1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
|
//===--- MovedAsyncVarDebugInfoPropagator.cpp -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file contains a forward optimistic dataflow with intersection merging
/// that propagates debug instructions of moved async vars after async funclet
/// points where they are available. The reason that we are doing this is that
/// during LLVM, the CoroSplitter will split such functions into several
/// coroutine funclets. Rather than teaching LLVM heuristics to understand how
/// Swift needs to emit debug info, we pre-propagate debug info for moved values
/// so that after splitting the dbg info is in the appropriate place.
///
/// The lattice that we use for each Debug Variable we are tracking is as
/// follows:
///
/// uninitialized
/// / | \
/// v v v
/// a b no value
/// \ | /
/// v v v
/// undef
///
/// Where:
///
/// * a, b are SIL debug info instructions associated with the
/// SILDebugVariable. We can always map such instructions to a SILValue that
/// we can use to create new debug_value instructions for the
/// SILDebugVariable.
///
/// * "no value" states that currently the SILDebugVariable does not have any
/// specific instruction associated with it from a dataflow perspective. An
/// example of where this would be used is in conditional control flow where
/// a variable's definition is not defined since the block is not dominated
/// by the variable's definition. This is the state that all blocks state is
/// initialized in since we refactor uninitialized into a separate bit on
/// the block state (see below).
///
/// * uninitialized is the state of a block before it has any out dataflow
/// state. This is represented as a bit in each block state that specifies
/// if the block has ever had its out dataflow computed. If a predecessor
/// block's state has this bit state, we skip it when intersected. We do not
/// represent this in the block's per SILDebugVariable state since we
/// perform the dataflow for all values all at the same time meaning that a
/// bit works well.
///
/// * undef is bottom. When we intersect two values of the lattice and they do
/// not match, we go to undef.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-move-async-var-debuginfo-propagator"
#include "swift/Basic/Defer.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Support/Format.h"
#include <cstring>
using namespace swift;
//===----------------------------------------------------------------------===//
// Utility
//===----------------------------------------------------------------------===//
/// Clone \p original changing the clone's operand to be undef and insert at the
/// beginning of \p block.
static DebugVarCarryingInst
cloneDebugValueMakeUndef(DebugVarCarryingInst original, SILBasicBlock *block) {
SILBuilderWithScope builder(&block->front());
builder.setCurrentDebugScope(original->getDebugScope());
auto *undef = SILUndef::get(original.getOperandForDebugValueClone());
return builder.createDebugValue(original->getLoc(), undef,
*original.getVarInfo(), false,
UsesMoveableValueDebugInfo);
}
static DebugVarCarryingInst
cloneDebugValueMakeUndef(DebugVarCarryingInst original,
SILInstruction *insertPt) {
SILBuilderWithScope builder(std::next(insertPt->getIterator()));
builder.setCurrentDebugScope(original->getDebugScope());
auto *undef = SILUndef::get(original.getOperandForDebugValueClone());
return builder.createDebugValue(original->getLoc(), undef,
*original.getVarInfo(), false,
UsesMoveableValueDebugInfo);
}
static SILInstruction *cloneDebugValue(DebugVarCarryingInst original,
SILInstruction *insertPt) {
if (original.getSpareBits())
return *cloneDebugValueMakeUndef(original, insertPt);
SILBuilderWithScope builder(std::next(insertPt->getIterator()));
builder.setCurrentDebugScope(original->getDebugScope());
return builder.createDebugValue(
original->getLoc(), original.getOperandForDebugValueClone(),
*original.getVarInfo(), false, UsesMoveableValueDebugInfo);
}
static SILInstruction *cloneDebugValue(DebugVarCarryingInst original,
SILBasicBlock *block) {
if (original.getSpareBits())
return *cloneDebugValueMakeUndef(original, block);
SILBuilderWithScope builder(&block->front());
builder.setCurrentDebugScope(original->getDebugScope());
return builder.createDebugValue(
original->getLoc(), original.getOperandForDebugValueClone(),
*original.getVarInfo(), false, UsesMoveableValueDebugInfo);
}
namespace {
/// An ADT wrapping a mutable array ref with extra methods used by the pass for
/// convenience. The author just wished to avoid writing memcpy/memset/memcmp
/// multiple times by hand and potentially messing up. This /should/ be a swift
/// extension on MutableArrayRef in truth.
struct DebugInstMutableArrayRef {
MutableArrayRef<DebugVarCarryingInst> state;
unsigned getNumBytes() const {
return sizeof(DebugVarCarryingInst) * state.size();
}
DebugVarCarryingInst &getElt(unsigned index) const { return state[index]; }
/// Set all of state to be no tracked value.
void setZero() { memset(state.data(), 0, getNumBytes()); }
/// Use memcpy to copy the state of \p other into this data structure.
void copy(DebugInstMutableArrayRef other) {
assert(state.size() == other.state.size());
memcpy(state.data(), other.state.data(), getNumBytes());
}
bool operator==(DebugInstMutableArrayRef other) const {
assert(state.size() == other.state.size());
return memcmp(state.data(), other.state.data(), getNumBytes()) == 0;
}
bool operator!=(DebugInstMutableArrayRef other) const {
return !(*this == other);
}
unsigned size() const { return state.size(); }
void cloneAfterInsertPt(SILInstruction *insertPt) {
LLVM_DEBUG(llvm::dbgs()
<< "Cloning debug info at insert pt: " << *insertPt);
if (!isa<TermInst>(insertPt)) {
for (auto value : state) {
if (!value)
continue;
LLVM_DEBUG(llvm::dbgs() << " Inst to clone: " << **value);
cloneDebugValue(value, insertPt);
}
return;
}
// Ok, we have a term inst, clone into our successors.
auto *ti = cast<TermInst>(insertPt);
for (auto *succBlock : ti->getSuccessorBlocks()) {
for (auto value : state) {
if (!value)
continue;
LLVM_DEBUG(llvm::dbgs() << " Inst to clone: " << **value);
cloneDebugValue(value, succBlock);
}
}
}
void cloneUndefOnlyAfterInsertPt(SILBasicBlock *insertBlock) {
LLVM_DEBUG(llvm::dbgs() << "Cloning debug info for undef at block: bb"
<< insertBlock->getDebugID() << '\n');
for (auto value : state) {
if (!value || !value.getSpareBits())
continue;
LLVM_DEBUG(llvm::dbgs() << " Inst to clone: " << **value);
cloneDebugValueMakeUndef(value, insertBlock);
}
}
};
} // namespace
/// Returns true if a new coroutine funclet begins immediately after this
/// instruction.
///
/// NOTE: \p inst could be a terminator if this is a yield!
static bool isAsyncFuncletEdge(SILInstruction *inst) {
// This handles begin_apply.
if (auto fas = FullApplySite::isa(inst)) {
if (fas.beginsCoroutineEvaluation() || fas.isAsync())
return true;
}
if (isa<HopToExecutorInst>(inst))
return true;
if (isa<EndApplyInst>(inst) || isa<AbortApplyInst>(inst))
return true;
return isa<YieldInst>(inst);
}
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
namespace {
struct BlockState {
DebugInstMutableArrayRef inState;
DebugInstMutableArrayRef outState;
DebugInstMutableArrayRef genSet;
/// Set to true by default so we can skip it when merging predecessors.
bool uninitializedOutState = true;
/// Set to true if this block had /any/ async edges within it. We use this to
/// limit the amount of blocks whose instructions we need to visit in our
/// final pass over the IR.
bool containsAsyncEdge = false;
void dump() const {
llvm::dbgs() << "BlockState.\n";
llvm::dbgs() << "Uninit Out State: "
<< (uninitializedOutState ? "true" : "false") << '\n';
llvm::dbgs() << "Contains Async Edge: "
<< (containsAsyncEdge ? "true" : "false") << '\n';
llvm::dbgs() << "InState.\n";
for (unsigned i : range(inState.size())) {
llvm::dbgs() << "[" << i << "] = "
<< llvm::format_hex(uintptr_t(*inState.getElt(i)), 16)
<< '\n';
}
llvm::dbgs() << "GenSet.\n";
for (unsigned i : range(genSet.size())) {
llvm::dbgs() << "[" << i << "] = "
<< llvm::format_hex(uintptr_t(*genSet.getElt(i)), 16)
<< '\n';
}
llvm::dbgs() << "OutSet.\n";
for (unsigned i : range(outState.size())) {
llvm::dbgs() << "[" << i << "] = "
<< llvm::format_hex(uintptr_t(*outState.getElt(i)), 16)
<< '\n';
}
}
};
} // namespace
namespace {
struct DebugInfoPropagator {
SILFunction *fn;
/// Set to true if we find /any/ func lets. We use this to know if we should
/// early exit from the function. We purposely do not store this information
/// on a per block level since we need to iterate over instructions right
/// before we end... allowing us to save some memory.
bool foundFuncLets = false;
/// The total number of blocks in fn. We cache this when we have an
/// opportunity early to compute this.
unsigned numBlocks = 0;
/// A map from a SILDebugVariable to its offset in the dataflow bitvectors
/// allocated to it.
///
/// The debug variables offset is defined by the count of debug vars we have
/// seen so far when we see a specific SILDebugVariable the first time. This
/// ensures that our SILDebugVariables will not change from compiler run to
/// compiler run.
llvm::SmallMapVector<SILDebugVariable, unsigned, 4> dbgVarToDbgVarIndexMap;
/// A multi map from a SILDebugVariable index to the set of generating
/// DebugVarCarryingInst for the variable within the entire function. Used to
/// partition easily the set of debug instructions.
FrozenMultiMap<unsigned, DebugVarCarryingInst> varToGenDbgInstsMultimap;
/// A dense map that maps each block to the global state that we track for
/// it. BlockState includes the various dataflow vectors.
llvm::DenseMap<SILBasicBlock *, BlockState> blockToBlockState;
/// Storage vector that contains all of our per block state.
///
/// Each block state struct maintains 3 mutable array ref data structures for
/// our dataflow that point into \p storage.
std::vector<DebugVarCarryingInst> storage;
/// The worklist that we use to store blocks that we visit during the global
/// dataflow.
std::vector<SILBasicBlock *> worklist;
DebugInfoPropagator(SILFunction *fn) : fn(fn) {}
/// Walk the CFG one block at a time finding gen out blocks. We also use this
/// as an opportunity to cache if a block has async edges to save a little
/// compile time later.
void performInitialLocalDataflow();
/// Initialize our dataflow state. Must run before performGlobalDataflow or
/// applyDataflow.
void initializeDataflowState();
/// Performs the global dataflow.
///
/// We only run this if we have any "GEN"ed debug values that escape to the
/// end of a block.
void performGlobalDataflow();
/// Given that we have initialized the dataflow and performed the global
/// dataflow if we needed to... apply our dataflow by inserting debug info
/// instructions as needed.
bool applyDataflow();
/// Top level function that performs local dataflow, global dataflow, and then
/// applies said dataflow.
bool process();
unsigned getIndexForDebugVar(const SILDebugVariable &debugVar) {
// We take advantage of insert not inserting if we already inserted debug
// var with a count already and return that value. If we did not, we insert
// with the new count before expanding the set (initializing the map with
// the correct value).
auto debugVariable = debugVar;
debugVariable.DIExpr = debugVariable.DIExpr.getFragmentPart();
debugVariable.Type = {};
auto iter = dbgVarToDbgVarIndexMap.insert(
{debugVariable, dbgVarToDbgVarIndexMap.size()});
LLVM_DEBUG(if (iter.second) llvm::dbgs()
<< "Mapping: [" << iter.first->second
<< "] = " << iter.first->first.Name << '\n';);
return iter.first->second;
}
/// Once we have performed our initial processing to gather up debug info
/// instructions, this returns the total number of SILDebugVariable slots
/// needed for our dataflow to be performed.
unsigned getEltsPerBlock() const {
assert(varToGenDbgInstsMultimap.isFrozen() &&
"We do not know the number of elts per block until we freeze the "
"varToGenDbgInstsMultiMap");
return dbgVarToDbgVarIndexMap.size();
}
};
} // namespace
void DebugInfoPropagator::performInitialLocalDataflow() {
// Map from SILDebugVariable index to the last DebugVarCarryingInst mapped to
// that SILDebugVariable in the block we are processing.
llvm::SmallMapVector<unsigned, DebugVarCarryingInst, 4> blockLastGenInst;
// Walk through the function, mapping SILDebugVariable ->
// DebugVarCarryingInst. We use our multi-map later to update our gen set once
// we know how many SILDebugVariable that we actually need to track in each of
// our block's vectors.
for (auto &block : *fn) {
// Track the total number of blocks so that we can use this in
// initializeDataflowState to initialize enough memory for all of our blocks
// without needing to iterate over the blocks an additional time.
++numBlocks;
// blockLastGenInst is per block state, so use SWIFT_DEFER to make sure we
// don't forget to clean it up before processing the next block.
SWIFT_DEFER { blockLastGenInst.clear(); };
auto &blockState = blockToBlockState[&block];
LLVM_DEBUG(llvm::dbgs()
<< "Visiting Block: bb" << block.getDebugID() << '\n');
for (auto &inst : block) {
LLVM_DEBUG(llvm::dbgs() << "Visiting inst: " << inst);
// If we have a funclet edge, just note that we saw one so we can exit
// early if we do not have any. We are going to actually emit our
// debug_value with a 2nd pass after we perform dataflow. We could store
// these, but it probably isn't worth adding an additional SmallVector to
// BlockState. It would make BlockState even larger and potentially malloc
// memory if the data structure went large.
if (isAsyncFuncletEdge(&inst)) {
LLVM_DEBUG(llvm::dbgs() << " Found funclet edge!\n");
blockState.containsAsyncEdge = true;
foundFuncLets = true;
continue;
}
// If we have a moved debug var carrying instruction (alloc_stack,
// debug_value, etc)...
auto debugInst = DebugVarCarryingInst(&inst);
if (!debugInst) {
LLVM_DEBUG(llvm::dbgs() << "Found a non debug inst?! Continuing\n");
continue;
}
if (!debugInst.getWasMoved()) {
LLVM_DEBUG(
llvm::dbgs()
<< " Found a moved debug that was moved... continuing!\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Found DebugValueInst!\n");
// ... and we have a non-empty SILDebugVariable.
auto debugInfo = debugInst.getVarInfo();
if (!debugInfo) {
LLVM_DEBUG(llvm::dbgs() << " Has no var info?! Skipping!\n");
continue;
}
// If debugInfo is a SILDebugVariable, we haven't seen before, update the
// dbgVarToOffsetMap with a new offset for it. We are taking advantage of
// insert not doing anything if debugInfo was already in there.
unsigned dbgVarIndex = getIndexForDebugVar(*debugInfo);
// Check if our debug inst is an undef. If so, we store an undef sentinel
// value. This just means the spare bit is set to 1.
if (isa<SILUndef>(debugInst.getOperandForDebugValueClone())) {
debugInst.setSpareBits(1);
}
// Destructively update blockLastGenInst with this. This ensures we always
// take the last debug inst.
blockLastGenInst[dbgVarIndex] = debugInst;
}
LLVM_DEBUG(llvm::dbgs() << " Postprocessing gen/kill for block: bb"
<< block.getDebugID() << '\n');
// Now post-process our state beginning by adding the set of last gened
// debug var carrying inst to our multi-map.
for (auto pair : blockLastGenInst) {
LLVM_DEBUG(llvm::dbgs() << "Gen: " << **pair.second);
varToGenDbgInstsMultimap.insert(pair.first, pair.second);
}
}
}
void DebugInfoPropagator::initializeDataflowState() {
// Gather up our num elts.
//
// NOTE: This is going to be larger than the actual amount of
// DebugVarCarryingInst per block that we need. This is because we are going
// to deduplicate debug_value upon the same operand. So we will just not use
// the now unused (and seemingly dead) other dbg insts. This just simplifies
// the logic.
unsigned eltsPerBlock = getEltsPerBlock();
unsigned numBitSetsPerBlock = 3;
unsigned totalElements = eltsPerBlock * numBlocks * numBitSetsPerBlock;
storage.resize(totalElements);
// Loop over the blocks again, initializing their memory. We do this later
// since we need to know the total amount of debug var carrying inst, we are
// going to gen.
//
// We also take this opportunity to insert into our worklist the initial set
// of blocks we process. We begin by inserting all blocks into the worklist.
MutableArrayRef<DebugVarCarryingInst> storageRef = {storage.data(),
storage.size()};
for (auto &block : *fn) {
worklist.push_back(&block);
auto &state = blockToBlockState[&block];
state.inState = {storageRef.take_front(eltsPerBlock)};
storageRef = storageRef.drop_front(eltsPerBlock);
state.outState = {storageRef.take_front(eltsPerBlock)};
storageRef = storageRef.drop_front(eltsPerBlock);
state.genSet = {storageRef.take_front(eltsPerBlock)};
storageRef = storageRef.drop_front(eltsPerBlock);
}
// Now that our blocks are initialized with state, lets go through all of our
// gen dbg insts and update the block sets.
//
// NOTE: The index (pair.first) is going to be the index of the debug inst
// rather than the debug inst itself.
for (auto pair : varToGenDbgInstsMultimap.getRange()) {
auto dbgInstSet = pair.second;
for (auto debugInst : dbgInstSet) {
assert(debugInst && "null DebugVarCarryingInst");
auto &state = blockToBlockState[debugInst->getParent()];
state.genSet.getElt(pair.first) = debugInst;
}
}
}
void DebugInfoPropagator::performGlobalDataflow() {
// Ok, now we are all setup to perform our dataflow.
LLVM_DEBUG(llvm::dbgs() << "Performing dataflow!\n");
std::vector<SILBasicBlock *> pending;
SmallPtrSet<SILBasicBlock *, 8> inPendingWorklist;
std::vector<DebugVarCarryingInst> tmpDataStorage(getEltsPerBlock());
DebugInstMutableArrayRef tmpData = {MutableArrayRef<DebugVarCarryingInst>(
tmpDataStorage.data(), tmpDataStorage.size())};
// We assume worklist is always filled at the top of this loop. We know the
// first iteration this is true since:
//
// 1. If we did not have any gen instructions, we would not get to this
// point implying we should have initial blocks.
//
// 2. When we go back around the loop, worklist will only have flushed
// values within it.
do {
while (!worklist.empty()) {
auto *block = worklist.back();
worklist.pop_back();
auto &blockState = blockToBlockState[block];
LLVM_DEBUG(llvm::dbgs()
<< "Visiting block: bb" << block->getDebugID() << '\n');
LLVM_DEBUG(blockState.dump());
bool visitedFirstPred = false;
for (auto *pred : block->getPredecessorBlocks()) {
auto &predBlockState = blockToBlockState[pred];
LLVM_DEBUG(llvm::dbgs()
<< "PredBlock: bb" << pred->getDebugID() << '\n';
predBlockState.dump());
// Skip uninitialized preds.
if (predBlockState.uninitializedOutState) {
LLVM_DEBUG(llvm::dbgs() << " Skipping uninit block...\n");
continue;
}
// If this is our first pred, just initialize our instate with that
// pred.
if (!visitedFirstPred) {
LLVM_DEBUG(llvm::dbgs() << " First pred... initing!\n");
visitedFirstPred = true;
blockState.inState.copy(predBlockState.outState);
continue;
}
// Otherwise, lets merge!
for (unsigned index : range(getEltsPerBlock())) {
auto ¤tValue = blockState.inState.getElt(index);
// If we already have nothing for this slot...
if (!currentValue) {
// Check if we have a value for this slot in our pred... if we do,
// we will need to insert an invalidating undef here later. So just
// set currentValue to be dbgVar and set the spare bit to 1 to mark
// it as an undef. This ensures that when we propagate this into
// blocks, we have the appropriate SILDebugVariable stored and know
// the value is undef.
if (auto dbgVar = predBlockState.outState.getElt(index)) {
LLVM_DEBUG(llvm::dbgs()
<< "Invalidating along one path... inserting undef "
"at merge point?!\n");
currentValue = dbgVar;
currentValue.setSpareBits(1);
}
// In either case, we then continue.
continue;
}
// Otherwise, do our intersection.
if (currentValue == predBlockState.outState.getElt(index))
continue;
// If our intersection fails, need to insert later SILUndef
// debug_value at merge point. Set the spareBit to 1 so we know this
// is undef.
currentValue.setSpareBits(1);
LLVM_DEBUG(llvm::dbgs() << "Invalidating along one path... "
"inserting undef at merge point 2?!\n");
}
}
// Now we have our input set for the top of our block. Copy it into
// tmpData and then prepare to update it based off of the gen state of
// the block.
tmpData.copy(blockState.inState);
// Now add in our gen set. This overwrites anything acting as a
// combination of a gen/kill.
for (unsigned index : range(getEltsPerBlock())) {
auto &value = tmpData.getElt(index);
if (auto newValue = blockState.genSet.getElt(index))
value = newValue;
}
// Now compare our tmpData with blockState.outSet. If they are
// different, copy tmpData into blockState.outSet and add all of our
// successors to pending.
if (blockState.uninitializedOutState || tmpData != blockState.outState) {
blockState.uninitializedOutState = false;
blockState.outState.copy(tmpData);
for (auto *succBlock : block->getSuccessorBlocks()) {
if (inPendingWorklist.insert(succBlock).second) {
LLVM_DEBUG(llvm::dbgs() << "Adding to pending list: bb"
<< succBlock->getDebugID() << '\n');
pending.push_back(succBlock);
}
}
}
LLVM_DEBUG(llvm::dbgs() << "After Round.\n"; blockState.dump());
}
std::swap(worklist, pending);
inPendingWorklist.clear();
} while (!worklist.empty());
}
bool DebugInfoPropagator::applyDataflow() {
// NOTE: We use the per block inState to accumulate results as we walk the
// function. This is why we still call initializeDataflowState before calling
// this function rather than skipping calling said function if we do not need
// to perform a global dataflow.
bool madeChange = false;
for (auto &block : *fn) {
auto &blockState = blockToBlockState[&block];
// First before we do anything, dump the current undef state if we have
// multiple predecessors. This ensures that at merge points, we propagate
// undef appropriately.
if (!block.pred_empty() && !block.getSinglePredecessorBlock())
blockState.inState.cloneUndefOnlyAfterInsertPt(&block);
// Then check if this block has any async edges in it at all... If we don't
// have any edges, then we do not need to visit the internal instruction
// state of the block.
if (!blockState.containsAsyncEdge)
continue;
// Otherwise, we need to walk the block from top to bottom, dumping the
// current available debug info whenever we see an async funclet
// boundary. We update our info for in block debug_value that we see.
for (auto &inst : block) {
if (isAsyncFuncletEdge(&inst)) {
blockState.inState.cloneAfterInsertPt(&inst);
madeChange = true;
continue;
}
// Check if we have a debug inst that we need to update.
auto debugInst = DebugVarCarryingInst(&inst);
if (!debugInst || !debugInst.getWasMoved())
continue;
auto debugInfo = debugInst.getVarInfo();
if (!debugInfo)
continue;
unsigned offset = dbgVarToDbgVarIndexMap[*debugInfo];
blockState.inState.getElt(offset) = debugInst;
}
}
return madeChange;
}
bool DebugInfoPropagator::process() {
// Begin by performing our local dataflow.
performInitialLocalDataflow();
// If we didn't find any funclets or any moved gen dbg, just bail.
if (!foundFuncLets) {
LLVM_DEBUG(llvm::dbgs() << "Exiting early! No seen func let edges?!\n");
return false;
}
// Ok, we may need to propagate. First sort our multi-maps so they are in
// multi-map mode.
varToGenDbgInstsMultimap.setFrozen();
// Then initialize our dataflow state. We do this whether or not we perform
// global dataflow since when applying the dataflow we use this state also for
// block internal propagation of the dataflow.
initializeDataflowState();
// Then if we found any debug values that "GEN"ed out of a block, perform our
// global dataflow.
if (varToGenDbgInstsMultimap.size()) {
LLVM_DEBUG(llvm::dbgs()
<< "Found gen out blocks, performing global dataflow!\n");
performGlobalDataflow();
} else {
LLVM_DEBUG(llvm::dbgs()
<< "No gen out blocks! skipping global dataflow!\n");
}
// At this point, we have finished performing our dataflow if we needed
// to. Now we apply the result.
//
// NOTE: If we found that we did not need to perform the dataflow, blocks will
// still have the appropriate state that their input dataflow state will be
// empty implying that we will just start each block without state, as we
// wanted to.
return applyDataflow();
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
namespace {
class MovedAsyncVarDebugInfoPropagatorTransform : public SILFunctionTransform {
void run() override {
auto *fn = getFunction();
LLVM_DEBUG(llvm::dbgs()
<< "*** MovedAsyncVarDebugInfoPropagatorTransform on function: '"
<< fn->getName() << "\"\n");
DebugInfoPropagator propagator(fn);
if (propagator.process()) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
};
} // end anonymous namespace
SILTransform *swift::createMovedAsyncVarDebugInfoPropagator() {
return new MovedAsyncVarDebugInfoPropagatorTransform();
}
|