1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
|
//===--- OwnershipModelEliminator.cpp - Eliminate SILOwnership Instr. -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file contains a small pass that lowers SIL ownership instructions to
/// their constituent operations. This will enable us to separate
/// implementation
/// of Semantic ARC in SIL and SILGen from ensuring that all of the optimizer
/// passes respect Semantic ARC. This is done by running this pass right after
/// SILGen and as the pass pipeline is updated, moving this pass further and
/// further back in the pipeline.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-ownership-model-eliminator"
#include "swift/Basic/BlotSetVector.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
using namespace swift;
// Utility command line argument to dump the module before we eliminate
// ownership from it.
static llvm::cl::opt<std::string>
DumpBefore("sil-dump-before-ome-to-path", llvm::cl::Hidden);
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
namespace {
/// A high level SILInstruction visitor that lowers Ownership SSA from SIL.
///
/// NOTE: Erasing instructions must always be done by the method
/// eraseInstruction /and/ any instructions that are created in one visit must
/// not be deleted in the same visit since after each visit, we empty the
/// tracking list into the instructionsToSimplify array. We do this in order to
/// ensure that when we use inst-simplify on these instructions, we have
/// consistent non-ossa vs ossa code rather than an intermediate state.
struct OwnershipModelEliminatorVisitor
: SILInstructionVisitor<OwnershipModelEliminatorVisitor, bool> {
SmallVector<SILInstruction *, 8> trackingList;
SmallBlotSetVector<SILInstruction *, 8> instructionsToSimplify;
/// Points at either a user passed in SILBuilderContext or points at
/// builderCtxStorage.
SILBuilderContext builderCtx;
/// Construct an OME visitor for eliminating ownership from \p fn.
OwnershipModelEliminatorVisitor(SILFunction &fn)
: trackingList(), instructionsToSimplify(),
builderCtx(fn.getModule(), &trackingList) {
}
/// A "syntactic" high level function that combines our insertPt with a
/// builder ctx.
///
/// Since this is syntactic and we assume that our caller is passing in a
/// lambda that if we inline will be eliminated, we mark this function always
/// inline.
template <typename ResultTy>
ResultTy LLVM_ATTRIBUTE_ALWAYS_INLINE
withBuilder(SILInstruction *insertPt,
llvm::function_ref<ResultTy(SILBuilder &, SILLocation)> visitor) {
SILBuilderWithScope builder(insertPt, builderCtx);
return visitor(builder, insertPt->getLoc());
}
void drainTrackingList() {
// Called before we visit a new instruction and before we ever erase an
// instruction. This ensures that we can post-process instructions that need
// simplification in a purely non-ossa world instead of an indeterminate
// state mid elimination.
while (!trackingList.empty()) {
instructionsToSimplify.insert(trackingList.pop_back_val());
}
}
void beforeVisit(SILInstruction *instToVisit) {
// Add any elements to the tracking list that we currently have in the
// tracking list that we haven't added yet.
drainTrackingList();
}
void eraseInstruction(SILInstruction *i) {
// Before we erase anything, drain the tracking list.
drainTrackingList();
// Make sure to blot our instruction.
instructionsToSimplify.erase(i);
i->eraseFromParent();
}
void eraseInstructionAndRAUW(SingleValueInstruction *i, SILValue newValue) {
// Make sure to blot our instruction.
i->replaceAllUsesWith(newValue);
eraseInstruction(i);
}
bool visitSILInstruction(SILInstruction *inst) {
// Make sure this wasn't a forwarding instruction in case someone adds a new
// forwarding instruction but does not update this code.
if (ForwardingInstruction::isa(inst)) {
llvm::errs() << "Found unhandled forwarding inst: " << *inst;
llvm_unreachable("standard error handler");
}
return false;
}
bool visitLoadInst(LoadInst *li);
bool visitStoreInst(StoreInst *si);
bool visitStoreBorrowInst(StoreBorrowInst *si);
bool visitCopyValueInst(CopyValueInst *cvi);
bool visitExplicitCopyValueInst(ExplicitCopyValueInst *cvi);
bool visitExplicitCopyAddrInst(ExplicitCopyAddrInst *cai);
void splitDestroy(DestroyValueInst *destroy);
bool visitDestroyValueInst(DestroyValueInst *dvi);
bool visitLoadBorrowInst(LoadBorrowInst *lbi);
bool visitMoveValueInst(MoveValueInst *mvi) {
eraseInstructionAndRAUW(mvi, mvi->getOperand());
return true;
}
bool visitDropDeinitInst(DropDeinitInst *ddi) {
instructionsToSimplify.insert(ddi);
return false;
}
bool visitBeginBorrowInst(BeginBorrowInst *bbi) {
eraseInstructionAndRAUW(bbi, bbi->getOperand());
return true;
}
bool visitEndBorrowInst(EndBorrowInst *ebi) {
eraseInstruction(ebi);
return true;
}
bool visitEndLifetimeInst(EndLifetimeInst *eli) {
eraseInstruction(eli);
return true;
}
bool visitUncheckedOwnershipConversionInst(
UncheckedOwnershipConversionInst *uoci) {
eraseInstructionAndRAUW(uoci, uoci->getOperand());
return true;
}
bool visitUnmanagedRetainValueInst(UnmanagedRetainValueInst *urvi);
bool visitUnmanagedReleaseValueInst(UnmanagedReleaseValueInst *urvi);
bool visitUnmanagedAutoreleaseValueInst(UnmanagedAutoreleaseValueInst *uavi);
bool visitCheckedCastBranchInst(CheckedCastBranchInst *cbi);
bool visitSwitchEnumInst(SwitchEnumInst *swi);
bool visitDestructureStructInst(DestructureStructInst *dsi);
bool visitDestructureTupleInst(DestructureTupleInst *dti);
// We lower this to unchecked_bitwise_cast losing our assumption of layout
// compatibility.
bool visitUncheckedValueCastInst(UncheckedValueCastInst *uvci) {
return withBuilder<bool>(uvci, [&](SILBuilder &b, SILLocation loc) {
auto *newVal = b.createUncheckedBitwiseCast(loc, uvci->getOperand(),
uvci->getType());
eraseInstructionAndRAUW(uvci, newVal);
return true;
});
}
bool visitPartialApplyInst(PartialApplyInst *pai);
void splitDestructure(SILInstruction *destructure,
SILValue destructureOperand);
#define HANDLE_FORWARDING_INST(Cls) \
bool visit##Cls##Inst(Cls##Inst *i) { \
ForwardingInstruction::get(i)->setForwardingOwnershipKind( \
OwnershipKind::None); \
return true; \
}
HANDLE_FORWARDING_INST(ConvertFunction)
HANDLE_FORWARDING_INST(MoveOnlyWrapperToCopyableValue)
HANDLE_FORWARDING_INST(MoveOnlyWrapperToCopyableBox)
HANDLE_FORWARDING_INST(Upcast)
HANDLE_FORWARDING_INST(UncheckedRefCast)
HANDLE_FORWARDING_INST(RefToBridgeObject)
HANDLE_FORWARDING_INST(BridgeObjectToRef)
HANDLE_FORWARDING_INST(ThinToThickFunction)
HANDLE_FORWARDING_INST(UnconditionalCheckedCast)
HANDLE_FORWARDING_INST(Struct)
HANDLE_FORWARDING_INST(Object)
HANDLE_FORWARDING_INST(Tuple)
HANDLE_FORWARDING_INST(Enum)
HANDLE_FORWARDING_INST(UncheckedEnumData)
HANDLE_FORWARDING_INST(OpenExistentialRef)
HANDLE_FORWARDING_INST(InitExistentialRef)
HANDLE_FORWARDING_INST(MarkDependence)
HANDLE_FORWARDING_INST(DifferentiableFunction)
HANDLE_FORWARDING_INST(LinearFunction)
HANDLE_FORWARDING_INST(StructExtract)
HANDLE_FORWARDING_INST(TupleExtract)
HANDLE_FORWARDING_INST(LinearFunctionExtract)
HANDLE_FORWARDING_INST(DifferentiableFunctionExtract)
HANDLE_FORWARDING_INST(MarkUninitialized)
HANDLE_FORWARDING_INST(FunctionExtractIsolation)
#undef HANDLE_FORWARDING_INST
};
} // end anonymous namespace
bool OwnershipModelEliminatorVisitor::visitLoadInst(LoadInst *li) {
auto qualifier = li->getOwnershipQualifier();
// If the qualifier is unqualified, there is nothing further to do
// here. Just return.
if (qualifier == LoadOwnershipQualifier::Unqualified)
return false;
auto result = withBuilder<SILValue>(li, [&](SILBuilder &b, SILLocation loc) {
return b.emitLoadValueOperation(loc, li->getOperand(),
li->getOwnershipQualifier());
});
// Then remove the qualified load and use the unqualified load as the def of
// all of LI's uses.
eraseInstructionAndRAUW(li, result);
return true;
}
bool OwnershipModelEliminatorVisitor::visitStoreInst(StoreInst *si) {
auto qualifier = si->getOwnershipQualifier();
// If the qualifier is unqualified, there is nothing further to do
// here. Just return.
if (qualifier == StoreOwnershipQualifier::Unqualified)
return false;
withBuilder<void>(si, [&](SILBuilder &b, SILLocation loc) {
b.emitStoreValueOperation(loc, si->getSrc(), si->getDest(),
si->getOwnershipQualifier());
});
// Then remove the qualified store.
eraseInstruction(si);
return true;
}
bool OwnershipModelEliminatorVisitor::visitStoreBorrowInst(
StoreBorrowInst *si) {
withBuilder<void>(si, [&](SILBuilder &b, SILLocation loc) {
b.emitStoreValueOperation(loc, si->getSrc(), si->getDest(),
StoreOwnershipQualifier::Unqualified);
});
// Then remove the qualified store after RAUWing si with its dest. This
// ensures that any uses of the interior pointer result of the store_borrow
// are rewritten to be on the dest point.
si->replaceAllUsesWith(si->getDest());
eraseInstruction(si);
return true;
}
bool OwnershipModelEliminatorVisitor::visitLoadBorrowInst(LoadBorrowInst *lbi) {
// Break down the load borrow into an unqualified load.
auto newLoad =
withBuilder<SILValue>(lbi, [&](SILBuilder &b, SILLocation loc) {
return b.createLoad(loc, lbi->getOperand(),
LoadOwnershipQualifier::Unqualified);
});
// Then remove the qualified load and use the unqualified load as the def of
// all of LI's uses.
eraseInstructionAndRAUW(lbi, newLoad);
return true;
}
bool OwnershipModelEliminatorVisitor::visitCopyValueInst(CopyValueInst *cvi) {
// A copy_value of an address-only type cannot be replaced.
if (cvi->getType().isAddressOnly(*cvi->getFunction()))
return false;
// Nonescaping closures are represented ultimately as trivial pointers to
// their context, but we use ownership to do borrow checking of their captures
// in OSSA. Now that we're eliminating ownership, fold away copies.
if (auto cvFnTy = cvi->getType().getAs<SILFunctionType>()) {
if (cvFnTy->isTrivialNoEscape()) {
// Erase any `destroy_value`s of this copy, so we don't mistake them for
// the end of the original value's lifetime after we RAUW.
SmallVector<DestroyValueInst *, 2> destroys;
for (auto user : cvi->getUsersOfType<DestroyValueInst>()) {
destroys.push_back(user);
}
for (auto destroy : destroys) {
eraseInstruction(destroy);
}
eraseInstructionAndRAUW(cvi, cvi->getOperand());
return true;
}
}
// Now that we have set the unqualified ownership flag, emitCopyValueOperation
// operation will delegate to the appropriate strong_release, etc.
withBuilder<void>(cvi, [&](SILBuilder &b, SILLocation loc) {
b.emitCopyValueOperation(loc, cvi->getOperand());
});
eraseInstructionAndRAUW(cvi, cvi->getOperand());
return true;
}
bool OwnershipModelEliminatorVisitor::visitExplicitCopyValueInst(
ExplicitCopyValueInst *cvi) {
// A copy_value of an address-only type cannot be replaced.
if (cvi->getType().isAddressOnly(*cvi->getFunction()))
return false;
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
withBuilder<void>(cvi, [&](SILBuilder &b, SILLocation loc) {
b.emitCopyValueOperation(loc, cvi->getOperand());
});
eraseInstructionAndRAUW(cvi, cvi->getOperand());
return true;
}
bool OwnershipModelEliminatorVisitor::visitExplicitCopyAddrInst(
ExplicitCopyAddrInst *ecai) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
withBuilder<void>(ecai, [&](SILBuilder &b, SILLocation loc) {
b.createCopyAddr(loc, ecai->getSrc(), ecai->getDest(), ecai->isTakeOfSrc(),
ecai->isInitializationOfDest());
});
eraseInstruction(ecai);
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedRetainValueInst(
UnmanagedRetainValueInst *urvi) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
withBuilder<void>(urvi, [&](SILBuilder &b, SILLocation loc) {
b.emitCopyValueOperation(loc, urvi->getOperand());
});
eraseInstruction(urvi);
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedReleaseValueInst(
UnmanagedReleaseValueInst *urvi) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
withBuilder<void>(urvi, [&](SILBuilder &b, SILLocation loc) {
b.emitDestroyValueOperation(loc, urvi->getOperand());
});
eraseInstruction(urvi);
return true;
}
bool OwnershipModelEliminatorVisitor::visitUnmanagedAutoreleaseValueInst(
UnmanagedAutoreleaseValueInst *UAVI) {
// Now that we have set the unqualified ownership flag, destroy value
// operation will delegate to the appropriate strong_release, etc.
withBuilder<void>(UAVI, [&](SILBuilder &b, SILLocation loc) {
b.createAutoreleaseValue(loc, UAVI->getOperand(), UAVI->getAtomicity());
});
eraseInstruction(UAVI);
return true;
}
// Poison every debug variable associated with \p value.
static void injectDebugPoison(DestroyValueInst *destroy) {
// TODO: SILDebugVariable should define it's key. Until then, we try to be
// consistent with IRGen.
using StackSlotKey =
std::pair<unsigned, std::pair<const SILDebugScope *, StringRef>>;
// This DenseSet points to StringRef memory into the debug_value insts.
llvm::SmallDenseSet<StackSlotKey> poisonedVars;
SILValue destroyedValue = destroy->getOperand();
for (Operand *use : getDebugUses(destroyedValue)) {
auto debugVal = dyn_cast<DebugValueInst>(use->getUser());
if (!debugVal || debugVal->poisonRefs())
continue;
const SILDebugScope *scope = debugVal->getDebugScope();
auto loc = debugVal->getLoc();
std::optional<SILDebugVariable> varInfo = debugVal->getVarInfo();
if (!varInfo)
continue;
unsigned argNo = varInfo->ArgNo;
if (!poisonedVars.insert({argNo, {scope, varInfo->Name}}).second)
continue;
SILBuilder builder(destroy);
// The poison DebugValue's DebugLocation must be identical to the original
// DebugValue. The DebugScope is used to identify the variable's unique
// shadow copy. The SILLocation is used to determine the VarDecl, which is
// necessary in some cases to derive a unique variable name.
//
// This debug location is obviously inconsistent with surrounding code, but
// IRGen is responsible for fixing this.
builder.setCurrentDebugScope(scope);
auto *newDebugVal = builder.createDebugValue(loc, destroyedValue, *varInfo,
/*poisonRefs*/ true);
assert(*(newDebugVal->getVarInfo()) == *varInfo && "lost in translation");
(void)newDebugVal;
}
}
bool OwnershipModelEliminatorVisitor::visitPartialApplyInst(
PartialApplyInst *inst) {
// Escaping closures don't need attention beyond what we already perform.
if (!inst->isOnStack())
return false;
// A nonescaping closure borrows its captures, but now that we've lowered
// those borrows away, we need to make those dependence relationships explicit
// so that the optimizer continues respecting them.
MarkDependenceInst *firstNewMDI = nullptr;
auto newValue = withBuilder<SILValue>(inst->getNextInstruction(),
[&](SILBuilder &b, SILLocation loc) {
SILValue newValue = inst;
for (auto op : inst->getArguments()) {
// Trivial types have infinite lifetimes already.
if (op->getType().isTrivial(*inst->getFunction())) {
break;
}
// Address operands should already have their dependence marked, since
// borrowing doesn't model values in memory.
if (op->getType().isAddress()) {
break;
}
// If this is a nontrivial value argument, insert the mark_dependence.
auto mdi = b.createMarkDependence(loc, newValue, op,
MarkDependenceKind::Escaping);
if (!firstNewMDI)
firstNewMDI = mdi;
newValue = mdi;
}
return newValue;
});
// Rewrite all uses other than the root of the new dependence chain, and a
// `dealloc_stack` of the partial_apply instruction we may have already
// created, to go through the dependence chain, if there is one.
if (firstNewMDI) {
while (!inst->use_empty()) {
auto opI = inst->use_begin();
while ((*opI)->getUser() == firstNewMDI
|| isa<DeallocStackInst>((*opI)->getUser())) {
++opI;
if (opI == inst->use_end()) {
goto done_rewriting;
}
}
(*opI)->set(newValue);
}
done_rewriting:
return true;
}
return false;
}
// Destroy all nontrivial members of the struct or enum destroyed by \p destroy
// ignoring any user-defined deinit.
//
// See also splitDestructure().
void OwnershipModelEliminatorVisitor::splitDestroy(DestroyValueInst *destroy) {
SILModule &module = destroy->getModule();
SILFunction *function = destroy->getFunction();
auto loc = destroy->getLoc();
auto operand = destroy->getOperand();
auto operandTy = operand->getType();
NominalTypeDecl *nominalDecl = operandTy.getNominalOrBoundGenericNominal();
if (auto *sd = dyn_cast<StructDecl>(nominalDecl)) {
withBuilder<void>(destroy, [&](SILBuilder &builder, SILLocation loc) {
llvm::SmallVector<Projection, 8> projections;
Projection::getFirstLevelProjections(
operandTy, module, TypeExpansionContext(*function), projections);
for (Projection &projection : projections) {
auto *projectedValue =
projection.createObjectProjection(builder, loc, operand).get();
builder.emitDestroyValueOperation(loc, projectedValue);
}
});
return;
}
// "Destructure" an enum.
auto *enumDecl = dyn_cast<EnumDecl>(nominalDecl);
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 8> caseCleanups;
auto *destroyBlock = destroy->getParent();
auto *contBlock = destroyBlock->split(std::next(destroy->getIterator()));
for (auto *enumElt : enumDecl->getAllElements()) {
auto *enumBlock = function->createBasicBlockBefore(contBlock);
SILBuilder builder(enumBlock, enumBlock->begin());
if (enumElt->hasAssociatedValues()) {
auto caseType = operandTy.getEnumElementType(enumElt, function);
auto *phiArg =
enumBlock->createPhiArgument(caseType, OwnershipKind::Owned);
SILBuilderWithScope(enumBlock, builderCtx, destroy->getDebugScope())
.emitDestroyValueOperation(loc, phiArg);
}
// Branch to the continue block.
builder.createBranch(loc, contBlock);
caseCleanups.emplace_back(enumElt, enumBlock);
}
SILBuilderWithScope switchBuilder(destroyBlock, builderCtx,
destroy->getDebugScope());
switchBuilder.createSwitchEnum(loc, operand, nullptr, caseCleanups);
}
bool OwnershipModelEliminatorVisitor::visitDestroyValueInst(
DestroyValueInst *dvi) {
// Nonescaping closures are represented ultimately as trivial pointers to
// their context, but we use ownership to do borrow checking of their captures
// in OSSA. Now that we're eliminating ownership, fold away destroys.
auto operand = dvi->getOperand();
auto operandTy = operand->getType();
if (auto operandFnTy = operandTy.getAs<SILFunctionType>()){
if (operandFnTy->isTrivialNoEscape()) {
eraseInstruction(dvi);
return true;
}
}
// A drop_deinit eliminates any user-defined deinit. Its destroy does not
// lower to a release. If any members require deinitialization, they must be
// destructured and individually destroyed.
if (isa<DropDeinitInst>(lookThroughOwnershipInsts(operand))) {
splitDestroy(dvi);
eraseInstruction(dvi);
return true;
}
// Now that we have set the unqualified ownership flag,
// emitDestroyValueOperation will insert the appropriate instruction.
withBuilder<void>(dvi, [&](SILBuilder &b, SILLocation loc) {
b.emitDestroyValueOperation(loc, operand);
});
if (dvi->poisonRefs()) {
injectDebugPoison(dvi);
}
eraseInstruction(dvi);
return true;
}
bool OwnershipModelEliminatorVisitor::visitCheckedCastBranchInst(
CheckedCastBranchInst *cbi) {
cbi->setForwardingOwnershipKind(OwnershipKind::None);
// In ownership qualified SIL, checked_cast_br must pass its argument to the
// fail case so we can clean it up. In non-ownership qualified SIL, we expect
// no argument from the checked_cast_br in the default case. The way that we
// handle this transformation is that:
//
// 1. We replace all uses of the argument to the false block with a use of the
// checked cast branch's operand.
// 2. We delete the argument from the false block.
SILBasicBlock *failureBlock = cbi->getFailureBB();
if (failureBlock->getNumArguments() == 0)
return false;
failureBlock->getArgument(0)->replaceAllUsesWith(cbi->getOperand());
failureBlock->eraseArgument(0);
return true;
}
bool OwnershipModelEliminatorVisitor::visitSwitchEnumInst(
SwitchEnumInst *swei) {
swei->setForwardingOwnershipKind(OwnershipKind::None);
// In ownership qualified SIL, switch_enum must pass its argument to the fail
// case so we can clean it up. In non-ownership qualified SIL, we expect no
// argument from the switch_enum in the default case. The way that we handle
// this transformation is that:
//
// 1. We replace all uses of the argument to the false block with a use of the
// checked cast branch's operand.
// 2. We delete the argument from the false block.
if (!swei->hasDefault())
return false;
SILBasicBlock *defaultBlock = swei->getDefaultBB();
if (defaultBlock->getNumArguments() == 0)
return false;
defaultBlock->getArgument(0)->replaceAllUsesWith(swei->getOperand());
defaultBlock->eraseArgument(0);
return true;
}
// See also splitDestroy().
void OwnershipModelEliminatorVisitor::splitDestructure(
SILInstruction *destructureInst, SILValue destructureOperand) {
assert((isa<DestructureStructInst>(destructureInst) ||
isa<DestructureTupleInst>(destructureInst)) &&
"Only destructure operations can be passed to splitDestructure");
// First before we destructure anything, see if we can simplify any of our
// instruction operands.
SILModule &M = destructureInst->getModule();
SILType opType = destructureOperand->getType();
llvm::SmallVector<Projection, 8> projections;
Projection::getFirstLevelProjections(
opType, M, TypeExpansionContext(*destructureInst->getFunction()),
projections);
assert(projections.size() == destructureInst->getNumResults());
auto destructureResults = destructureInst->getResults();
for (unsigned index : indices(destructureResults)) {
SILValue result = destructureResults[index];
// If our result doesnt have any uses, do not emit instructions, just skip
// it.
if (result->use_empty())
continue;
// Otherwise, create a projection.
const auto &proj = projections[index];
auto *projInst = withBuilder<SingleValueInstruction *>(
destructureInst, [&](SILBuilder &b, SILLocation loc) {
return proj.createObjectProjection(b, loc, destructureOperand).get();
});
// First RAUW Result with ProjInst. This ensures that we have a complete IR
// before we perform any simplifications.
result->replaceAllUsesWith(projInst);
}
// Now that all of its uses have been eliminated, erase the destructure.
eraseInstruction(destructureInst);
}
bool OwnershipModelEliminatorVisitor::visitDestructureStructInst(
DestructureStructInst *dsi) {
splitDestructure(dsi, dsi->getOperand());
return true;
}
bool OwnershipModelEliminatorVisitor::visitDestructureTupleInst(
DestructureTupleInst *dti) {
splitDestructure(dti, dti->getOperand());
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Entry Point
//===----------------------------------------------------------------------===//
static bool stripOwnership(SILFunction &func) {
// If F is an external declaration, do not process it.
if (func.isExternalDeclaration())
return false;
llvm::DenseMap<PartialApplyInst *, SmallVector<SILInstruction *>>
lifetimeEnds;
// Nonescaping closures are represented ultimately as trivial pointers to
// their context, but we use ownership to do borrow checking of their captures
// in OSSA. Now that we're eliminating ownership, we need to dealloc_stack the
// context at its lifetime ends.
// partial_apply's lifetime ends has to be gathered before we begin to leave
// OSSA, but no dealloc_stack can be emitted until after we leave OSSA.
for (auto &block : func) {
for (auto &ii : block) {
auto *pai = dyn_cast<PartialApplyInst>(&ii);
if (!pai || !pai->isOnStack()) {
continue;
}
pai->visitOnStackLifetimeEnds([&](Operand *op) {
lifetimeEnds[pai].push_back(op->getUser());
return true;
});
}
}
// Set F to have unqualified ownership.
func.setOwnershipEliminated();
// Now that we are in non-ossa, create dealloc_stack at partial_apply's
// lifetime ends
for (auto &it : lifetimeEnds) {
auto *pai = it.first;
for (auto *lifetimeEnd : it.second) {
SILBuilderWithScope(lifetimeEnd->getNextInstruction())
.createDeallocStack(lifetimeEnd->getLoc(), pai);
}
}
bool madeChange = false;
SmallVector<SILInstruction *, 32> createdInsts;
OwnershipModelEliminatorVisitor visitor(func);
for (auto &block : func) {
// Change all arguments to have OwnershipKind::None.
for (auto *arg : block.getArguments()) {
arg->setOwnershipKind(OwnershipKind::None);
}
// This loop may erase instructions and split basic blocks.
for (auto ii = block.begin(); ii != block.end(); ++ii) {
SILInstruction *inst = &*ii;
if (inst->isDeleted())
continue;
madeChange |= visitor.visit(inst);
}
}
// Once we have finished processing all instructions, we should be
// consistently in non-ossa form meaning that it is now safe for us to invoke
// utilities that assume that they are in a consistent ossa or non-ossa form
// such as inst simplify. Now go through any instructions and simplify using
// inst simplify!
//
// DISCUSSION: We want our utilities to be able to assume if f.hasOwnership()
// is false then the utility is allowed to assume the function the utility is
// invoked within is in non-ossa form structurally (e.x.: non-ossa does not
// have arguments on the default result of checked_cast_br).
while (!visitor.instructionsToSimplify.empty()) {
auto value = visitor.instructionsToSimplify.pop_back_val();
if (!value.has_value())
continue;
if (auto dropDeinit = dyn_cast<DropDeinitInst>(*value)) {
visitor.eraseInstructionAndRAUW(dropDeinit, dropDeinit->getOperand());
madeChange = true;
continue;
}
auto callbacks =
InstModCallbacks().onDelete([&](SILInstruction *instToErase) {
visitor.eraseInstruction(instToErase);
});
// We are no longer in OSSA, so we don't need to pass in a deBlocks.
simplifyAndReplaceAllSimplifiedUsesAndErase(*value, callbacks);
madeChange |= callbacks.hadCallbackInvocation();
}
if (madeChange) {
StackNesting::fixNesting(&func);
}
return madeChange;
}
static void prepareNonTransparentSILFunctionForOptimization(ModuleDecl *,
SILFunction *f) {
if (!f->hasOwnership() || f->isTransparent())
return;
LLVM_DEBUG(llvm::dbgs() << "After deserialization, stripping ownership in:"
<< f->getName() << "\n");
stripOwnership(*f);
}
static void prepareSILFunctionForOptimization(ModuleDecl *, SILFunction *f) {
if (!f->hasOwnership())
return;
LLVM_DEBUG(llvm::dbgs() << "After deserialization, stripping ownership in:"
<< f->getName() << "\n");
stripOwnership(*f);
}
namespace {
struct OwnershipModelEliminator : SILFunctionTransform {
bool skipTransparent;
bool skipStdlibModule;
OwnershipModelEliminator(bool skipTransparent, bool skipStdlibModule)
: skipTransparent(skipTransparent), skipStdlibModule(skipStdlibModule) {}
void run() override {
if (DumpBefore.size()) {
getFunction()->dump(DumpBefore.c_str());
}
auto *f = getFunction();
auto &mod = getFunction()->getModule();
// If we are supposed to skip the stdlib module and we are in the stdlib
// module bail.
if (skipStdlibModule && mod.isStdlibModule()) {
return;
}
if (!f->hasOwnership())
return;
// If we were asked to not strip ownership from transparent functions in
// /our/ module, return.
if (skipTransparent && f->isTransparent())
return;
// Verify here to make sure ownership is correct before we strip.
{
// Add a pretty stack trace entry to tell users who see a verification
// failure triggered by this verification check that they need to re-run
// with -sil-verify-all to actually find the pass that introduced the
// verification error.
//
// DISCUSSION: This occurs due to the crash from the verification
// failure happening in the pass itself. This causes us to dump the
// SILFunction and emit a msg that this pass (OME) is the culprit. This
// is generally correct for most passes, but not for OME since we are
// verifying before we have even modified the function to ensure that
// all ownership invariants have been respected before we lower
// ownership from the function.
llvm::PrettyStackTraceString silVerifyAllMsgOnFailure(
"Found verification error when verifying before lowering "
"ownership. Please re-run with -sil-verify-all to identify the "
"actual pass that introduced the verification error.");
f->verify(getAnalysis<BasicCalleeAnalysis>()->getCalleeCache());
getPassManager()->runSwiftFunctionVerification(f);
}
if (stripOwnership(*f)) {
auto InvalidKind = SILAnalysis::InvalidationKind::BranchesAndInstructions;
invalidateAnalysis(InvalidKind);
}
// If we were asked to strip transparent, we are at the beginning of the
// performance pipeline. In such a case, we register a handler so that all
// future things we deserialize have ownership stripped.
using NotificationHandlerTy =
FunctionBodyDeserializationNotificationHandler;
std::unique_ptr<DeserializationNotificationHandler> ptr;
if (skipTransparent) {
if (!mod.hasRegisteredDeserializationNotificationHandlerForNonTransparentFuncOME()) {
ptr.reset(new NotificationHandlerTy(
prepareNonTransparentSILFunctionForOptimization));
mod.registerDeserializationNotificationHandler(std::move(ptr));
mod.setRegisteredDeserializationNotificationHandlerForNonTransparentFuncOME();
}
} else {
if (!mod.hasRegisteredDeserializationNotificationHandlerForAllFuncOME()) {
ptr.reset(new NotificationHandlerTy(prepareSILFunctionForOptimization));
mod.registerDeserializationNotificationHandler(std::move(ptr));
mod.setRegisteredDeserializationNotificationHandlerForAllFuncOME();
}
}
}
};
} // end anonymous namespace
SILTransform *swift::createOwnershipModelEliminator() {
return new OwnershipModelEliminator(false /*skip transparent*/,
false /*ignore stdlib*/);
}
SILTransform *swift::createNonTransparentFunctionOwnershipModelEliminator() {
return new OwnershipModelEliminator(true /*skip transparent*/,
false /*ignore stdlib*/);
}
|