1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
|
//===--- OSLogOptimizer.cpp - Optimizes calls to OS Log -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This pass implements SIL-level optimizations and diagnostics for the
/// os log APIs based on string interpolations. A mock version of the APIs
/// are available in the private module: OSLogTestHelper. This pass constant
/// evaluates the log calls along with the auto-generated calls to the custom
/// string interpolation methods, which processes the string interpolation
/// passed to the log calls, and folds the constants found during the
/// evaluation. The constants that are folded include the printf-style format
/// string that is constructed by the custom string interpolation methods from
/// the string interpolation, and the size and headers of the byte buffer into
/// which arguments are packed. This pass is closely tied to the implementation
/// of the log APIs.
///
/// Pass Dependencies: This pass depends on MandatoryInlining and Mandatory
/// Linking happening before this pass and ConstantPropagation happening after
/// this pass. This pass also uses `ConstExprStepEvaluator` defined in
/// `Utils/ConstExpr.cpp`.
///
/// Algorithm Overview:
///
/// This pass implements a function-level transformation that collects calls
/// to the initializer of the custom string interpolation type: OSLogMessage,
/// which are annotated with an @_semantics attribute, and performs the
/// following steps on each such call.
///
/// 1. Determines the range of instructions to constant evaluate.
/// The range starts from the first SIL instruction that begins the
/// construction of the custom string interpolation type: OSLogMessage to
/// the last transitive users of OSLogMessage. The log call which is marked
/// as @_transparent will be inlined into the caller before this pass
/// begins.
///
/// 2. Constant evaluates the range of instruction identified in Step 1 and
/// collects string and integer-valued instructions who values were found
/// to be constants. The evaluation uses 'ConsExprStepEvaluator' utility.
///
/// 3. After constant evaluation, the string and integer-value properties
/// of the custom string interpolation type: `OSLogInterpolation` must be
/// constants. This property is checked and any violations are diagnosed.
/// The errors discovered here may arise from the implementation of the
/// log APIs in the overlay or could be because of wrong usage of the
/// log APIs.
///
/// 4. The constant instructions that were found in step 2 are folded by
/// generating SIL code that produces the constants. This also removes
/// instructions that are dead after folding.
///
/// Code Overview:
///
/// The function 'OSLogOptimization::run' implements the overall driver for
/// steps 1 to 4. The function 'beginOfInterpolation' identifies the beginning of
/// interpolation (step 1) and the function 'getEndPointsOfDataDependentChain'
/// identifies the last transitive users of the OSLogMessage instance (step 1).
/// The function 'constantFold' is a driver for the steps 2 to 4. Step 2 is
/// implemented by the function 'collectConstants', step 3 by
/// 'detectAndDiagnoseErrors' and 'checkOSLogMessageIsConstant', and step 4 by
/// 'substituteConstants' and 'emitCodeForSymbolicValue'. The remaining
/// functions in the file implement the subtasks and utilities needed by the
/// above functions.
///
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/OptimizationMode.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Demangling/Demangler.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILConstants.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/CompileTimeInterpolationUtils.h"
#include "swift/SILOptimizer/Utils/ConstExpr.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/BreadthFirstIterator.h"
#include "llvm/ADT/MapVector.h"
using namespace swift;
using namespace Lowering;
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&... args) {
// The lifetime of StringRef arguments will be extended as necessary by this
// utility. The copy happens in onTentativeDiagnosticFlush at the bottom of
// DiagnosticEngine.cpp, which is called when the destructor of the
// InFlightDiagnostic returned by diagnose runs.
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
namespace {
/// If the given instruction is a call to the compiler-intrinsic initializer
/// of String that accepts string literals, return the called function.
/// Otherwise, return nullptr.
static SILFunction *getStringMakeUTF8Init(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return nullptr;
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !callee->hasSemanticsAttr(semantics::STRING_MAKE_UTF8))
return nullptr;
return callee;
}
// A cache of string-related, SIL information that is needed to create and
// initialize strings from raw string literals. This information is
// extracted from instructions while they are constant evaluated. Though the
// information contained here can be constructed from scratch, extracting it
// from existing instructions is more efficient.
class StringSILInfo {
/// SILFunction corresponding to an intrinsic string initializer that
/// constructs a Swift String from a string literal.
SILFunction *stringInitIntrinsic = nullptr;
/// SIL metatype of String.
SILType stringMetatype = SILType();
public:
/// Extract and cache the required string-related information from the
/// given instruction, if possible.
void extractStringInfoFromInstruction(SILInstruction *inst) {
// If the cache is already initialized do nothing.
if (stringInitIntrinsic)
return;
SILFunction *callee = getStringMakeUTF8Init(inst);
if (!callee)
return;
this->stringInitIntrinsic = callee;
MetatypeInst *stringMetatypeInst =
dyn_cast<MetatypeInst>(inst->getOperand(4)->getDefiningInstruction());
this->stringMetatype = stringMetatypeInst->getType();
}
bool isInitialized() { return stringInitIntrinsic != nullptr; }
SILFunction *getStringInitIntrinsic() const {
assert(stringInitIntrinsic);
return stringInitIntrinsic;
}
SILType getStringMetatype() const {
assert(stringMetatype);
return stringMetatype;
}
};
/// State needed for constant folding.
class FoldState {
public:
/// Storage for symbolic values constructed during interpretation.
SymbolicValueBumpAllocator allocator;
/// Evaluator for evaluating instructions one by one.
ConstExprStepEvaluator constantEvaluator;
/// Information needed for folding strings.
StringSILInfo stringInfo;
/// Instruction from where folding must begin.
SILInstruction *beginInstruction;
/// Instructions that mark the end points of constant evaluation.
llvm::SmallSetVector<SILInstruction *, 2> endInstructions;
private:
/// SIL values that were found to be constants during
/// constant evaluation.
SmallVector<SILValue, 4> constantSILValues;
public:
FoldState(SILFunction *fun, unsigned assertConfig, SILInstruction *beginInst,
ArrayRef<SILInstruction *> endInsts)
: constantEvaluator(allocator, fun, assertConfig),
beginInstruction(beginInst),
endInstructions(endInsts.begin(), endInsts.end()) {}
void addConstantSILValue(SILValue value) {
constantSILValues.push_back(value);
}
ArrayRef<SILValue> getConstantSILValues() {
return ArrayRef<SILValue>(constantSILValues);
}
};
/// Return true if and only if the given nominal type declaration is that of
/// a stdlib Int or stdlib Bool.
static bool isStdlibIntegerOrBoolDecl(NominalTypeDecl *numberDecl,
ASTContext &astCtx) {
return (numberDecl == astCtx.getIntDecl() ||
numberDecl == astCtx.getInt8Decl() ||
numberDecl == astCtx.getInt16Decl() ||
numberDecl == astCtx.getInt32Decl() ||
numberDecl == astCtx.getInt64Decl() ||
numberDecl == astCtx.getUIntDecl() ||
numberDecl == astCtx.getUInt8Decl() ||
numberDecl == astCtx.getUInt16Decl() ||
numberDecl == astCtx.getUInt32Decl() ||
numberDecl == astCtx.getUInt64Decl() ||
numberDecl == astCtx.getBoolDecl());
}
/// Return true if and only if the given SIL type represents a Stdlib or builtin
/// integer type or a Bool type.
static bool isIntegerOrBoolType(SILType silType, ASTContext &astContext) {
if (silType.is<BuiltinIntegerType>()) {
return true;
}
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
return nominalDecl && isStdlibIntegerOrBoolDecl(nominalDecl, astContext);
}
/// Return true iff the given value is a stdlib Int or Bool and it not a direct
/// construction of Int or Bool.
static bool isFoldableIntOrBool(SILValue value, ASTContext &astContext) {
return isIntegerOrBoolType(value->getType(), astContext) &&
!isa<StructInst>(value);
}
/// Return true iff the given value is a string and is not an initialization
/// of an string from a string literal.
static bool isFoldableString(SILValue value, ASTContext &astContext) {
return value->getType().getASTType()->isString() &&
(!isa<ApplyInst>(value) ||
!getStringMakeUTF8Init(cast<ApplyInst>(value)));
}
/// Return true iff the given value is an array and is not an initialization
/// of an array from an array literal.
static bool isFoldableArray(SILValue value, ASTContext &astContext) {
if (!value->getType().getASTType()->isArray())
return false;
// If value is an initialization of an array from a literal or an empty array
// initializer, it need not be folded. Arrays constructed from literals use a
// function with semantics: "array.uninitialized_intrinsic" that returns
// a pair, where the first element of the pair is the array.
SILInstruction *definingInst = value->getDefiningInstruction();
if (!definingInst)
return true;
SILInstruction *constructorInst = definingInst;
if (isa<DestructureTupleInst>(definingInst) ||
isa<TupleExtractInst>(definingInst)) {
constructorInst = definingInst->getOperand(0)->getDefiningInstruction();
}
if (!constructorInst || !isa<ApplyInst>(constructorInst))
return true;
SILFunction *callee = cast<ApplyInst>(constructorInst)->getCalleeFunction();
return !callee ||
(!callee->hasSemanticsAttr(semantics::ARRAY_INIT_EMPTY) &&
!callee->hasSemanticsAttr(semantics::ARRAY_UNINITIALIZED_INTRINSIC) &&
!callee->hasSemanticsAttr(semantics::ARRAY_FINALIZE_INTRINSIC));
}
/// Return true iff the given value is a closure but is not a creation of a
/// closure e.g., through partial_apply or thin_to_thick_function or
/// convert_function.
static bool isFoldableClosure(SILValue value) {
return value->getType().is<SILFunctionType>() &&
(!isa<FunctionRefInst>(value) && !isa<PartialApplyInst>(value) &&
!isa<ThinToThickFunctionInst>(value) &&
!isa<ConvertFunctionInst>(value));
}
/// Check whether a SILValue is foldable. String, integer, array and
/// function values are foldable with the following exceptions:
/// - Addresses cannot be folded.
/// - Literals need not be folded.
/// - Results of ownership instructions like load_borrow/copy_value need not
/// be folded
/// - Constructors such as \c struct Int or \c string.init() need not be folded.
static bool isSILValueFoldable(SILValue value) {
SILInstruction *definingInst = value->getDefiningInstruction();
if (!definingInst)
return false;
ASTContext &astContext = definingInst->getFunction()->getASTContext();
SILType silType = value->getType();
return (!silType.isAddress() && !isa<LiteralInst>(definingInst) &&
!isa<LoadBorrowInst>(definingInst) &&
!isa<BeginBorrowInst>(definingInst) &&
!isa<MoveValueInst>(definingInst) &&
!isa<CopyValueInst>(definingInst) &&
(isFoldableIntOrBool(value, astContext) ||
isFoldableString(value, astContext) ||
isFoldableArray(value, astContext) || isFoldableClosure(value)));
}
/// Diagnose traps and instruction-limit exceeded errors. These have customized
/// error messages. \returns true if the given error is diagnosed. Otherwise,
/// returns false.
static bool diagnoseSpecialErrors(SILInstruction *unevaluableInst,
SymbolicValue errorInfo) {
SourceLoc sourceLoc = unevaluableInst->getLoc().getSourceLoc();
ASTContext &ctx = unevaluableInst->getFunction()->getASTContext();
UnknownReason unknownReason = errorInfo.getUnknownReason();
if (unknownReason.getKind() == UnknownReason::Trap) {
// We have an assertion failure or fatal error.
diagnose(ctx, sourceLoc, diag::oslog_constant_eval_trap,
unknownReason.getTrapMessage());
return true;
}
if (unknownReason.getKind() == UnknownReason::TooManyInstructions) {
// This should not normally happen. But could be because of extensions
// defined by users, or very rarely due to unknown bugs in the os_log API
// implementation. These errors may get hidden during testing as it is input
// specific.
diagnose(ctx, sourceLoc, diag::oslog_too_many_instructions);
return true;
}
return false;
}
/// Diagnose failure during evaluation of a call to a constant-evaluable
/// function that is not a specially-handled error. These are errors that
/// happen within 'appendInterpolation' calls, which must be constant
/// evaluable by the definition of APIs.
static void diagnoseErrorInConstantEvaluableFunction(ApplyInst *call,
SymbolicValue errorInfo) {
SILFunction *callee = call->getCalleeFunction();
assert(callee);
SILLocation loc = call->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
ASTContext &astContext = callee->getASTContext();
// Here, we know very little about what actually went wrong. It could be due
// to bugs in the library implementation or in extensions created by users.
// Emit a general message here and some diagnostic notes.
std::string demangledCalleeName = Demangle::demangleSymbolAsString(
callee->getName(),
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
diagnose(astContext, sourceLoc, diag::oslog_invalid_log_message);
diagnose(astContext, sourceLoc, diag::oslog_const_evaluable_fun_error,
demangledCalleeName);
errorInfo.emitUnknownDiagnosticNotes(loc);
}
/// Detect and emit diagnostics for errors found during evaluation. Errors
/// can happen due to bugs in the implementation of the os log API, or
/// due to incorrect use of the os log API.
static bool detectAndDiagnoseErrors(SymbolicValue errorInfo,
SILInstruction *unevaluableInst) {
// TODO: fix the globalStrinTableBuiltin error after emitting diagnostics.
SILFunction *parentFun = unevaluableInst->getFunction();
ASTContext &astContext = parentFun->getASTContext();
if (diagnoseSpecialErrors(unevaluableInst, errorInfo))
return true;
// If evaluation of any constant_evaluable function call fails, point
// to that failed function along with a reason.
ApplyInst *call = dyn_cast<ApplyInst>(unevaluableInst);
if (call) {
SILFunction *callee = call->getCalleeFunction();
if (callee && isConstantEvaluable(callee)) {
diagnoseErrorInConstantEvaluableFunction(call, errorInfo);
return true; // abort evaluation.
}
}
// Every other error must happen in the top-level code containing the string
// interpolation construction and body of the log methods. If we have a
// fail-stop error, point to the error and abort evaluation. Otherwise, just
// ignore the error and continue evaluation as this error might not affect the
// constant value of the OSLogMessage instance.
if (isFailStopError(errorInfo)) {
SILLocation loc = unevaluableInst->getLoc();
diagnose(astContext, loc.getSourceLoc(), diag::oslog_invalid_log_message);
errorInfo.emitUnknownDiagnosticNotes(loc);
return true;
}
return false;
}
/// Given a 'foldState', constant evaluate instructions from
/// 'foldState.beginInstruction' until an instruction in
/// 'foldState.endInstructions' is seen. Add foldable, constant-valued
/// instructions discovered during the evaluation to
/// 'foldState.constantSILValues'.
/// \returns error information if the evaluation failed.
static std::optional<SymbolicValue> collectConstants(FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILBasicBlock::iterator currI = foldState.beginInstruction->getIterator();
auto &endInstructions = foldState.endInstructions;
// The loop will break when it sees a return instruction or an instruction in
// endInstructions or when the next instruction to evaluate cannot be
// determined (which may happened due to non-constant branches).
while (true) {
SILInstruction *currInst = &(*currI);
if (endInstructions.count(currInst))
break;
// Initialize string info from this instruction if possible.
foldState.stringInfo.extractStringInfoFromInstruction(currInst);
std::optional<SymbolicValue> errorInfo = std::nullopt;
std::optional<SILBasicBlock::iterator> nextI = std::nullopt;
std::tie(nextI, errorInfo) = evaluateOrSkip(constantEvaluator, currI);
// If the evaluation of this instruction failed, check whether it should be
// diagnosed and reported. If so, abort evaluation. Otherwise, continue
// evaluation if possible as this error could be due to an instruction that
// doesn't affect the OSLogMessage value.
if (errorInfo && detectAndDiagnoseErrors(errorInfo.value(), currInst)) {
return errorInfo;
}
if (!nextI) {
// We cannot find the next instruction to continue evaluation, and we
// haven't seen any reportable errors during evaluation. Therefore,
// consider this the end point of evaluation.
return std::nullopt; // No error.
}
// Set the next instruction to continue evaluation from.
currI = nextI.value();
// If the instruction results are foldable and if we found a constant value
// for the results, record it.
for (SILValue instructionResult : currInst->getResults()) {
if (!isSILValueFoldable(instructionResult))
continue;
std::optional<SymbolicValue> constantVal =
constantEvaluator.lookupConstValue(instructionResult);
if (constantVal.has_value()) {
foldState.addConstantSILValue(instructionResult);
}
}
}
return std::nullopt; // No error.
}
/// Generate SIL code to create an array of constant size from the given
/// SILValues \p elements. This function creates the same sequence of SIL
/// instructions that would be generated for initializing an array from an array
/// literal of the form [element1, element2, ..., elementn].
///
/// \param elements SILValues that the array should contain
/// \param arrayType the type of the array that must be created.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the array.
/// \param loc SILLocation to use in the emitted instructions.
/// \return the SILValue of the array that is created with the given \c
/// elements.
static SILValue emitCodeForConstantArray(ArrayRef<SILValue> elements,
CanType arrayType, SILBuilder &builder,
SILLocation loc) {
ASTContext &astContext = builder.getASTContext();
assert(arrayType->isArray());
SILModule &module = builder.getModule();
// Create a SILValue for the number of elements.
unsigned numElements = elements.size();
SILValue numElementsSIL = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), numElements);
// Find the SILFunction that corresponds to _allocateUninitializedArray.
FuncDecl *arrayAllocateDecl = astContext.getAllocateUninitializedArray();
assert(arrayAllocateDecl);
std::string allocatorMangledName =
SILDeclRef(arrayAllocateDecl, SILDeclRef::Kind::Func).mangle();
SILFunction *arrayAllocateFun =
module.loadFunction(allocatorMangledName,
SILModule::LinkingMode::LinkNormal);
assert(arrayAllocateFun);
SILFunction *arrayFinalizeFun = nullptr;
if (numElements != 0) {
if (FuncDecl *arrayFinalizeDecl = astContext.getFinalizeUninitializedArray()) {
std::string finalizeMangledName =
SILDeclRef(arrayFinalizeDecl, SILDeclRef::Kind::Func).mangle();
arrayFinalizeFun =
module.loadFunction(finalizeMangledName,
SILModule::LinkingMode::LinkNormal);
assert(arrayFinalizeFun);
}
}
// Call the _allocateUninitializedArray function with numElementsSIL. The
// call returns a two-element tuple, where the first element is the newly
// created array and the second element is a pointer to the internal storage
// of the array.
SubstitutionMap subMap = arrayType->getContextSubstitutionMap(
module.getSwiftModule(), astContext.getArrayDecl());
FunctionRefInst *arrayAllocateRef =
builder.createFunctionRef(loc, arrayAllocateFun);
ApplyInst *applyInst = builder.createApply(
loc, arrayAllocateRef, subMap, ArrayRef<SILValue>(numElementsSIL));
// Extract the elements of the tuple returned by the call to the allocator.
DestructureTupleInst *destructureInst =
builder.createDestructureTuple(loc, applyInst);
SILValue arraySIL = destructureInst->getResults()[0];
SILValue storagePointerSIL = destructureInst->getResults()[1];
storagePointerSIL = builder.createMarkDependence(
loc, storagePointerSIL, arraySIL, MarkDependenceKind::Escaping);
if (elements.empty()) {
// Nothing more to be done if we are creating an empty array.
return arraySIL;
}
// Convert the pointer to the storage to an address. The elements will be
// stored into offsets from this address.
SILType elementSILType = elements[0]->getType();
PointerToAddressInst *storageAddr = builder.createPointerToAddress(
loc, storagePointerSIL, elementSILType.getAddressType(),
/*isStrict*/ true,
/*isInvariant*/ false);
// Iterate over the elements and store them into the storage address
// after offsetting it appropriately.
// Create a TypeLowering for emitting stores. Note that TypeLowering
// provides a utility for emitting stores for storing trivial and
// non-trivial values, and also handles OSSA and non-OSSA.
const TypeLowering &elementTypeLowering =
builder.getTypeLowering(elementSILType);
unsigned elementIndex = 0;
for (SILValue elementSIL : elements) {
// Compute the address where the element must be stored.
SILValue currentStorageAddr;
if (elementIndex != 0) {
SILValue indexSIL = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), elementIndex);
currentStorageAddr = builder.createIndexAddr(loc, storageAddr, indexSIL,
/*needsStackProtection=*/ false);
} else {
currentStorageAddr = storageAddr;
}
// Store the generated element into the currentStorageAddr. This is an
// initializing store and therefore there is no need to free any existing
// element.
elementTypeLowering.emitStore(builder, loc, elementSIL, currentStorageAddr,
StoreOwnershipQualifier::Init);
++elementIndex;
}
if (arrayFinalizeFun) {
FunctionRefInst *arrayFinalizeRef =
builder.createFunctionRef(loc, arrayFinalizeFun);
arraySIL = builder.createApply(loc, arrayFinalizeRef, subMap,
ArrayRef<SILValue>(arraySIL));
}
return arraySIL;
}
/// Given a SILValue \p value, return the instruction immediately following the
/// definition of the value. That is, if the value is defined by an
/// instruction, return the instruction following the definition. Otherwise, if
/// the value is a basic block parameter, return the first instruction of the
/// basic block.
SILInstruction *getInstructionFollowingValueDefinition(SILValue value) {
SILInstruction *definingInst = value->getDefiningInstruction();
if (definingInst) {
return &*std::next(definingInst->getIterator());
}
// Here value must be a basic block argument.
SILBasicBlock *bb = value->getParentBlock();
return &*bb->begin();
}
/// Given a SILValue \p value, create a copy of the value using copy_value in
/// OSSA or retain in non-OSSA, if \p value is a non-trivial type. Otherwise, if
/// \p value is a trivial type, return the value itself.
SILValue makeOwnedCopyOfSILValue(SILValue value, SILFunction &fun) {
SILType type = value->getType();
if (type.isTrivial(fun) || type.isAddress())
return value;
SILInstruction *instAfterValueDefinition =
getInstructionFollowingValueDefinition(value);
SILLocation copyLoc = instAfterValueDefinition->getLoc();
SILBuilderWithScope builder(instAfterValueDefinition);
const TypeLowering &typeLowering = builder.getTypeLowering(type);
SILValue copy = typeLowering.emitCopyValue(builder, copyLoc, value);
return copy;
}
/// Generate SIL code that computes the constant given by the symbolic value
/// `symVal`. Note that strings and struct-typed constant values will require
/// multiple instructions to be emitted.
/// \param symVal symbolic value for which SIL code needs to be emitted.
/// \param expectedType the expected type of the instruction that would be
/// computing the symbolic value `symVal`. The type is accepted as a
/// parameter as some symbolic values like integer constants can inhabit more
/// than one type.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the symbolic value
/// \param loc SILLocation to use in the emitted instructions.
/// \param stringInfo String.init and metatype information for generating code
/// for string literals.
static SILValue emitCodeForSymbolicValue(SymbolicValue symVal,
Type expectedType, SILBuilder &builder,
SILLocation &loc,
StringSILInfo &stringInfo) {
ASTContext &astContext = expectedType->getASTContext();
switch (symVal.getKind()) {
case SymbolicValue::String: {
assert(expectedType->isString());
StringRef stringVal = symVal.getStringValue();
StringLiteralInst *stringLitInst = builder.createStringLiteral(
loc, stringVal, StringLiteralInst::Encoding::UTF8_OSLOG);
// Create a builtin word for the size of the string
IntegerLiteralInst *sizeInst = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), stringVal.size());
// Set isAscii to false.
IntegerLiteralInst *isAscii = builder.createIntegerLiteral(
loc, SILType::getBuiltinIntegerType(1, astContext), 0);
// Create a metatype inst.
MetatypeInst *metatypeInst =
builder.createMetatype(loc, stringInfo.getStringMetatype());
auto args = SmallVector<SILValue, 4>();
args.push_back(stringLitInst);
args.push_back(sizeInst);
args.push_back(isAscii);
args.push_back(metatypeInst);
FunctionRefInst *stringInitRef =
builder.createFunctionRef(loc, stringInfo.getStringInitIntrinsic());
ApplyInst *applyInst = builder.createApply(
loc, stringInitRef, SubstitutionMap(), ArrayRef<SILValue>(args));
return applyInst;
}
case SymbolicValue::Integer: { // Builtin integer types.
APInt resInt = symVal.getIntegerValue();
assert(expectedType->is<BuiltinIntegerType>());
SILType builtinIntType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
IntegerLiteralInst *intLiteralInst =
builder.createIntegerLiteral(loc, builtinIntType, resInt);
return intLiteralInst;
}
case SymbolicValue::Aggregate: {
// Support only stdlib integer or bool structs.
StructDecl *structDecl = expectedType->getStructOrBoundGenericStruct();
assert(structDecl);
assert(isStdlibIntegerOrBoolDecl(structDecl, astContext));
assert(symVal.getAggregateType()->isEqual(expectedType) &&
"aggregate symbolic value's type and expected type do not match");
VarDecl *propertyDecl = structDecl->getStoredProperties().front();
Type propertyType = expectedType->getTypeOfMember(
propertyDecl->getModuleContext(), propertyDecl);
SymbolicValue propertyVal = symVal.lookThroughSingleElementAggregates();
SILValue newPropertySIL = emitCodeForSymbolicValue(
propertyVal, propertyType, builder, loc, stringInfo);
// The lowered SIL type of an integer/bool type is just the primitive
// object type containing the Swift type.
SILType aggregateType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
StructInst *newStructInst = builder.createStruct(
loc, aggregateType, ArrayRef<SILValue>(newPropertySIL));
return newStructInst;
}
case SymbolicValue::Array: {
assert(expectedType->isEqual(symVal.getArrayType()));
CanType elementType;
ArrayRef<SymbolicValue> arrayElements =
symVal.getStorageOfArray().getStoredElements(elementType);
auto elementSILType = builder.getModule().Types
.getLoweredType(AbstractionPattern::getOpaque(), elementType,
TypeExpansionContext(builder.getFunction()));
// Emit code for the symbolic values corresponding to the array elements.
SmallVector<SILValue, 8> elementSILValues;
for (SymbolicValue elementSymVal : arrayElements) {
SILValue elementSIL = emitCodeForSymbolicValue(elementSymVal,
elementSILType.getASTType(),
builder, loc, stringInfo);
elementSILValues.push_back(elementSIL);
}
SILValue arraySIL = emitCodeForConstantArray(
elementSILValues, expectedType->getCanonicalType(), builder, loc);
return arraySIL;
}
case SymbolicValue::Closure: {
assert(expectedType->is<AnyFunctionType>() ||
expectedType->is<SILFunctionType>());
SILModule &module = builder.getModule();
SymbolicClosure *closure = symVal.getClosure();
SILValue resultVal;
// If the closure was created in the context of this function where the code
// is generated, reuse the original closure value (after extending its
// lifetime by copying).
SingleValueInstruction *originalClosureInst = closure->getClosureInst();
SILFunction &fun = builder.getFunction();
if (originalClosureInst->getFunction() == &fun) {
// Copy the closure, since the returned value must be owned and the
// closure's lifetime must be extended until this point.
resultVal = makeOwnedCopyOfSILValue(originalClosureInst, fun);
} else {
// If the closure captures a value that is not a constant, it should only
// come from the caller of the log call. It should be handled by the then
// case and we should never reach here. Assert this.
assert(closure->hasOnlyConstantCaptures() &&
"closure with non-constant captures not defined in this function");
SubstitutionMap callSubstMap = closure->getCallSubstitutionMap();
ArrayRef<SymbolicClosureArgument> captures = closure->getCaptures();
// Recursively emit code for all captured values which must be mapped to a
// symbolic value.
SmallVector<SILValue, 4> capturedSILVals;
for (SymbolicClosureArgument capture : captures) {
SILValue captureOperand = capture.first;
std::optional<SymbolicValue> captureSymVal = capture.second;
assert(captureSymVal);
// Note that the captured operand type may have generic parameters which
// has to be substituted with the substitution map that was inferred by
// the constant evaluator at the partial-apply site.
SILType operandType = captureOperand->getType();
SILType captureType = operandType.subst(module, callSubstMap);
SILValue captureSILVal = emitCodeForSymbolicValue(
captureSymVal.value(), captureType.getASTType(), builder, loc,
stringInfo);
capturedSILVals.push_back(captureSILVal);
}
FunctionRefInst *functionRef =
builder.createFunctionRef(loc, closure->getTarget());
SILType closureType = closure->getClosureType();
ParameterConvention convention =
closureType.getAs<SILFunctionType>()->getCalleeConvention();
resultVal = builder.createPartialApply(loc, functionRef, callSubstMap,
capturedSILVals, convention);
}
// If the expected type is a SILFunctionType convert the closure to the
// expected type using a convert_function instruction. Otherwise, if the
// expected type is AnyFunctionType, nothing needs to be done.
// Note that we cannot assert the lowering in the latter case, as that
// utility doesn't exist yet.
auto resultType = resultVal->getType().castTo<SILFunctionType>();
CanType expectedCanType = expectedType->getCanonicalType();
if (auto expectedFnType = dyn_cast<SILFunctionType>(expectedCanType)) {
assert(expectedFnType->getUnsubstitutedType(module)
== resultType->getUnsubstitutedType(module));
// Convert to the expected type if necessary.
if (expectedFnType != resultType) {
auto convert = builder.createConvertFunction(
loc, resultVal, SILType::getPrimitiveObjectType(expectedFnType),
false);
return convert;
}
}
return resultVal;
}
default: {
llvm_unreachable("Symbolic value kind is not supported");
}
}
}
/// Collect the end points of the instructions that are data dependent on \c
/// value. A instruction is data dependent on \c value if its result may
/// transitively depends on \c value. Note that data dependencies through
/// addresses are not tracked by this function.
///
/// \param value SILValue that is not an address.
/// \param fun SILFunction that defines \c value.
/// \param endUsers buffer for storing the found end points of the data
/// dependence chain.
static void
getEndPointsOfDataDependentChain(SingleValueInstruction *value, SILFunction *fun,
SmallVectorImpl<SILInstruction *> &endUsers) {
assert(!value->getType().isAddress());
SmallVector<SILInstruction *, 16> transitiveUsers;
// Get transitive users of value, ignoring use-def chain going through
// branches. These transitive users define the end points of the constant
// evaluation. Igoring use-def chains through branches causes constant
// evaluation to miss some constant folding opportunities. This can be
// relaxed in the future, if necessary.
getTransitiveUsers(value, transitiveUsers);
// Compute the lifetime frontier of all the transitive uses which are the
// instructions following the last uses. Every exit from the last uses will
// have a lifetime frontier.
SILInstruction *valueDefinition = value->getDefiningInstruction();
SILInstruction *def =
valueDefinition ? valueDefinition : &(value->getParentBlock()->front());
ValueLifetimeAnalysis lifetimeAnalysis(def, transitiveUsers);
ValueLifetimeAnalysis::Frontier frontier;
bool hasCriticalEdges = lifetimeAnalysis.computeFrontier(
frontier, ValueLifetimeAnalysis::DontModifyCFG);
endUsers.append(frontier.begin(), frontier.end());
if (!hasCriticalEdges)
return;
// If there are some lifetime frontiers on the critical edges, take the
// first instruction of the target of the critical edge as the frontier. This
// will suffice as every exit from the visitedUsers must go through one of
// them.
for (auto edgeIndexPair : lifetimeAnalysis.getCriticalEdges()) {
SILBasicBlock *targetBB =
edgeIndexPair.first->getSuccessors()[edgeIndexPair.second];
endUsers.push_back(&targetBB->front());
}
}
/// Given a guaranteed SILValue \p value, return a borrow-scope introducing
/// value, if there is exactly one such introducing value. Otherwise, return
/// None. There can be multiple borrow scopes for a SILValue iff it is derived
/// from a guaranteed basic block parameter representing a phi node.
static std::optional<BorrowedValue>
getUniqueBorrowScopeIntroducingValue(SILValue value) {
assert(value->getOwnershipKind() == OwnershipKind::Guaranteed &&
"parameter must be a guaranteed value");
return getSingleBorrowIntroducingValue(value);
}
/// Replace all uses of \c originalVal by \c foldedVal and adjust lifetimes of
/// original and folded values by emitting required destroy/release instructions
/// at the right places. Note that this function does not remove any
/// instruction.
///
/// \param originalVal the SIL value that is replaced.
/// \param foldedVal the SIL value that replaces the \c originalVal.
/// \param fun the SIL function containing the \c foldedVal and \c originalVal
static void replaceAllUsesAndFixLifetimes(SILValue foldedVal,
SILValue originalVal,
SILFunction *fun) {
SILInstruction *originalInst = originalVal->getDefiningInstruction();
SILInstruction *foldedInst = foldedVal->getDefiningInstruction();
assert(originalInst &&
"cannot constant fold function or basic block parameter");
assert(!isa<TermInst>(originalInst) &&
"cannot constant fold a terminator instruction");
assert(foldedInst && "constant value does not have a defining instruction");
if (originalVal->getType().isTrivial(*fun)) {
assert(foldedVal->getType().isTrivial(*fun));
// Just replace originalVal by foldedVal.
originalVal->replaceAllUsesWith(foldedVal);
return;
}
assert(!foldedVal->getType().isTrivial(*fun));
assert(fun->hasOwnership());
assert(foldedVal->getOwnershipKind() == OwnershipKind::Owned &&
"constant value must have owned ownership kind");
if (originalVal->getOwnershipKind() == OwnershipKind::Owned) {
originalVal->replaceAllUsesWith(foldedVal);
// Destroy originalVal, which is now unused, immediately after its
// definition. Note that originalVal's destroys are now transferred to
// foldedVal.
SILInstruction *insertionPoint = &(*std::next(originalInst->getIterator()));
SILBuilderWithScope builder(insertionPoint);
SILLocation loc = insertionPoint->getLoc();
builder.emitDestroyValueOperation(loc, originalVal);
return;
}
// Here, originalVal is guaranteed. It must belong to a borrow scope that
// begins at a scope introducing instruction e.g. begin_borrow or load_borrow.
// The foldedVal should also have been inserted at the beginning of the scope.
// Therefore, create a borrow of foldedVal at the beginning of the scope and
// use the borrow in place of the originalVal. Also, end the borrow and
// destroy foldedVal at the end of the borrow scope.
assert(originalVal->getOwnershipKind() == OwnershipKind::Guaranteed);
// FIXME: getUniqueBorrowScopeIntroducingValue may look though various storage
// casts. There's no reason to think that it's valid to replace uses of
// originalVal with a new borrow of the "introducing value". All casts
// potentially need to be cloned.
std::optional<BorrowedValue> originalScopeBegin =
getUniqueBorrowScopeIntroducingValue(originalVal);
assert(originalScopeBegin &&
"value without a unique borrow scope should not have been folded");
SILInstruction *scopeBeginInst =
originalScopeBegin->value->getDefiningInstruction();
assert(scopeBeginInst);
SILBuilderWithScope builder(scopeBeginInst);
SILValue borrow =
builder.emitBeginBorrowOperation(scopeBeginInst->getLoc(), foldedVal);
originalVal->replaceAllUsesWith(borrow);
SmallVector<SILInstruction *, 4> scopeEndingInsts;
originalScopeBegin->getLocalScopeEndingInstructions(scopeEndingInsts);
for (SILInstruction *scopeEndingInst : scopeEndingInsts) {
SILBuilderWithScope builder(scopeEndingInst);
builder.emitEndBorrowOperation(scopeEndingInst->getLoc(), borrow);
builder.emitDestroyValueOperation(scopeEndingInst->getLoc(), foldedVal);
}
return;
}
/// Given a fold state with constant-valued instructions, substitute the
/// instructions with the constant values. The constant values could be strings
/// or Stdlib integer-struct values or builtin integers.
static void substituteConstants(FoldState &foldState) {
ConstExprStepEvaluator &evaluator = foldState.constantEvaluator;
// Instructions that are possibly dead since their results are folded.
SmallVector<SILInstruction *, 8> possiblyDeadInsts;
for (SILValue constantSILValue : foldState.getConstantSILValues()) {
SymbolicValue constantSymbolicVal =
evaluator.lookupConstValue(constantSILValue).value();
// Make sure that the symbolic value tracked in the foldState is a constant.
// In the case of ArraySymbolicValue, the array storage could be a non-constant
// if some instruction in the array initialization sequence was not evaluated
// and skipped.
if (!constantSymbolicVal.containsOnlyConstants()) {
assert(constantSymbolicVal.getKind() != SymbolicValue::String && "encountered non-constant string symbolic value");
continue;
}
SILInstruction *definingInst = constantSILValue->getDefiningInstruction();
assert(definingInst);
SILFunction *fun = definingInst->getFunction();
// Find an insertion point for inserting the new constant value. If we are
// folding a value like struct_extract within a borrow scope, we need to
// insert the constant value at the beginning of the borrow scope. This
// is because the borrowed value is expected to be alive during its entire
// borrow scope and could be stored into memory and accessed indirectly
// without a copy e.g. using store_borrow within the borrow scope. On the
// other hand, if we are folding an owned value, we can insert the constant
// value at the point where the owned value is defined.
SILInstruction *insertionPoint = definingInst;
if (constantSILValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
std::optional<BorrowedValue> borrowIntroducer =
getUniqueBorrowScopeIntroducingValue(constantSILValue);
if (!borrowIntroducer) {
// This case happens only if constantSILValue is derived from a
// guaranteed basic block parameter. This is unlikely because the values
// that have to be folded should just be a struct-extract of an owned
// instance of OSLogMessage.
continue;
}
insertionPoint = borrowIntroducer->value->getDefiningInstruction();
assert(insertionPoint && "borrow scope beginning is a parameter");
}
SILBuilderWithScope builder(insertionPoint);
SILLocation loc = insertionPoint->getLoc();
CanType instType = constantSILValue->getType().getASTType();
SILValue foldedSILVal = emitCodeForSymbolicValue(
constantSymbolicVal, instType, builder, loc, foldState.stringInfo);
// Replace constantSILValue with foldedSILVal and adjust the lifetime and
// ownership of the values appropriately.
replaceAllUsesAndFixLifetimes(foldedSILVal, constantSILValue, fun);
possiblyDeadInsts.push_back(definingInst);
}
}
/// Check whether OSLogMessage and OSLogInterpolation instances and all their
/// stored properties are constants. If not, it indicates errors that are due to
/// incorrect implementation of OSLogMessage either in the os module or in the
/// extensions created by users. Detect and emit diagnostics for such errors.
/// The diagnostics here are for os log library authors.
static bool checkOSLogMessageIsConstant(SingleValueInstruction *osLogMessage,
FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILLocation loc = osLogMessage->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
SILFunction *fn = osLogMessage->getFunction();
SILModule &module = fn->getModule();
ASTContext &astContext = fn->getASTContext();
std::optional<SymbolicValue> osLogMessageValueOpt =
constantEvaluator.lookupConstValue(osLogMessage);
if (!osLogMessageValueOpt ||
osLogMessageValueOpt->getKind() != SymbolicValue::Aggregate) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_message);
return true;
}
// The first (and only) property of OSLogMessage is the OSLogInterpolation
// instance.
SymbolicValue osLogInterpolationValue =
osLogMessageValueOpt->getAggregateMembers()[0];
if (!osLogInterpolationValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_interpolation);
return true;
}
// Check if every property of the OSLogInterpolation instance has a constant
// value.
SILType osLogMessageType = osLogMessage->getType();
StructDecl *structDecl = osLogMessageType.getStructOrBoundGenericStruct();
assert(structDecl);
auto typeExpansionContext =
TypeExpansionContext(*osLogMessage->getFunction());
VarDecl *interpolationPropDecl = structDecl->getStoredProperties().front();
SILType osLogInterpolationType = osLogMessageType.getFieldType(
interpolationPropDecl, module, typeExpansionContext);
StructDecl *interpolationStruct =
osLogInterpolationType.getStructOrBoundGenericStruct();
assert(interpolationStruct);
auto propertyDecls = interpolationStruct->getStoredProperties();
ArrayRef<SymbolicValue> propertyValues =
osLogInterpolationValue.getAggregateMembers();
auto propValueI = propertyValues.begin();
bool errorDetected = false;
// Also, track if there is a string-valued property.
bool hasStringValuedProperty = false;
for (auto *propDecl : propertyDecls) {
SymbolicValue propertyValue = *(propValueI++);
if (!propertyValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_property_not_constant,
propDecl->getNameStr());
errorDetected = true;
break;
}
hasStringValuedProperty = propertyValue.getKind() == SymbolicValue::String;
}
// If we have a string-valued property but don't have the stringInfo
// initialized here, it means the initializer OSLogInterpolation is explicitly
// called, which should be diagnosed.
if (hasStringValuedProperty && !foldState.stringInfo.isInitialized()) {
diagnose(astContext, sourceLoc, diag::oslog_message_explicitly_created);
errorDetected = true;
}
return errorDetected;
}
/// Return true iff the given address-valued instruction has only stores into
/// it. This function tests for the conditions under which a call, that was
/// constant evaluated, that writes into the address-valued instruction can be
/// considered as a point store and exploits it to remove such uses.
/// TODO: eventually some of this logic can be moved to
/// PredictableDeadAllocElimination pass, but the assumption about constant
/// evaluable functions taking inout parameters is not easily generalizable to
/// arbitrary non-constant contexts where the function could be used. The logic
/// here is relying on the fact that the constant_evaluable function has been
/// evaluated and therefore doesn't have any side-effects.
static bool hasOnlyStoreUses(SingleValueInstruction *addressInst) {
for (Operand *use : addressInst->getUses()) {
SILInstruction *user = use->getUser();
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::BeginAccessInst: {
if (!hasOnlyStoreUses(cast<BeginAccessInst>(user)))
return false;
continue;
}
case SILInstructionKind::StoreInst: {
// For now, ignore assigns as we need to destroy_addr its dest if it
// is deleted.
if (cast<StoreInst>(user)->getOwnershipQualifier() ==
StoreOwnershipQualifier::Assign)
return false;
continue;
}
case SILInstructionKind::EndAccessInst:
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
case SILInstructionKind::DeallocStackInst:
continue;
case SILInstructionKind::ApplyInst: {
ApplyInst *apply = cast<ApplyInst>(user);
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !isConstantEvaluable(callee) || !apply->use_empty())
return false;
// Note that since we are looking at an alloc_stack used to produce the
// OSLogMessage instance, this constant_evaluable call should have been
// evaluated successfully by the evaluator. Otherwise, we would have
// reported an error earlier. Therefore, all values manipulated by such
// a call are symbolic constants and the call would not have any global
// side effects. The following logic relies on this property.
// If there are other indirect writable results for the call other than
// the alloc_stack we are checking, it may not be dead. Therefore, bail
// out.
FullApplySite applySite(apply);
unsigned numWritableArguments =
getNumInOutArguments(applySite) + applySite.getNumIndirectSILResults();
if (numWritableArguments > 1)
return false;
SILArgumentConvention convention = applySite.getArgumentConvention(*use);
if (convention == SILArgumentConvention::Indirect_In ||
convention == SILArgumentConvention::Indirect_In_Guaranteed) {
if (numWritableArguments > 0)
return false;
}
// Here, either there are no writable parameters or the alloc_stack
// is the only writable parameter.
continue;
}
}
}
return true;
}
/// Delete the given alloc_stack instruction by deleting the users of the
/// instruction. In case the user is a begin_apply, recursively delete the users
/// of begin_apply. This will also fix the lifetimes of the deleted instructions
/// whenever possible.
static void forceDeleteAllocStack(SingleValueInstruction *inst,
InstructionDeleter &deleter) {
SmallVector<SILInstruction *, 8> users;
for (Operand *use : inst->getUses())
users.push_back(use->getUser());
for (SILInstruction *user : users) {
if (isIncidentalUse(user))
continue;
if (isa<DestroyAddrInst>(user)) {
deleter.forceDelete(user);
continue;
}
if (isa<BeginAccessInst>(user)) {
forceDeleteAllocStack(cast<BeginAccessInst>(user), deleter);
continue;
}
// Notify the deletion worklist in case user's other operands become dead.
deleter.getCallbacks().notifyWillBeDeleted(user);
deleter.forceDeleteAndFixLifetimes(user);
}
deleter.forceDelete(inst);
}
/// Delete \c inst , if it is dead, along with its dead users and invoke the
/// callback whenever an instruction is deleted.
static void
deleteInstructionWithUsersAndFixLifetimes(SILInstruction *inst,
InstructionDeleter &deleter) {
// If this is an alloc_stack, it can be eliminated as long as it is only
// stored into or destroyed.
if (AllocStackInst *allocStack = dyn_cast<AllocStackInst>(inst)) {
if (hasOnlyStoreUses(allocStack))
forceDeleteAllocStack(allocStack, deleter);
return;
}
deleter.recursivelyDeleteUsersIfDead(inst);
}
/// Try to dead-code eliminate the OSLogMessage instance \c oslogMessage passed
/// to the os log call and clean up its dependencies. If the instance cannot be
/// eliminated, emit diagnostics.
/// \returns true if elimination is successful and false if it is not successful
/// and diagnostics is emitted.
static bool tryEliminateOSLogMessage(SingleValueInstruction *oslogMessage) {
// List of instructions that are possibly dead.
SmallVector<SILInstruction *, 4> worklist = {oslogMessage};
// Set of all deleted instructions.
SmallPtrSet<SILInstruction *, 4> deletedInstructions;
auto callbacks =
InstModCallbacks().onNotifyWillBeDeleted([&](SILInstruction *deadInst) {
// Add operands of all deleted instructions to the worklist so that
// they can be recursively deleted if possible.
for (Operand &operand : deadInst->getAllOperands()) {
if (SILInstruction *definingInstruction =
operand.get()->getDefiningInstruction()) {
if (!deletedInstructions.count(definingInstruction))
worklist.push_back(definingInstruction);
}
}
(void)deletedInstructions.insert(deadInst);
});
InstructionDeleter deleter(std::move(callbacks));
unsigned startIndex = 0;
while (startIndex < worklist.size()) {
SILInstruction *inst = worklist[startIndex++];
if (deletedInstructions.count(inst))
continue;
deleteInstructionWithUsersAndFixLifetimes(inst, deleter);
// Call cleanupDeadInstructions incrementally because it may expose a dead
// alloc_stack, which will only be deleted by this pass via
// deleteInstructionWithUsersAndFixLifetimes().
deleter.cleanupDeadInstructions();
}
// If the OSLogMessage instance is not deleted, either we couldn't see the
// body of the log call or there is a bug in the library implementation.
// Assuming that the library implementation is correct, it means that either
// OSLogMessage is used in a context where it is not supposed to be used, or
// we somehow saw a conditional branch with a non-constant argument before
// completing evaluation (this can happen with the os_log(_:log:type)
// overload, when log or type is an optional unwrapping). Report an error
// that covers both contexts. (Note that it is very hard to distinguish these
// error cases in the current state.)
if (!deletedInstructions.count(oslogMessage)) {
SILFunction *fun = oslogMessage->getFunction();
diagnose(fun->getASTContext(), oslogMessage->getLoc().getSourceLoc(),
diag::oslog_message_alive_after_opts);
return false;
}
return true;
}
/// Constant evaluate instructions starting from \p start and fold the uses
/// of the SIL value \p oslogMessage.
/// \returns true if folding is successful and false if it is not successful and
/// diagnostics is emitted.
static bool constantFold(SILInstruction *start,
SingleValueInstruction *oslogMessage,
unsigned assertConfig) {
SILFunction *fun = start->getFunction();
assert(fun->hasOwnership() && "function not in ownership SIL");
// Initialize fold state.
SmallVector<SILInstruction *, 2> endUsersOfOSLogMessage;
getEndPointsOfDataDependentChain(oslogMessage, fun, endUsersOfOSLogMessage);
assert(!endUsersOfOSLogMessage.empty());
FoldState state(fun, assertConfig, start, endUsersOfOSLogMessage);
auto errorInfo = collectConstants(state);
if (errorInfo) // Evaluation failed with diagnostics.
return false;
// At this point, the `OSLogMessage` instance should be mapped to a constant
// value in the interpreter state. If this is not the case, it means the
// overlay implementation of OSLogMessage (or its extensions by users) are
// incorrect. Detect and diagnose this scenario.
bool errorDetected = checkOSLogMessageIsConstant(oslogMessage, state);
if (errorDetected)
return false;
substituteConstants(state);
return tryEliminateOSLogMessage(oslogMessage);
}
/// Given a call to the initializer of OSLogMessage, which conforms to
/// 'ExpressibleByStringInterpolation', find the first instruction, if any, that
/// marks the beginning of the string interpolation that is used to create an
/// OSLogMessage instance. This function traverses the backward data-dependence
/// chain of the given OSLogMessage initializer: \p oslogInit. As a special case
/// it avoids chasing the data-dependencies from the captured values of
/// partial-apply instructions, as a partial apply instruction is considered as
/// a constant regardless of the constantness of its captures.
static SILInstruction *beginOfInterpolation(ApplyInst *oslogInit) {
auto oslogInitCallSite = FullApplySite(oslogInit);
SILFunction *callee = oslogInitCallSite.getCalleeFunction();
assert (callee->hasSemanticsAttrThatStartsWith("oslog.message.init"));
// The initializer must return the OSLogMessage instance directly.
assert(oslogInitCallSite.getNumArguments() >= 1 &&
oslogInitCallSite.getNumIndirectSILResults() == 0);
// List of backward dependencies that needs to be analyzed.
SmallVector<SILInstruction *, 4> worklist = { oslogInit };
SmallPtrSet<SILInstruction *, 4> seenInstructions = { oslogInit };
// List of instructions that could potentially mark the beginning of the
// interpolation.
SmallPtrSet<SILInstruction *, 4> candidateStartInstructions;
unsigned i = 0;
while (i < worklist.size()) {
SILInstruction *inst = worklist[i++];
if (isa<PartialApplyInst>(inst)) {
// Partial applies are used to capture the dynamic arguments passed to
// the string interpolation. Their arguments are not required to be
// known at compile time and they need not be constant evaluated.
// Therefore, follow only the dependency chain along function ref operand.
SILInstruction *definingInstruction =
inst->getOperand(0)->getDefiningInstruction();
assert(definingInstruction && "no function-ref operand in partial-apply");
if (seenInstructions.insert(definingInstruction).second) {
worklist.push_back(definingInstruction);
candidateStartInstructions.insert(definingInstruction);
}
continue;
}
for (Operand &operand : inst->getAllOperands()) {
if (SILInstruction *definingInstruction =
operand.get()->getDefiningInstruction()) {
if (seenInstructions.count(definingInstruction))
continue;
worklist.push_back(definingInstruction);
seenInstructions.insert(definingInstruction);
candidateStartInstructions.insert(definingInstruction);
}
// If there is no defining instruction for this operand, it could be a
// basic block or function parameter. Such operands are not considered
// in the backward slice. Dependencies through them are safe to ignore
// in this context.
}
// If the instruction: `inst` has an operand, its definition should precede
// `inst` in the control-flow order. Therefore, remove `inst` from the
// candidate start instructions.
if (inst->getNumOperands() > 0) {
candidateStartInstructions.erase(inst);
}
if (!isa<AllocStackInst>(inst)) {
continue;
}
// If we have an alloc_stack instruction, include stores into it into the
// backward dependency list. However, whether alloc_stack precedes the
// definitions of values stored into the location in the control-flow order
// can only be determined by traversing the instructions in the control-flow
// order.
AllocStackInst *allocStackInst = cast<AllocStackInst>(inst);
for (StoreInst *storeInst : allocStackInst->getUsersOfType<StoreInst>()) {
worklist.push_back(storeInst);
candidateStartInstructions.insert(storeInst);
}
// Skip other uses of alloc_stack including function calls on the
// alloc_stack and data dependencies through them. This is done because
// all functions using the alloc_stack are expected to be constant evaluated
// and therefore should only be passed constants or auto closures. These
// constants must be constructed immediately before the call and would only
// appear in the SIL after the alloc_stack instruction. This invariant is
// relied upon here so as to restrict the backward dependency search, which
// in turn keeps the code that is constant evaluated small.
// Note that if the client code violates this assumption, it will be
// diagnosed by this pass (in function detectAndDiagnoseErrors) as it will
// result in non-constant values for OSLogMessage instance.
}
// Find the first basic block in the control-flow order. Typically, if
// formatting and privacy options are literals, all candidate instructions
// must be in the same basic block. But, this code doesn't rely on that
// assumption.
BasicBlockSet candidateBBs(oslogInit->getFunction());
SILBasicBlock *candidateBB = nullptr;
unsigned numCandidateBBsFound = 0;
for (auto *candidate: candidateStartInstructions) {
candidateBB = candidate->getParent();
if (candidateBBs.insert(candidateBB))
++numCandidateBBsFound;
}
SILBasicBlock *firstBB = nullptr;
if (numCandidateBBsFound == 1) {
assert(candidateBB);
firstBB = candidateBB;
} else {
SILBasicBlock *entryBB = oslogInit->getFunction()->getEntryBlock();
for (SILBasicBlock *bb : llvm::breadth_first<SILBasicBlock *>(entryBB)) {
if (candidateBBs.contains(bb)) {
firstBB = bb;
break;
}
}
if (!firstBB) {
// This case will be reached only if the log call appears in unreachable
// code and, for some reason, its data dependencies extend beyond a basic
// block. This case should generally not happen unless the library
// implementation of the os log APIs change. It is better to warn in this
// case, rather than skipping the call silently.
diagnose(callee->getASTContext(), oslogInit->getLoc().getSourceLoc(),
diag::oslog_call_in_unreachable_code);
return nullptr;
}
}
// Iterate over the instructions in the firstBB and find the instruction that
// starts the interpolation.
SILInstruction *startInst = nullptr;
for (SILInstruction &inst : *firstBB) {
if (candidateStartInstructions.count(&inst)) {
startInst = &inst;
break;
}
}
assert(startInst && "could not find beginning of interpolation");
return startInst;
}
/// Replace every _globalStringTablePointer builtin in the transitive users of
/// oslogMessage with an empty string literal. This would suppress the errors
/// emitted by a later pass on _globalStringTablePointerBuiltins. This utility
/// should be called only when this pass emits diagnostics.
static void
suppressGlobalStringTablePointerError(SingleValueInstruction *oslogMessage) {
SmallVector<SILInstruction *, 8> users;
getTransitiveUsers(oslogMessage, users);
// Collect all globalStringTablePointer instructions.
SmallVector<BuiltinInst *, 4> globalStringTablePointerInsts;
for (SILInstruction *user : users) {
BuiltinInst *bi = dyn_cast<BuiltinInst>(user);
if (bi &&
bi->getBuiltinInfo().ID == BuiltinValueKind::GlobalStringTablePointer)
globalStringTablePointerInsts.push_back(bi);
}
// Replace the globalStringTablePointer builtins by a string_literal
// instruction for an empty string and clean up dead code.
InstructionDeleter deleter;
for (BuiltinInst *bi : globalStringTablePointerInsts) {
SILBuilderWithScope builder(bi);
StringLiteralInst *stringLiteral = builder.createStringLiteral(
bi->getLoc(), StringRef(""), StringLiteralInst::Encoding::UTF8_OSLOG);
bi->replaceAllUsesWith(stringLiteral);
// The builtin instruction is likely dead. But since we are iterating over
// many instructions, do the cleanup at the end.
deleter.trackIfDead(bi);
}
deleter.cleanupDeadInstructions();
}
/// If the SILInstruction is an initialization of OSLogMessage, return the
/// initialization call as an ApplyInst. Otherwise, return nullptr.
static ApplyInst *getAsOSLogMessageInit(SILInstruction *inst) {
auto *applyInst = dyn_cast<ApplyInst>(inst);
if (!applyInst) {
return nullptr;
}
SILFunction *callee = applyInst->getCalleeFunction();
if (!callee ||
!callee->hasSemanticsAttrThatStartsWith("oslog.message.init")) {
return nullptr;
}
// Default argument generators created for a function also inherit
// the semantics attribute of the function. Therefore, check that there are
// at least two operands for this apply instruction.
if (applyInst->getNumOperands() > 1) {
return applyInst;
}
return nullptr;
}
/// Return true iff the SIL function \c fun is a method of the \c OSLogMessage
/// type or a type that has the @_semantics("oslog.message.type") annotation.
static bool isMethodOfOSLogMessage(SILFunction &fun) {
DeclContext *declContext = fun.getDeclContext();
if (!declContext)
return false;
Decl *decl = declContext->getAsDecl();
if (!decl)
return false;
ConstructorDecl *ctor = dyn_cast<ConstructorDecl>(decl);
if (!ctor)
return false;
DeclContext *parentContext = ctor->getParent();
if (!parentContext)
return false;
NominalTypeDecl *typeDecl = parentContext->getSelfNominalTypeDecl();
if (!typeDecl)
return false;
return typeDecl->getName() == fun.getASTContext().Id_OSLogMessage
|| typeDecl->hasSemanticsAttr(semantics::OSLOG_MESSAGE_TYPE);
}
class OSLogOptimization : public SILFunctionTransform {
~OSLogOptimization() override {}
/// The entry point to the transformation.
void run() override {
auto &fun = *getFunction();
unsigned assertConfig = getOptions().AssertConfig;
// Don't rerun optimization on deserialized functions or stdlib functions.
if (fun.wasDeserializedCanonical()) {
return;
}
// Skip methods of OSLogMessage type. This avoid unnecessary work and also
// avoids falsely diagnosing the auto-generated (transparent) witness method
// of OSLogMessage, which ends up invoking the OSLogMessage initializer:
// "oslog.message.init_interpolation" without an interpolated string
// literal that is expected by this pass.
if (isMethodOfOSLogMessage(fun)) {
return;
}
// Collect all 'OSLogMessage.init' in the function. 'OSLogMessage' is a
// custom string interpolation type used by the new OS log APIs.
SmallVector<ApplyInst *, 4> oslogMessageInits;
for (auto &bb : fun) {
for (auto &inst : bb) {
auto init = getAsOSLogMessageInit(&inst);
if (!init)
continue;
oslogMessageInits.push_back(init);
}
}
bool madeChange = false;
// Constant fold the uses of properties of OSLogMessage instance. Note that
// the function body will change due to constant folding, after each
// iteration.
for (auto *oslogInit : oslogMessageInits) {
SILInstruction *interpolationStart = beginOfInterpolation(oslogInit);
if (!interpolationStart) {
// The log call is in unreachable code here.
continue;
}
bool foldingSucceeded =
constantFold(interpolationStart, oslogInit, assertConfig);
// If folding did not succeeded, it implies that an error was diagnosed.
// However, this will also trigger a diagnostics later on since
// _globalStringTablePointerBuiltin would not be passed a string literal.
// Suppress this error by synthesizing a dummy string literal for the
// builtin.
if (!foldingSucceeded)
suppressGlobalStringTablePointerError(oslogInit);
madeChange = true;
}
if (madeChange) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createOSLogOptimization() {
return new OSLogOptimization();
}
|