1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
//===------- OptimizeHopToExecutor.cpp - optimize hop_to_executor ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "optimize-hop-to-executor"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
using namespace swift;
namespace {
/// Optimizes hop_to_executor instructions.
///
/// * Redundant hop_to_executor elimination: if a hop_to_executor is dominated
/// by another hop_to_executor with the same operand, it is eliminated:
/// \code
/// hop_to_executor %a
/// ... // no suspension points
/// hop_to_executor %a // can be eliminated
/// \endcode
///
/// * Dead hop_to_executor elimination: if a hop_to_executor is not followed by
/// any code which requires to run on its actor's executor, it is eliminated:
/// \code
/// hop_to_executor %a
/// ... // no instruction which require to run on %a
/// return
/// \endcode
class OptimizeHopToExecutor {
private:
typedef llvm::DenseMap<SILValue, int> Actors;
/// Basic-block specific information used for dataflow analysis.
struct BlockState {
enum {
NotSet = -2,
// Used in the forward dataflow in removeRedundantHopToExecutors.
Unknown = -1,
// Used in the backward dataflow in removeDeadHopToExecutors.
ExecutorNeeded = Unknown,
NoExecutorNeeded = 0,
};
static_assert(ExecutorNeeded == Unknown,
"needed for merge() to correctly merge ExecutorNeeded and NoExecutorNeeded");
/// The backlink to the SILBasicBlock.
SILBasicBlock *block = nullptr;
/// The value at the entry (i.e. the first instruction) of the block.
int entry = NotSet;
/// The value of the block itself. It's NotSet if the block has no
/// significant instructions for the dataflow.
int intra = NotSet;
/// The value at the exit (i.e. after the terminator) of the block.
int exit = NotSet;
/// Merge two values at a control-flow merge point.
static int merge(int lhs, int rhs) {
if (lhs == NotSet || lhs == rhs)
return rhs;
if (rhs == NotSet)
return lhs;
return Unknown;
}
};
SILFunction *function;
/// All block states.
std::vector<BlockState> blockStates;
llvm::DenseMap<SILBasicBlock *, BlockState *> block2State;
void collectActors(Actors &actors);
void allocateBlockStates();
void solveDataflowForward();
void solveDataflowBackward();
bool removeRedundantHopToExecutors(const Actors &actors);
bool removeDeadHopToExecutors();
static void updateNeedExecutor(int &needExecutor, SILInstruction *inst);
static bool needsExecutor(SILInstruction *inst);
static bool isGlobalMemory(SILValue addr);
public:
OptimizeHopToExecutor(SILFunction *function) : function(function) { }
/// The entry point to the transformation.
bool run();
void dump();
};
/// Search for hop_to_executor instructions and add their operands to \p actors.
void OptimizeHopToExecutor::collectActors(Actors &actors) {
int uniqueActorID = 0;
for (SILBasicBlock &block : *function) {
for (SILInstruction &inst : block) {
if (auto *hop = dyn_cast<HopToExecutorInst>(&inst)) {
auto oper = hop->getOperand();
if (actors.count(oper))
continue;
actors[oper] = uniqueActorID++;
}
}
}
}
/// Initialize blockStates and block2State.
void OptimizeHopToExecutor::allocateBlockStates() {
// Resizing is mandatory! Just adding states with push_back would potentially
// invalidate previous pointers to states, which are stored in block2State.
blockStates.resize(function->size());
for (auto blockAndIdx : llvm::enumerate(*function)) {
BlockState *state = &blockStates[blockAndIdx.index()];
state->block = &blockAndIdx.value();
block2State[&blockAndIdx.value()] = state;
}
}
/// Solve the dataflow in forward direction.
void OptimizeHopToExecutor::solveDataflowForward() {
bool changed = false;
bool firstRound = true;
do {
changed = false;
for (BlockState &state : blockStates) {
int newEntry = state.entry;
for (SILBasicBlock *pred : state.block->getPredecessorBlocks()) {
newEntry = BlockState::merge(newEntry, block2State[pred]->exit);
}
if (newEntry != state.entry || firstRound) {
changed = true;
state.entry = newEntry;
if (state.intra == BlockState::NotSet)
state.exit = state.entry;
}
}
firstRound = false;
} while (changed);
}
/// Solve the dataflow in backward direction.
void OptimizeHopToExecutor::solveDataflowBackward() {
bool changed = false;
bool firstRound = true;
do {
changed = false;
for (BlockState &state : llvm::reverse(blockStates)) {
int newExit = state.exit;
for (SILBasicBlock *succ : state.block->getSuccessorBlocks()) {
newExit = BlockState::merge(newExit, block2State[succ]->entry);
}
if (newExit != state.exit || firstRound) {
changed = true;
state.exit = newExit;
if (state.intra == BlockState::NotSet)
state.entry = state.exit;
}
}
firstRound = false;
} while (changed);
}
/// Returns true if \p inst is a suspension point or an async call.
static bool isSuspensionPoint(SILInstruction *inst) {
if (auto applySite = FullApplySite::isa(inst)) {
if (applySite.isAsync())
return true;
return false;
}
if (isa<AwaitAsyncContinuationInst>(inst))
return true;
return false;
}
/// Remove hop_to_executor instructions which are dominated by another
/// hop_to_executor with the same operand.
/// See the top-level comment on OptimizeHopToExecutor for details.
bool OptimizeHopToExecutor::removeRedundantHopToExecutors(const Actors &actors) {
// Initialize the dataflow.
for (BlockState &state : blockStates) {
state.entry = (state.block == function->getEntryBlock() ?
BlockState::Unknown : BlockState::NotSet);
state.intra = BlockState::NotSet;
for (SILInstruction &inst : *state.block) {
if (isSuspensionPoint(&inst)) {
// A suspension point (like an async call) can switch to another
// executor.
state.intra = BlockState::Unknown;
} else if (auto *hop = dyn_cast<HopToExecutorInst>(&inst)) {
state.intra = actors.lookup(hop->getOperand());
}
}
state.exit = state.intra;
}
solveDataflowForward();
// Last step: do the transformation.
bool changed = false;
for (BlockState &state : blockStates) {
// Iterating over all instructions is the same logic as above, just start
// with the final entry-value.
int actorIdx = state.entry;
for (auto iter = state.block->begin(); iter != state.block->end();) {
SILInstruction *inst = &*iter++;
if (isSuspensionPoint(inst)) {
actorIdx = BlockState::Unknown;
continue;
}
auto *hop = dyn_cast<HopToExecutorInst>(inst);
if (!hop)
continue;
int newActorIdx = actors.lookup(hop->getOperand());
if (newActorIdx != actorIdx) {
actorIdx = newActorIdx;
continue;
}
if (hop->isMandatory())
continue;
// There is a dominating hop_to_executor with the same operand.
LLVM_DEBUG(llvm::dbgs() << "Redundant executor " << *hop);
hop->eraseFromParent();
changed = true;
}
assert(actorIdx == state.exit);
}
return changed;
}
/// Remove hop_to_executor instructions which are not followed by any code which
/// requires to run on the actor's executor.
/// See the top-level comment on OptimizeHopToExecutor for details.
bool OptimizeHopToExecutor::removeDeadHopToExecutors() {
// Initialize the dataflow: go bottom up and if we see any instruction which
// might require a dedicated executor, don't remove a preceding
// hop_to_executor instruction.
for (BlockState &state : blockStates) {
state.exit = (state.block->getSuccessors().empty() ?
BlockState::NoExecutorNeeded : BlockState::NotSet);
state.intra = BlockState::NotSet;
for (SILInstruction &inst : llvm::reverse(*state.block)) {
updateNeedExecutor(state.intra, &inst);
}
state.entry = state.intra;
}
solveDataflowBackward();
// Last step: do the transformation.
bool changed = false;
for (BlockState &state : blockStates) {
// Iterating over all instructions is the same logic as above, just start
// with the final exit-value.
int needActor = state.exit;
for (auto iter = state.block->rbegin(); iter != state.block->rend();) {
SILInstruction *inst = &*iter++;
auto *hop = dyn_cast<HopToExecutorInst>(inst);
if (hop && !hop->isMandatory()
&& needActor == BlockState::NoExecutorNeeded) {
// Remove the dead hop_to_executor.
LLVM_DEBUG(llvm::dbgs() << "Dead executor " << *hop);
hop->eraseFromParent();
changed = true;
continue;
}
updateNeedExecutor(needActor, inst);
}
assert(needActor == state.entry);
}
return changed;
}
/// Updates \p needExecutor for the dataflow evaluation.
void OptimizeHopToExecutor::updateNeedExecutor(int &needExecutor,
SILInstruction *inst) {
if (isa<HopToExecutorInst>(inst)) {
needExecutor = BlockState::NoExecutorNeeded;
return;
}
if (isSuspensionPoint(inst)) {
needExecutor = BlockState::NoExecutorNeeded;
return;
}
if (needsExecutor(inst))
needExecutor = BlockState::ExecutorNeeded;
}
/// Returns true if \p inst needs to run on a specific executor.
bool OptimizeHopToExecutor::needsExecutor(SILInstruction *inst) {
// TODO: Is this the correct thing to check?
if (auto *load = dyn_cast<LoadInst>(inst)) {
return isGlobalMemory(load->getOperand());
}
if (auto *store = dyn_cast<StoreInst>(inst)) {
return isGlobalMemory(store->getDest());
}
if (auto *copy = dyn_cast<CopyAddrInst>(inst)) {
return isGlobalMemory(copy->getSrc()) || isGlobalMemory(copy->getDest());
}
// BeginBorrowInst and EndBorrowInst currently have
// MemoryBehavior::MayHaveSideEffects. Fixing that is tracked by
// rdar://111875527. These instructions only have effects in the sense of
// memory dependencies, which aren't relevant for hop_to_executor
// elimination.
if (isa<BeginBorrowInst>(inst) || isa<EndBorrowInst>(inst)) {
return false;
}
return inst->mayReadOrWriteMemory();
}
bool OptimizeHopToExecutor::isGlobalMemory(SILValue addr) {
// TODO: use escape analysis to rule out locally allocated non-stack objects.
SILValue base = getAccessBase(addr);
return !isa<AllocStackInst>(base);
}
bool OptimizeHopToExecutor::run() {
Actors actors;
collectActors(actors);
if (actors.empty())
return false;
allocateBlockStates();
bool changed = removeRedundantHopToExecutors(actors);
changed |= removeDeadHopToExecutors();
return changed;
}
LLVM_ATTRIBUTE_USED void OptimizeHopToExecutor::dump() {
for (BlockState &state : blockStates) {
llvm::dbgs() << "bb" << state.block->getDebugID() <<
": entry=" << state.entry <<
", intra=" << state.intra <<
", exit=" << state.exit << '\n';
}
}
class OptimizeHopToExecutorPass : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
if (!getFunction()->isAsync())
return;
OptimizeHopToExecutor optimizeHopToExecutor(getFunction());
if (optimizeHopToExecutor.run())
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
};
} // end anonymous namespace
SILTransform *swift::createOptimizeHopToExecutor() {
return new OptimizeHopToExecutorPass();
}
|