have found "
"an error.");
}
// If we found an error, break out of the loop. We don't have further
// work to do.
if (foundSingleBlockError) {
break;
}
}
// If we found an error, just bail without processing additional blocks.
if (foundSingleBlockError)
break;
// If we saw only dead blocks or found inits for all bits... then we do
// not need to process further
if (!shouldVisitSuccessors)
continue;
// If we didn't find a single block error, add successors to the worklist
// and visit them.
for (auto *succBlock : block->getSuccessorBlocks())
worklist.pushIfNotVisited(succBlock);
}
}
return emittedDiagnostic;
}
bool GlobalLivenessChecker::compute() {
// Then revisit our takes, this time checking if we are within the boundary
// and if we are, emit an error.
LLVM_DEBUG(llvm::dbgs() << "Checking takes for errors!\n");
bool emittedDiagnostic = false;
emittedDiagnostic |= testInstVectorLiveness(addressUseState.takeInsts);
emittedDiagnostic |= testInstVectorLiveness(addressUseState.copyInsts);
// If we emitted an error user, we should always emit at least one
// diagnostic. If we didn't there is a bug in the implementation.
assert(hadAnyErrorUsers == emittedDiagnostic);
return hadAnyErrorUsers;
}
//===----------------------------------------------------------------------===//
// MARK: Main Pass Implementation
//===----------------------------------------------------------------------===//
/// Create a new destroy_value instruction before the specified instruction and
/// record it as a final consume.
static void insertDestroyBeforeInstruction(UseState &addressUseState,
SILInstruction *nextInstruction,
SILValue baseAddress,
SmallBitVector &bv,
ConsumeInfo &consumes) {
if (!baseAddress->getUsersOfType<StoreBorrowInst>().empty()) {
// If there are _any_ store_borrow users, then all users of the address are
// store_borrows (and dealloc_stacks). Nothing is stored, there's nothing
// to destroy.
return;
}
// If we need all bits...
if (bv.all()) {
// And our next instruction is a destroy_addr on the base address, just
// claim that destroy instead of inserting another destroy_addr.
if (auto *dai = dyn_cast<DestroyAddrInst>(nextInstruction)) {
if (dai->getOperand() == baseAddress) {
consumes.recordFinalConsume(dai, bv);
return;
}
}
// Otherwise, create a new destroy addr on the entire address.
SILBuilderWithScope builder(nextInstruction);
auto loc =
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
auto *dai = builder.createDestroyAddr(loc, baseAddress);
consumes.recordFinalConsume(dai, bv);
addressUseState.destroys.insert({dai, TypeTreeLeafTypeRange(0, bv.size())});
return;
}
// Otherwise, we have a partially destroyed type. Create new destroy addr for
// each contiguous range of elts. This should only happen for structs/tuples.
SILBuilderWithScope builder(nextInstruction);
auto loc =
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
SmallVector<std::tuple<SILValue, TypeTreeLeafTypeRange, NeedsDestroy_t>>
valuesToDestroy;
TypeTreeLeafTypeRange::constructProjectionsForNeededElements(
baseAddress, nextInstruction, addressUseState.domTree, bv,
valuesToDestroy);
while (!valuesToDestroy.empty()) {
auto tuple = valuesToDestroy.pop_back_val();
SILValue value;
TypeTreeLeafTypeRange range;
NeedsDestroy_t needsDestroy;
std::tie(value, range, needsDestroy) = tuple;
if (value->getType().isTrivial(*nextInstruction->getFunction()))
continue;
SILInstruction *destroyingInst;
if (needsDestroy) {
auto *dai = builder.createDestroyAddr(loc, value);
destroyingInst = dai;
} else {
destroyingInst = value.getDefiningInstruction();
}
SmallBitVector consumedBits(bv.size());
range.setBits(consumedBits);
consumes.recordFinalConsume(destroyingInst, consumedBits);
addressUseState.destroys.insert({destroyingInst, range});
}
}
void MoveOnlyAddressCheckerPImpl::insertDestroysOnBoundary(
MarkUnresolvedNonCopyableValueInst *markedValue,
FieldSensitiveMultiDefPrunedLiveRange &liveness,
FieldSensitivePrunedLivenessBoundary &boundary) {
using IsInterestingUser = FieldSensitivePrunedLiveness::IsInterestingUser;
LLVM_DEBUG(llvm::dbgs() << "Inserting destroys on boundary!\n");
// If we're in no_consume_or_assign mode, we don't insert destroys, as we've
// already checked that there are no consumes. There can only be borrow uses,
// which means no destruction is needed at all.
//
// NOTE: This also implies that we do not need to insert invalidating
// debug_value undef since our value will not be invalidated.
if (markedValue->getCheckKind() ==
MarkUnresolvedNonCopyableValueInst::CheckKind::NoConsumeOrAssign) {
LLVM_DEBUG(llvm::dbgs()
<< " Skipping destroy insertion b/c no_consume_or_assign\n");
consumes.finishRecordingFinalConsumes();
return;
}
LLVM_DEBUG(llvm::dbgs() << " Visiting users!\n");
auto debugVar = DebugVarCarryingInst::getFromValue(
stripAccessMarkers(markedValue->getOperand()));
// Local helper that insert a debug_value undef to invalidate a noncopyable
// value that has been moved. Importantly, for LLVM to recognize that we are
// referring to the same debug variable as the original definition, we have to
// use the same debug scope and location as the original debug var.
auto insertUndefDebugValue = [&debugVar](SILInstruction *insertPt) {
insertDebugValueBefore(insertPt, debugVar, [&] {
return SILUndef::get(debugVar.getOperandForDebugValueClone());
});
};
// Control flow merge blocks used as insertion points.
llvm::DenseMap<SILBasicBlock *, SmallBitVector> mergeBlocks;
for (auto &pair : boundary.getLastUsers()) {
auto *inst = pair.first;
auto &bv = pair.second;
LLVM_DEBUG(llvm::dbgs() << " User: " << *inst);
auto interestingUser = liveness.getInterestingUser(inst);
SmallVector<std::pair<TypeTreeLeafTypeRange, IsInterestingUser>, 4> ranges;
if (interestingUser) {
interestingUser->getContiguousRanges(ranges, bv);
}
for (auto rangePair : ranges) {
SmallBitVector bits(bv.size());
rangePair.first.setBits(bits);
switch (rangePair.second) {
case IsInterestingUser::LifetimeEndingUse: {
LLVM_DEBUG(
llvm::dbgs()
<< " Lifetime ending use! Recording final consume!\n");
// If we have a consuming use, when we stop at the consuming use we want
// the value to still be around. We only want the value to be
// invalidated once the consume operation has occured. Thus we always
// place the debug_value undef strictly after the consuming operation.
if (auto *ti = dyn_cast<TermInst>(inst)) {
for (auto *succBlock : ti->getSuccessorBlocks()) {
insertUndefDebugValue(&succBlock->front());
}
} else {
insertUndefDebugValue(inst->getNextInstruction());
}
consumes.recordFinalConsume(inst, bits);
continue;
}
case IsInterestingUser::NonUser:
break;
case IsInterestingUser::NonLifetimeEndingUse:
LLVM_DEBUG(llvm::dbgs() << " NonLifetimeEndingUse! "
"inserting destroy before instruction!\n");
// If we are dealing with an inout parameter, we will have modeled our
// last use by treating a return inst as a last use. Since it doesn't
// have any successors, this results in us not inserting any
// destroy_addr.
if (isa<TermInst>(inst)) {
auto *block = inst->getParent();
for (auto *succBlock : block->getSuccessorBlocks()) {
auto iter = mergeBlocks.find(succBlock);
if (iter == mergeBlocks.end()) {
iter = mergeBlocks.insert({succBlock, bits}).first;
} else {
// NOTE: We use |= here so that different regions of the same
// terminator get updated appropriately.
SmallBitVector &alreadySetBits = iter->second;
bool hadCommon = alreadySetBits.anyCommon(bits);
alreadySetBits |= bits;
if (hadCommon)
continue;
}
auto *insertPt = &*succBlock->begin();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), bits,
consumes);
// We insert the debug_value undef /after/ the last use since we
// want the value to be around when we stop at the last use
// instruction.
insertUndefDebugValue(insertPt);
}
continue;
}
// If we have an implicit end of lifetime use, we do not insert a
// destroy_addr. Instead, we insert an undef debug value after the
// use. This occurs if we have an end_access associated with a
// global_addr or a ref_element_addr field access.
if (addressUseState.isImplicitEndOfLifetimeLivenessUses(inst)) {
LLVM_DEBUG(
llvm::dbgs()
<< " Use was an implicit end of lifetime liveness use!\n");
insertUndefDebugValue(inst->getNextInstruction());
continue;
}
auto *insertPt = inst->getNextInstruction();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), bits, consumes);
// We insert the debug_value undef /after/ the last use since we want
// the value to be around when we stop at the last use instruction.
insertUndefDebugValue(insertPt);
continue;
}
}
}
for (auto pair : boundary.getBoundaryEdges()) {
auto *insertPt = &*pair.first->begin();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), pair.second,
consumes);
insertUndefDebugValue(insertPt);
LLVM_DEBUG(llvm::dbgs() << " Inserting destroy on edge bb"
<< pair.first->getDebugID() << "\n");
}
for (auto defPair : boundary.getDeadDefs()) {
LLVM_DEBUG(llvm::dbgs()
<< " Inserting destroy on dead def" << *defPair.first);
if (auto *arg = dyn_cast<SILArgument>(defPair.first)) {
auto *insertPt = &*arg->getParent()->begin();
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), defPair.second,
consumes);
insertUndefDebugValue(insertPt);
} else {
auto *inst = cast<SILInstruction>(defPair.first);
// If we have a dead def that is our mark must check and that mark must
// check was an init but not consumable, then do not destroy that
// def. This is b/c we are in some sort of class initialization and we are
// looking at the initial part of the live range before the initialization
// has occured. This is our way of makinmg this fit the model that the
// checker expects (which is that values are always initialized at the def
// point).
if (markedValue && markedValue->getCheckKind() ==
MarkUnresolvedNonCopyableValueInst::CheckKind::
InitableButNotConsumable)
continue;
SILInstruction *insertPt;
if (auto tryApply = dyn_cast<TryApplyInst>(inst)) {
// The dead def is only valid on the success return path.
insertPt = &tryApply->getNormalBB()->front();
} else {
insertPt = inst->getNextInstruction();
assert(insertPt && "instruction is a terminator that wasn't handled?");
}
insertDestroyBeforeInstruction(addressUseState, insertPt,
liveness.getRootValue(), defPair.second,
consumes);
insertUndefDebugValue(insertPt);
}
}
consumes.finishRecordingFinalConsumes();
}
void MoveOnlyAddressCheckerPImpl::rewriteUses(
MarkUnresolvedNonCopyableValueInst *markedValue,
FieldSensitiveMultiDefPrunedLiveRange &liveness,
const FieldSensitivePrunedLivenessBoundary &boundary) {
LLVM_DEBUG(llvm::dbgs() << "MoveOnlyAddressChecker Rewrite Uses!\n");
/// Whether the marked value appeared in a discard statement.
const bool isDiscardingContext = !addressUseState.dropDeinitInsts.empty();
// Process destroys
for (auto destroyPair : addressUseState.destroys) {
/// Is this destroy instruction a final consuming use?
SmallBitVector bits(liveness.getNumSubElements());
destroyPair.second.setBits(bits);
bool isFinalConsume = consumes.claimConsume(destroyPair.first, bits);
// Remove destroys that are not the final consuming use.
if (!isFinalConsume) {
destroyPair.first->eraseFromParent();
continue;
}
// Otherwise, if we're in a discarding context, flag this final destroy_addr
// as a point where we're missing an explicit `consume self`. The reasoning
// here is that if a destroy of self is the final consuming use,
// then these are the points where we implicitly destroy self to clean-up
// that self var before exiting the scope. An explicit 'consume self'
// that is thrown away is a consume of this
// mark_unresolved_non_copyable_value'd var and not a destroy of it,
// according to the use classifier.
if (isDiscardingContext) {
// Since the boundary computations treat a newly-added destroy prior to
// a reinit within that same block as a "final consuming use", exclude
// such destroys-before-reinit. We are only interested in the final
// destroy of a var, not intermediate destroys of the var.
if (addressUseState.precedesReinitInSameBlock(destroyPair.first))
continue;
auto *dropDeinit = addressUseState.dropDeinitInsts.front();
diagnosticEmitter.emitMissingConsumeInDiscardingContext(destroyPair.first,
dropDeinit);
}
}
auto debugVar = DebugVarCarryingInst::getFromValue(
stripAccessMarkers(markedValue->getOperand()));
// Then convert all claimed reinits to inits.
for (auto reinitPair : addressUseState.reinitInsts) {
if (!isReinitToInitConvertibleInst(reinitPair.first))
continue;
if (!consumes.claimConsume(reinitPair.first, reinitPair.second))
convertMemoryReinitToInitForm(reinitPair.first, debugVar);
}
// Check all takes.
for (auto takeInst : addressUseState.takeInsts) {
auto &bits = takeInst.second;
bool claimedConsume = consumes.claimConsume(takeInst.first, bits);
(void)claimedConsume;
if (!claimedConsume) {
llvm::errs()
<< "Found consume that was not recorded as a 'claimed consume'!\n";
llvm::errs() << "Unrecorded consume: " << *takeInst.first;
llvm_unreachable("Standard compiler abort?!");
}
}
// Then rewrite all copy insts to be takes and claim them.
for (auto copyInst : addressUseState.copyInsts) {
auto &bits = copyInst.second;
bool claimedConsume = consumes.claimConsume(copyInst.first, bits);
if (!claimedConsume) {
llvm::errs()
<< "Found consume that was not recorded as a 'claimed consume'!\n";
llvm::errs() << "Unrecorded consume: " << *copyInst.first;
llvm_unreachable("Standard compiler abort?!");
}
if (auto *li = dyn_cast<LoadInst>(copyInst.first)) {
// Convert this to its take form.
auto accessPath = AccessPathWithBase::computeInScope(li->getOperand());
if (auto *access = dyn_cast<BeginAccessInst>(accessPath.base))
access->setAccessKind(SILAccessKind::Modify);
li->setOwnershipQualifier(LoadOwnershipQualifier::Take);
changed = true;
continue;
}
if (auto *copy = dyn_cast<CopyAddrInst>(copyInst.first)) {
// Convert this to its take form.
auto accessPath = AccessPathWithBase::computeInScope(copy->getSrc());
if (auto *access = dyn_cast<BeginAccessInst>(accessPath.base))
access->setAccessKind(SILAccessKind::Modify);
copy->setIsTakeOfSrc(IsTake);
continue;
}
llvm::dbgs() << "Unhandled copy user: " << *copyInst.first;
llvm_unreachable("Unhandled case?!");
}
// Finally now that we have placed all of our destroys in the appropriate
// places, convert any copies that we know are borrows into begin_borrow. We
// do not need to worry about expanding scopes since if we needed to expand a
// scope, we would have emitted the scope expansion error during diagnostics.
for (auto pair : addressUseState.borrows) {
if (auto *li = dyn_cast<LoadInst>(pair.first)) {
// If we had a load -> load_borrow then we know that all of its destroys
// must have been destroy_value. So we can just gather up those
// destroy_value and use then to create a new load_borrow scope.
SILBuilderWithScope builder(li);
auto *lbi = builder.createLoadBorrow(li->getLoc(), li->getOperand());
// We use this auxillary list to avoid iterator invalidation of
// li->getConsumingUse();
StackList<DestroyValueInst *> toDelete(lbi->getFunction());
for (auto *consumeUse : li->getConsumingUses()) {
auto *dvi = cast<DestroyValueInst>(consumeUse->getUser());
SILBuilderWithScope destroyBuilder(dvi);
destroyBuilder.createEndBorrow(dvi->getLoc(), lbi);
toDelete.push_back(dvi);
changed = true;
}
while (!toDelete.empty())
toDelete.pop_back_val()->eraseFromParent();
li->replaceAllUsesWith(lbi);
li->eraseFromParent();
continue;
}
llvm::dbgs() << "Borrow: " << *pair.first;
llvm_unreachable("Unhandled case?!");
}
#ifndef NDEBUG
if (consumes.hasUnclaimedConsumes()) {
llvm::errs() << "Found unclaimed consumes?!\n";
consumes.print(llvm::errs());
llvm_unreachable("Standard error?!");
}
#endif
}
void MoveOnlyAddressCheckerPImpl::checkForReinitAfterDiscard() {
auto const &dropDeinits = addressUseState.dropDeinitInsts;
auto const &reinits = addressUseState.reinitInsts;
if (dropDeinits.empty() || reinits.empty())
return;
using BasicBlockMap = llvm::DenseMap<SILBasicBlock *,
llvm::SmallPtrSet<SILInstruction *, 2>>;
BasicBlockMap blocksWithReinit;
for (auto const &info : reinits) {
auto *reinit = info.first;
blocksWithReinit[reinit->getParent()].insert(reinit);
}
// Starting from each drop_deinit instruction, can we reach a reinit of self?
for (auto *dropInst : dropDeinits) {
auto *dropBB = dropInst->getParent();
// First, if the block containing this drop_deinit also contains a reinit,
// check if that reinit happens after this drop_deinit.
auto result = blocksWithReinit.find(dropBB);
if (result != blocksWithReinit.end()) {
auto &blockReinits = result->second;
for (auto ii = std::next(dropInst->getIterator()); ii != dropBB->end();
++ii) {
SILInstruction *current = &*ii;
if (blockReinits.contains(current)) {
// Then the drop_deinit can reach a reinit immediately after it in the
// same block.
diagnosticEmitter.emitReinitAfterDiscardError(current, dropInst);
return;
}
}
}
BasicBlockWorklist worklist(fn);
// Seed the search with the successors of the drop_init block, so that if we
// visit the drop_deinit block again, we'll know the reinits _before_ the
// drop_deinit are reachable via some back-edge / cycle.
for (auto *succ : dropBB->getSuccessorBlocks())
worklist.pushIfNotVisited(succ);
// Determine reachability across blocks.
while (auto *bb = worklist.pop()) {
// Set-up next iteration.
for (auto *succ : bb->getSuccessorBlocks())
worklist.pushIfNotVisited(succ);
auto result = blocksWithReinit.find(bb);
if (result == blocksWithReinit.end())
continue;
// We found a reachable reinit! Identify the earliest reinit in this block
// for diagnosis.
auto &blockReinits = result->second;
SILInstruction *firstBadReinit = nullptr;
for (auto &inst : *bb) {
if (blockReinits.contains(&inst)) {
firstBadReinit = &inst;
break;
}
}
if (!firstBadReinit)
llvm_unreachable("bug");
diagnosticEmitter.emitReinitAfterDiscardError(firstBadReinit, dropInst);
return;
}
}
}
void ExtendUnconsumedLiveness::run() {
ConsumingBlocksCollection consumingBlocks;
DestroysCollection destroys;
for (unsigned element = 0, count = liveness.getNumSubElements();
element < count; ++element) {
for (auto pair : addressUseState.consumingBlocks) {
if (pair.second.test(element)) {
consumingBlocks.insert(pair.first);
}
}
for (auto pair : addressUseState.destroys) {
if (pair.second.contains(element)) {
destroys[pair.first] = DestroyKind::Destroy;
}
}
for (auto pair : addressUseState.takeInsts) {
if (pair.second.test(element)) {
destroys[pair.first] = DestroyKind::Take;
}
}
for (auto pair : addressUseState.reinitInsts) {
if (pair.second.test(element)) {
destroys[pair.first] = DestroyKind::Reinit;
}
}
runOnField(element, destroys, consumingBlocks);
consumingBlocks.clear();
destroys.clear();
}
}
/// Extend liveness of each field as far as possible within the original live
/// range as far as possible without incurring any copies.
///
/// The strategy has two parts.
///
/// (1) The global analysis:
/// - Collect the blocks in which the field was live before canonicalization.
/// These are the "original" live blocks (originalLiveBlocks).
/// [Color these blocks green.]
/// - From within that collection, collect the blocks which contain a _final_
/// consuming, non-destroy use, and their iterative successors.
/// These are the "consumed" blocks (consumedAtExitBlocks).
/// [Color these blocks red.]
/// - Extend liveness down to the boundary between originalLiveBlocks and
/// consumedAtExitBlocks blocks.
/// [Extend liveness down to the boundary between green blocks and red.]
/// - In particular, in regions of originalLiveBlocks which have no boundary
/// with consumedAtExitBlocks, liveness should be extended to its original
/// extent.
/// [Extend liveness down to the boundary between green blocks and uncolored.]
///
/// (2) The local analysis:
/// - For in-block lifetimes, extend liveness forward from non-consuming uses
/// and dead defs to the original destroy.
void ExtendUnconsumedLiveness::runOnField(
unsigned element, DestroysCollection &destroys,
ConsumingBlocksCollection &consumingBlocks) {
SILValue currentDef = addressUseState.address;
// First, collect the blocks that were _originally_ live. We can't use
// liveness here because it doesn't include blocks that occur before a
// destroy_addr.
BasicBlockSet originalLiveBlocks(currentDef->getFunction());
{
// Some of the work here was already done by initializeLiveness.
// Specifically, it already discovered all blocks containing (transitive)
// uses and blocks that appear between them and the def.
//
// Seed the set with what it already discovered.
for (auto *discoveredBlock : liveness.getDiscoveredBlocks())
originalLiveBlocks.insert(discoveredBlock);
// Start the walk from the consuming blocks (which includes destroys as well
// as the other consuming uses).
BasicBlockWorklist worklist(currentDef->getFunction());
for (auto *consumingBlock : consumingBlocks) {
if (!originalLiveBlocks.insert(consumingBlock)
// Don't walk into the predecessors of blocks which kill liveness.
&& !isLiveAtBegin(consumingBlock, element, /*isLiveAtEnd=*/true, destroys)) {
continue;
}
for (auto *predecessor : consumingBlock->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predecessor);
}
}
// Walk backwards from consuming blocks.
while (auto *block = worklist.pop()) {
if (!originalLiveBlocks.insert(block)) {
continue;
}
for (auto *predecessor : block->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predecessor);
}
}
}
// Second, collect the blocks which occur after a consuming use.
BasicBlockSet consumedAtExitBlocks(currentDef->getFunction());
BasicBlockSetVector consumedAtEntryBlocks(currentDef->getFunction());
{
// Start the forward walk from blocks which contain non-destroy consumes not
// followed by defs.
//
// Because they contain a consume not followed by a def, these are
// consumed-at-exit.
BasicBlockWorklist worklist(currentDef->getFunction());
for (auto iterator : boundary.getLastUsers()) {
if (!iterator.second.test(element))
continue;
auto *instruction = iterator.first;
// Skip over destroys on the boundary.
auto iter = destroys.find(instruction);
if (iter != destroys.end() && iter->second != DestroyKind::Take) {
continue;
}
// Skip over non-consuming users.
auto interestingUser = liveness.isInterestingUser(instruction, element);
assert(interestingUser !=
FieldSensitivePrunedLiveness::IsInterestingUser::NonUser);
if (interestingUser !=
FieldSensitivePrunedLiveness::IsInterestingUser::LifetimeEndingUse) {
continue;
}
// A consume with a subsequent def doesn't cause the block to be
// consumed-at-exit.
if (hasDefAfter(instruction, element))
continue;
worklist.push(instruction->getParent());
}
while (auto *block = worklist.pop()) {
consumedAtExitBlocks.insert(block);
for (auto *successor : block->getSuccessorBlocks()) {
if (!originalLiveBlocks.contains(successor))
continue;
worklist.pushIfNotVisited(successor);
consumedAtEntryBlocks.insert(successor);
}
}
}
// Third, find the blocks on the boundary between the originally-live blocks
// and the originally-live-but-consumed blocks. Extend liveness "to the end"
// of these blocks.
for (auto *block : consumedAtEntryBlocks) {
for (auto *predecessor : block->getPredecessorBlocks()) {
if (consumedAtExitBlocks.contains(predecessor))
continue;
// Add "the instruction(s) before the terminator" of the predecessor to
// liveness.
addPreviousInstructionToLiveness(predecessor->getTerminator(), element);
}
}
// Finally, preserve the destroys which weren't in the consumed region in
// place: hoisting such destroys would not avoid copies.
for (auto pair : destroys) {
auto *destroy = pair.first;
if (!shouldAddDestroyToLiveness(destroy, element, consumedAtExitBlocks,
consumedAtEntryBlocks))
continue;
addPreviousInstructionToLiveness(destroy, element);
}
}
bool ExtendUnconsumedLiveness::shouldAddDestroyToLiveness(
SILInstruction *destroy, unsigned element,
BasicBlockSet const &consumedAtExitBlocks,
BasicBlockSetVector const &consumedAtEntryBlocks) {
auto *block = destroy->getParent();
bool followedByDef = hasDefAfter(destroy, element);
if (!followedByDef) {
// This destroy is the last write to the field in the block.
//
// If the block is consumed-at-exit, then there is some other consuming use
// before this destroy. Liveness can't be extended.
return !consumedAtExitBlocks.contains(block);
}
for (auto *inst = destroy->getPreviousInstruction(); inst;
inst = inst->getPreviousInstruction()) {
if (liveness.isDef(inst, element)) {
// Found the corresponding def with no intervening users. Liveness
// can be extended to the destroy.
return true;
}
auto interestingUser = liveness.isInterestingUser(inst, element);
switch (interestingUser) {
case FieldSensitivePrunedLiveness::IsInterestingUser::NonUser:
break;
case FieldSensitivePrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
// The first use seen is non-consuming. Liveness can be extended to the
// destroy.
return true;
break;
case FieldSensitivePrunedLiveness::IsInterestingUser::LifetimeEndingUse:
// Found a consuming use. Liveness can't be extended to the destroy
// (without creating a copy and triggering a diagnostic).
return false;
break;
}
}
// Found no uses or defs between the destroy and the top of the block. If the
// block was not consumed at entry, liveness can be extended to the destroy.
return !consumedAtEntryBlocks.contains(block);
}
/// Compute the block's effect on liveness and apply it to \p isLiveAtEnd.
bool ExtendUnconsumedLiveness::isLiveAtBegin(SILBasicBlock *block,
unsigned element, bool isLiveAtEnd,
DestroysCollection const &destroys) {
enum class Effect {
None, // 0
Kill, // 1
Gen, // 2
};
auto effect = Effect::None;
for (auto &instruction : llvm::reverse(*block)) {
// An instruction can be both a destroy and a def. If it is, its
// behavior is first to destroy and then to init. So when walking
// backwards, its last action is to destroy, so its effect is that of any
// destroy.
if (destroys.find(&instruction) != destroys.end()) {
effect = Effect::Gen;
} else if (liveness.isDef(&instruction, element)) {
effect = Effect::Kill;
}
}
switch (effect) {
case Effect::None:
return isLiveAtEnd;
case Effect::Kill:
return false;
case Effect::Gen:
return true;
}
}
bool ExtendUnconsumedLiveness::hasDefAfter(SILInstruction *start,
unsigned element) {
// NOTE: Start iteration at \p start, not its sequel, because
// it might be both a consuming use and a def.
for (auto *inst = start; inst; inst = inst->getNextInstruction()) {
if (liveness.isDef(inst, element))
return true;
}
return false;
}
void ExtendUnconsumedLiveness::addPreviousInstructionToLiveness(
SILInstruction *inst, unsigned element) {
inst->visitPriorInstructions([&](auto *prior) {
if (liveness.isDef(prior, element)) {
return true;
}
auto range = TypeTreeLeafTypeRange(element, element + 1);
liveness.extendToNonUse(prior, range);
return true;
});
}
bool MoveOnlyAddressCheckerPImpl::performSingleCheck(
MarkUnresolvedNonCopyableValueInst *markedAddress) {
SWIFT_DEFER { diagnosticEmitter.clearUsesWithDiagnostic(); };
unsigned diagCount = diagnosticEmitter.getDiagnosticCount();
// Before we do anything, canonicalize load_borrow + copy_value into load
// [copy] + begin_borrow for further processing. This just eliminates a case
// that the checker doesn't need to know about.
{
RAIILLVMDebug l("CopiedLoadBorrowEliminationVisitor");
CopiedLoadBorrowEliminationState state(markedAddress->getFunction());
CopiedLoadBorrowEliminationVisitor copiedLoadBorrowEliminator(state);
if (AddressUseKind::Unknown ==
std::move(copiedLoadBorrowEliminator).walk(markedAddress)) {
LLVM_DEBUG(llvm::dbgs() << "Failed copied load borrow eliminator visit: "
<< *markedAddress);
return false;
}
state.process();
}
// Then if we have a let allocation, see if we have any copy_addr on our
// markedAddress that form temporary allocation chains. This occurs when we
// emit SIL for code like:
//
// let x: AddressOnlyType = ...
// let _ = x.y.z
//
// SILGen will treat y as a separate rvalue from x and will create a temporary
// allocation. In contrast if we have a var, we treat x like an lvalue and
// just create GEPs appropriately.
{
RAIILLVMDebug l("temporary allocations from rvalue accesses");
if (eliminateTemporaryAllocationsFromLet(markedAddress)) {
LLVM_DEBUG(
llvm::dbgs()
<< "Succeeded in eliminating temporary allocations! Fn after:\n";
markedAddress->getFunction()->dump());
changed = true;
}
}
// Then gather all uses of our address by walking from def->uses. We use this
// to categorize the uses of this address into their ownership behavior (e.g.:
// init, reinit, take, destroy, etc.).
GatherUsesVisitor visitor(*this, addressUseState, markedAddress,
diagnosticEmitter);
SWIFT_DEFER { visitor.clear(); };
{
RAIILLVMDebug l("main use gathering visitor");
visitor.reset(markedAddress);
if (AddressUseKind::Unknown == std::move(visitor).walk(markedAddress)) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed access path visit: " << *markedAddress);
return false;
}
}
// If we found a load [copy] or copy_addr that requires multiple copies or an
// exclusivity error, then we emitted an early error. Bail now and allow the
// user to fix those errors and recompile to get further errors.
//
// DISCUSSION: The reason why we do this is in the dataflow below we want to
// be able to assume that the load [copy] or copy_addr/copy_addr [init] are
// actual last uses, but the frontend that emitted the code for simplicity
// emitted a copy from the base address + a destroy_addr of the use. By
// bailing here, we can make that assumption since we would have errored
// earlier otherwise.
if (diagCount != diagnosticEmitter.getDiagnosticCount())
return true;
// Now that we know that we have run our visitor and did not emit any errors
// and successfully visited everything, see if have any
// assignable_but_not_consumable of address only types that are consumed.
//
// DISCUSSION: For non address only types, this is not an issue since we
// eagerly load
addressUseState.initializeImplicitEndOfLifetimeLivenessUses();
//===---
// Liveness Checking
//
SmallVector<SILBasicBlock *, 32> discoveredBlocks;
FieldSensitiveMultiDefPrunedLiveRange liveness(fn, markedAddress,
&discoveredBlocks);
{
RAIILLVMDebug logger("liveness initialization");
addressUseState.initializeLiveness(liveness);
}
// Now freeze our multimaps.
addressUseState.freezeMultiMaps();
{
RAIILLVMDebug l("checking for partial reinits");
PartialReinitChecker checker(addressUseState, diagnosticEmitter);
unsigned count = diagnosticEmitter.getDiagnosticCount();
checker.performPartialReinitChecking(liveness);
if (count != diagnosticEmitter.getDiagnosticCount()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found a partial reinit error! Ending early!\n");
return true;
}
}
{
RAIILLVMDebug l("performing global liveness checks");
// Then compute the takes that are within the cumulative boundary of
// liveness that we have computed. If we find any, they are the errors
// ones.
GlobalLivenessChecker emitter(addressUseState, diagnosticEmitter, liveness);
// If we had any errors, we do not want to modify the SIL... just bail.
if (emitter.compute()) {
return true;
}
}
// First add any debug_values that we saw as liveness uses. This is important
// since the debugger wants to see live values when we define a debug_value,
// but we do not want to use them earlier when emitting diagnostic errors.
if (auto *di = addressUseState.debugValue) {
// Move the debug_value to right after the markedAddress to ensure that we
// do not actually change our liveness computation.
//
// NOTE: The author is not sure if this can ever happen with SILGen output,
// but this is being put just to be safe.
di->moveAfter(markedAddress);
liveness.updateForUse(di, TypeTreeLeafTypeRange(markedAddress),
false /*lifetime ending*/);
}
// Compute our initial boundary.
FieldSensitivePrunedLivenessBoundary boundary(liveness.getNumSubElements());
liveness.computeBoundary(boundary);
LLVM_DEBUG(llvm::dbgs() << "Initial use based boundary:\n"; boundary.dump());
if (!DisableMoveOnlyAddressCheckerLifetimeExtension) {
ExtendUnconsumedLiveness extension(addressUseState, liveness, boundary);
extension.run();
}
boundary.clear();
liveness.computeBoundary(boundary);
LLVM_DEBUG(llvm::dbgs() << "Final maximized boundary:\n"; boundary.dump());
//===
// Final Transformation
//
// Ok, we now know that we fit our model since we did not emit errors and thus
// can begin the transformation.
SWIFT_DEFER { consumes.clear(); };
insertDestroysOnBoundary(markedAddress, liveness, boundary);
checkForReinitAfterDiscard();
rewriteUses(markedAddress, liveness, boundary);
return true;
}
//===----------------------------------------------------------------------===//
// MARK: Top Level Entrypoint
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
static llvm::cl::opt<uint64_t> NumTopLevelToProcess(
"sil-move-only-address-checker-num-top-level-to-process",
llvm::cl::desc("Allows for bisecting on move introducer that causes an "
"error. Only meant for debugging!"),
llvm::cl::init(UINT64_MAX));
#endif
static llvm::cl::opt<bool>
DumpSILBeforeRemovingMarkUnresolvedNonCopyableValueInst(
"sil-move-only-address-checker-dump-before-removing-mark-must-check",
llvm::cl::desc(
"When bisecting it is useful to dump the SIL before the "
"rest of the checker removes "
"mark_unresolved_non_copyable_value. This lets one "
"grab the SIL of a bad variable after all of the rest have "
"been processed to work with further in sil-opt."),
llvm::cl::init(false));
bool MoveOnlyAddressChecker::check(
llvm::SmallSetVector<MarkUnresolvedNonCopyableValueInst *, 32>
&moveIntroducersToProcess) {
assert(moveIntroducersToProcess.size() &&
"Must have checks to process to call this function");
MoveOnlyAddressCheckerPImpl pimpl(fn, diagnosticEmitter, domTree, poa,
deadEndBlocksAnalysis, allocator);
#ifndef NDEBUG
static uint64_t numProcessed = 0;
#endif
for (auto *markedValue : moveIntroducersToProcess) {
#ifndef NDEBUG
++numProcessed;
if (NumTopLevelToProcess <= numProcessed)
break;
#endif
LLVM_DEBUG(llvm::dbgs()
<< "======>>> Visiting top level: " << *markedValue);
// Perform our address check.
unsigned diagnosticEmittedByEarlierPassCount =
diagnosticEmitter.getDiagnosticEmittedByEarlierPassCount();
if (!pimpl.performSingleCheck(markedValue)) {
if (diagnosticEmittedByEarlierPassCount !=
diagnosticEmitter.getDiagnosticEmittedByEarlierPassCount()) {
LLVM_DEBUG(
llvm::dbgs()
<< "Failed to perform single check but found earlier emitted "
"error. Not emitting checker doesn't understand diagnostic!\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Failed to perform single check! Emitting "
"compiler doesn't understand diagnostic!\n");
// If we fail the address check in some way, set the diagnose!
diagnosticEmitter.emitCheckerDoesntUnderstandDiagnostic(markedValue);
}
markedValue->replaceAllUsesWith(markedValue->getOperand());
markedValue->eraseFromParent();
}
if (DumpSILBeforeRemovingMarkUnresolvedNonCopyableValueInst) {
LLVM_DEBUG(llvm::dbgs()
<< "Dumping SIL before removing mark must checks!\n";
fn->dump());
}
return pimpl.changed;
}
bool MoveOnlyAddressChecker::completeLifetimes() {
// TODO: Delete once OSSALifetimeCompletion is run as part of SILGenCleanup
bool changed = false;
// Lifetimes must be completed inside out (bottom-up in the CFG).
PostOrderFunctionInfo *postOrder = poa->get(fn);
OSSALifetimeCompletion completion(fn, domTree);
for (auto *block : postOrder->getPostOrder()) {
for (SILInstruction &inst : reverse(*block)) {
for (auto result : inst.getResults()) {
if (llvm::any_of(result->getUsers(),
[](auto *user) { return isa<BranchInst>(user); })) {
continue;
}
if (completion.completeOSSALifetime(result) ==
LifetimeCompletion::WasCompleted) {
changed = true;
}
}
}
for (SILArgument *arg : block->getArguments()) {
if (arg->isReborrow()) {
continue;
}
if (completion.completeOSSALifetime(arg) ==
LifetimeCompletion::WasCompleted) {
changed = true;
}
}
}
return changed;
}
|