1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
|
//===--- PredictableMemOpt.cpp - Perform predictable memory optzns --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "predictable-memopt"
#include "PMOMemoryUseCollector.h"
#include "swift/Basic/BlotMapVector.h"
#include "swift/Basic/BlotSetVector.h"
#include "swift/Basic/FrozenMultiMap.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/OSSALifetimeCompletion.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumLoadPromoted, "Number of loads promoted");
STATISTIC(NumLoadTakePromoted, "Number of load takes promoted");
STATISTIC(NumDestroyAddrPromoted, "Number of destroy_addrs promoted");
STATISTIC(NumAllocRemoved, "Number of allocations completely removed");
//===----------------------------------------------------------------------===//
// Subelement Analysis
//===----------------------------------------------------------------------===//
// We can only analyze components of structs whose storage is fully accessible
// from Swift.
static StructDecl *
getFullyReferenceableStruct(SILType Ty) {
auto SD = Ty.getStructOrBoundGenericStruct();
if (!SD || SD->hasUnreferenceableStorage())
return nullptr;
return SD;
}
static unsigned getNumSubElements(SILType T, SILModule &M,
TypeExpansionContext context) {
if (auto TT = T.getAs<TupleType>()) {
unsigned NumElements = 0;
for (auto index : indices(TT.getElementTypes()))
NumElements +=
getNumSubElements(T.getTupleElementType(index), M, context);
return NumElements;
}
if (auto *SD = getFullyReferenceableStruct(T)) {
unsigned NumElements = 0;
for (auto *D : SD->getStoredProperties())
NumElements +=
getNumSubElements(T.getFieldType(D, M, context), M, context);
return NumElements;
}
// If this isn't a tuple or struct, it is a single element.
return 1;
}
/// getAccessPathRoot - Given an address, dive through any tuple/struct element
/// addresses to get the underlying value.
static SILValue getAccessPathRoot(SILValue pointer) {
while (true) {
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(pointer)) {
pointer = TEAI->getOperand();
continue;
}
if (auto *SEAI = dyn_cast<StructElementAddrInst>(pointer)) {
pointer = SEAI->getOperand();
continue;
}
if (auto *BAI = dyn_cast<BeginAccessInst>(pointer)) {
pointer = BAI->getSource();
continue;
}
return pointer;
}
}
/// Compute the subelement number indicated by the specified pointer (which is
/// derived from the root by a series of tuple/struct element addresses) by
/// treating the type as a linearized namespace with sequential elements. For
/// example, given:
///
/// root = alloc { a: { c: i64, d: i64 }, b: (i64, i64) }
/// tmp1 = struct_element_addr root, 1
/// tmp2 = tuple_element_addr tmp1, 0
///
/// This will return a subelement number of 2.
///
/// If this pointer is to within an existential projection, it returns ~0U.
static unsigned computeSubelement(SILValue Pointer,
SingleValueInstruction *RootInst) {
unsigned SubElementNumber = 0;
SILModule &M = RootInst->getModule();
while (1) {
// If we got to the root, we're done.
if (RootInst == Pointer)
return SubElementNumber;
if (auto *PBI = dyn_cast<ProjectBoxInst>(Pointer)) {
Pointer = PBI->getOperand();
continue;
}
if (auto *BAI = dyn_cast<BeginAccessInst>(Pointer)) {
Pointer = BAI->getSource();
continue;
}
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(Pointer)) {
SILType TT = TEAI->getOperand()->getType();
// Keep track of what subelement is being referenced.
for (unsigned i = 0, e = TEAI->getFieldIndex(); i != e; ++i) {
SubElementNumber +=
getNumSubElements(TT.getTupleElementType(i), M,
TypeExpansionContext(*RootInst->getFunction()));
}
Pointer = TEAI->getOperand();
continue;
}
if (auto *SEAI = dyn_cast<StructElementAddrInst>(Pointer)) {
SILType ST = SEAI->getOperand()->getType();
// Keep track of what subelement is being referenced.
StructDecl *SD = SEAI->getStructDecl();
for (auto *D : SD->getStoredProperties()) {
if (D == SEAI->getField()) break;
auto context = TypeExpansionContext(*RootInst->getFunction());
SubElementNumber +=
getNumSubElements(ST.getFieldType(D, M, context), M, context);
}
Pointer = SEAI->getOperand();
continue;
}
// This fails when we visit unchecked_take_enum_data_addr. We should just
// add support for enums.
assert(isa<InitExistentialAddrInst>(Pointer) &&
"Unknown access path instruction");
// Cannot promote loads and stores from within an existential projection.
return ~0U;
}
}
//===----------------------------------------------------------------------===//
// Available Value
//===----------------------------------------------------------------------===//
namespace {
class AvailableValueAggregator;
struct AvailableValue {
friend class AvailableValueAggregator;
SILValue Value;
unsigned SubElementNumber;
/// If this gets too expensive in terms of copying, we can use an arena and a
/// FrozenPtrSet like we do in ARC.
llvm::SmallSetVector<StoreInst *, 1> InsertionPoints;
/// Just for updating.
SmallVectorImpl<PMOMemoryUse> *Uses;
public:
AvailableValue() = default;
/// Main initializer for available values.
///
/// *NOTE* We assume that all available values start with a singular insertion
/// point and insertion points are added by merging.
AvailableValue(SILValue Value, unsigned SubElementNumber,
StoreInst *InsertPoint)
: Value(Value), SubElementNumber(SubElementNumber), InsertionPoints() {
InsertionPoints.insert(InsertPoint);
}
/// Deleted copy constructor. This is a move only type.
AvailableValue(const AvailableValue &) = delete;
/// Deleted copy operator. This is a move only type.
AvailableValue &operator=(const AvailableValue &) = delete;
/// Move constructor.
AvailableValue(AvailableValue &&Other)
: Value(nullptr), SubElementNumber(~0), InsertionPoints() {
std::swap(Value, Other.Value);
std::swap(SubElementNumber, Other.SubElementNumber);
std::swap(InsertionPoints, Other.InsertionPoints);
}
/// Move operator.
AvailableValue &operator=(AvailableValue &&Other) {
std::swap(Value, Other.Value);
std::swap(SubElementNumber, Other.SubElementNumber);
std::swap(InsertionPoints, Other.InsertionPoints);
return *this;
}
operator bool() const { return bool(Value); }
bool operator==(const AvailableValue &Other) const {
return Value == Other.Value && SubElementNumber == Other.SubElementNumber;
}
bool operator!=(const AvailableValue &Other) const {
return !(*this == Other);
}
SILValue getValue() const { return Value; }
SILType getType() const { return Value->getType(); }
unsigned getSubElementNumber() const { return SubElementNumber; }
ArrayRef<StoreInst *> getInsertionPoints() const {
return InsertionPoints.getArrayRef();
}
void mergeInsertionPoints(const AvailableValue &Other) & {
assert(Value == Other.Value && SubElementNumber == Other.SubElementNumber);
InsertionPoints.set_union(Other.InsertionPoints);
}
void addInsertionPoint(StoreInst *si) & { InsertionPoints.insert(si); }
AvailableValue emitStructExtract(SILBuilder &B, SILLocation Loc, VarDecl *D,
unsigned SubElementNumber) const {
SILValue NewValue = B.emitStructExtract(Loc, Value, D);
return {NewValue, SubElementNumber, InsertionPoints};
}
AvailableValue emitTupleExtract(SILBuilder &B, SILLocation Loc,
unsigned EltNo,
unsigned SubElementNumber) const {
SILValue NewValue = B.emitTupleExtract(Loc, Value, EltNo);
return {NewValue, SubElementNumber, InsertionPoints};
}
AvailableValue emitBeginBorrow(SILBuilder &b, SILLocation loc) const {
// If we do not have ownership or already are guaranteed, just return a copy
// of our state.
if (!b.hasOwnership() ||
Value->getOwnershipKind().isCompatibleWith(OwnershipKind::Guaranteed)) {
return {Value, SubElementNumber, InsertionPoints};
}
// Otherwise, return newValue.
return {b.createBeginBorrow(loc, Value), SubElementNumber, InsertionPoints};
}
void dump() const LLVM_ATTRIBUTE_USED;
void print(llvm::raw_ostream &os) const;
private:
/// Private constructor.
AvailableValue(SILValue Value, unsigned SubElementNumber,
const decltype(InsertionPoints) &InsertPoints)
: Value(Value), SubElementNumber(SubElementNumber),
InsertionPoints(InsertPoints) {}
};
} // end anonymous namespace
void AvailableValue::dump() const { print(llvm::dbgs()); }
void AvailableValue::print(llvm::raw_ostream &os) const {
os << "Available Value Dump. Value: ";
if (getValue()) {
os << getValue();
} else {
os << "NoValue;\n";
}
os << "SubElementNumber: " << getSubElementNumber() << "\n";
os << "Insertion Points:\n";
for (auto *I : getInsertionPoints()) {
os << *I;
}
}
namespace llvm {
llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const AvailableValue &V) {
V.print(os);
return os;
}
} // end llvm namespace
//===----------------------------------------------------------------------===//
// Subelement Extraction
//===----------------------------------------------------------------------===//
/// Given an aggregate value and an access path, non-destructively extract the
/// value indicated by the path.
static SILValue nonDestructivelyExtractSubElement(const AvailableValue &Val,
SILBuilder &B,
SILLocation Loc) {
SILType ValTy = Val.getType();
unsigned SubElementNumber = Val.SubElementNumber;
// Extract tuple elements.
if (auto TT = ValTy.getAs<TupleType>()) {
for (unsigned EltNo : indices(TT.getElementTypes())) {
// Keep track of what subelement is being referenced.
SILType EltTy = ValTy.getTupleElementType(EltNo);
unsigned NumSubElt = getNumSubElements(
EltTy, B.getModule(), TypeExpansionContext(B.getFunction()));
if (SubElementNumber < NumSubElt) {
auto BorrowedVal = Val.emitBeginBorrow(B, Loc);
auto NewVal =
BorrowedVal.emitTupleExtract(B, Loc, EltNo, SubElementNumber);
SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc);
// If our original value wasn't guaranteed and we did actually perform a
// borrow as a result, insert the end_borrow.
if (BorrowedVal.getValue() != Val.getValue())
B.createEndBorrow(Loc, BorrowedVal.getValue());
return result;
}
SubElementNumber -= NumSubElt;
}
llvm_unreachable("Didn't find field");
}
// Extract struct elements.
if (auto *SD = getFullyReferenceableStruct(ValTy)) {
for (auto *D : SD->getStoredProperties()) {
auto fieldType = ValTy.getFieldType(
D, B.getModule(), TypeExpansionContext(B.getFunction()));
unsigned NumSubElt = getNumSubElements(
fieldType, B.getModule(), TypeExpansionContext(B.getFunction()));
if (SubElementNumber < NumSubElt) {
auto BorrowedVal = Val.emitBeginBorrow(B, Loc);
auto NewVal =
BorrowedVal.emitStructExtract(B, Loc, D, SubElementNumber);
SILValue result = nonDestructivelyExtractSubElement(NewVal, B, Loc);
// If our original value wasn't guaranteed and we did actually perform a
// borrow as a result, insert the end_borrow.
if (BorrowedVal.getValue() != Val.getValue())
B.createEndBorrow(Loc, BorrowedVal.getValue());
return result;
}
SubElementNumber -= NumSubElt;
}
llvm_unreachable("Didn't find field");
}
// Otherwise, we're down to a scalar. If we have ownership enabled,
// we return a copy. Otherwise, there we can ignore ownership
// issues. This is ok since in [ossa] we are going to eliminate a
// load [copy] or a load [trivial], while in non-[ossa] SIL we will
// be replacing unqualified loads.
assert(SubElementNumber == 0 && "Miscalculation indexing subelements");
if (!B.hasOwnership())
return Val.getValue();
return B.emitCopyValueOperation(Loc, Val.getValue());
}
//===----------------------------------------------------------------------===//
// Available Value Aggregation
//===----------------------------------------------------------------------===//
static bool anyMissing(unsigned StartSubElt, unsigned NumSubElts,
ArrayRef<AvailableValue> &Values) {
while (NumSubElts) {
if (!Values[StartSubElt])
return true;
++StartSubElt;
--NumSubElts;
}
return false;
}
namespace {
enum class AvailableValueExpectedOwnership {
Take,
Borrow,
Copy,
};
/// A class that aggregates available values, loading them if they are not
/// available.
class AvailableValueAggregator {
SILModule &M;
SILBuilderWithScope B;
SILLocation Loc;
MutableArrayRef<AvailableValue> AvailableValueList;
SmallVectorImpl<PMOMemoryUse> &Uses;
DeadEndBlocks &deadEndBlocks;
AvailableValueExpectedOwnership expectedOwnership;
/// Keep track of all instructions that we have added. Once we are done
/// promoting a value, we need to make sure that if we need to balance any
/// copies (to avoid leaks), we do so. This is not used if we are performing a
/// take.
SmallVector<SILInstruction *, 16> insertedInsts;
/// The list of phi nodes inserted by the SSA updater.
SmallVector<SILPhiArgument *, 16> insertedPhiNodes;
/// A set of copy_values whose lifetime we balanced while inserting phi
/// nodes. This means that these copy_value must be skipped in
/// addMissingDestroysForCopiedValues.
SmallPtrSet<CopyValueInst *, 16> copyValueProcessedWithPhiNodes;
public:
AvailableValueAggregator(SILInstruction *Inst,
MutableArrayRef<AvailableValue> AvailableValueList,
SmallVectorImpl<PMOMemoryUse> &Uses,
DeadEndBlocks &deadEndBlocks,
AvailableValueExpectedOwnership expectedOwnership)
: M(Inst->getModule()), B(Inst), Loc(Inst->getLoc()),
AvailableValueList(AvailableValueList), Uses(Uses),
deadEndBlocks(deadEndBlocks), expectedOwnership(expectedOwnership) {}
// This is intended to be passed by reference only once constructed.
AvailableValueAggregator(const AvailableValueAggregator &) = delete;
AvailableValueAggregator(AvailableValueAggregator &&) = delete;
AvailableValueAggregator &
operator=(const AvailableValueAggregator &) = delete;
AvailableValueAggregator &operator=(AvailableValueAggregator &&) = delete;
SILValue aggregateValues(SILType LoadTy, SILValue Address, unsigned FirstElt,
bool isTopLevel = true);
bool canTake(SILType loadTy, unsigned firstElt) const;
void print(llvm::raw_ostream &os) const;
void dump() const LLVM_ATTRIBUTE_USED;
bool isTake() const {
return expectedOwnership == AvailableValueExpectedOwnership::Take;
}
bool isBorrow() const {
return expectedOwnership == AvailableValueExpectedOwnership::Borrow;
}
bool isCopy() const {
return expectedOwnership == AvailableValueExpectedOwnership::Copy;
}
/// Given a load_borrow that we have aggregated a new value for, fixup the
/// reference counts of the intermediate copies and phis to ensure that all
/// forwarding operations in the CFG are strongly control equivalent (i.e. run
/// the same number of times).
void fixupOwnership(SILInstruction *load, SILValue newVal) {
assert(isa<LoadBorrowInst>(load) || isa<LoadInst>(load));
addHandOffCopyDestroysForPhis(load, newVal);
addMissingDestroysForCopiedValues(load, newVal);
}
private:
SILValue aggregateFullyAvailableValue(SILType loadTy, unsigned firstElt);
SILValue aggregateTupleSubElts(TupleType *tt, SILType loadTy,
SILValue address, unsigned firstElt);
SILValue aggregateStructSubElts(StructDecl *sd, SILType loadTy,
SILValue address, unsigned firstElt);
SILValue handlePrimitiveValue(SILType loadTy, SILValue address,
unsigned firstElt);
bool isFullyAvailable(SILType loadTy, unsigned firstElt) const;
/// If as a result of us copying values, we may have unconsumed destroys, find
/// the appropriate location and place the values there. Only used when
/// ownership is enabled.
void addMissingDestroysForCopiedValues(SILInstruction *load, SILValue newVal);
/// As a result of us using the SSA updater, insert hand off copy/destroys at
/// each phi and make sure that intermediate phis do not leak by inserting
/// destroys along paths that go through the intermediate phi that do not also
/// go through the
void addHandOffCopyDestroysForPhis(SILInstruction *load, SILValue newVal);
};
} // end anonymous namespace
void AvailableValueAggregator::dump() const { print(llvm::dbgs()); }
void AvailableValueAggregator::print(llvm::raw_ostream &os) const {
os << "Available Value List, N = " << AvailableValueList.size()
<< ". Elts:\n";
for (auto &V : AvailableValueList) {
os << V;
}
}
bool AvailableValueAggregator::isFullyAvailable(SILType loadTy,
unsigned firstElt) const {
if (firstElt >= AvailableValueList.size()) { // #Elements may be zero.
return false;
}
auto &firstVal = AvailableValueList[firstElt];
// Make sure that the first element is available and is the correct type.
if (!firstVal || firstVal.getType() != loadTy)
return false;
return llvm::all_of(range(getNumSubElements(
loadTy, M, TypeExpansionContext(B.getFunction()))),
[&](unsigned index) -> bool {
auto &val = AvailableValueList[firstElt + index];
return val.getValue() == firstVal.getValue() &&
val.getSubElementNumber() == index;
});
}
// We can only take if we never have to split a larger value to promote this
// address.
bool AvailableValueAggregator::canTake(SILType loadTy,
unsigned firstElt) const {
// If we do not have ownership, we can always take since we do not need to
// keep any ownership invariants up to date. In the future, we should be able
// to chop up larger values before they are being stored.
if (!B.hasOwnership())
return true;
// If we are trivially fully available, just return true.
if (isFullyAvailable(loadTy, firstElt))
return true;
// Otherwise see if we are an aggregate with fully available leaf types.
if (TupleType *tt = loadTy.getAs<TupleType>()) {
return llvm::all_of(indices(tt->getElements()), [&](unsigned eltNo) {
SILType eltTy = loadTy.getTupleElementType(eltNo);
unsigned numSubElt =
getNumSubElements(eltTy, M, TypeExpansionContext(B.getFunction()));
bool success = canTake(eltTy, firstElt);
firstElt += numSubElt;
return success;
});
}
if (auto *sd = getFullyReferenceableStruct(loadTy)) {
return llvm::all_of(sd->getStoredProperties(), [&](VarDecl *decl) -> bool {
auto context = TypeExpansionContext(B.getFunction());
SILType eltTy = loadTy.getFieldType(decl, M, context);
unsigned numSubElt = getNumSubElements(eltTy, M, context);
bool success = canTake(eltTy, firstElt);
firstElt += numSubElt;
return success;
});
}
// Otherwise, fail. The value is not fully available at its leafs. We can not
// perform a take.
return false;
}
/// Given a bunch of primitive subelement values, build out the right aggregate
/// type (LoadTy) by emitting tuple and struct instructions as necessary.
SILValue AvailableValueAggregator::aggregateValues(SILType LoadTy,
SILValue Address,
unsigned FirstElt,
bool isTopLevel) {
// If we are performing a take, make sure that we have available values for
// /all/ of our values. Otherwise, bail.
if (isTopLevel && isTake() && !canTake(LoadTy, FirstElt)) {
return SILValue();
}
// Check to see if the requested value is fully available, as an aggregate.
// This is a super-common case for single-element structs, but is also a
// general answer for arbitrary structs and tuples as well.
if (SILValue Result = aggregateFullyAvailableValue(LoadTy, FirstElt)) {
return Result;
}
// If we have a tuple type, then aggregate the tuple's elements into a full
// tuple value.
if (TupleType *tupleType = LoadTy.getAs<TupleType>()) {
SILValue result =
aggregateTupleSubElts(tupleType, LoadTy, Address, FirstElt);
if (isTopLevel && result->getOwnershipKind() == OwnershipKind::Guaranteed) {
SILValue borrowedResult = result;
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
result = builder.emitCopyValueOperation(Loc, borrowedResult);
SmallVector<BorrowedValue, 4> introducers;
bool foundIntroducers =
getAllBorrowIntroducingValues(borrowedResult, introducers);
(void)foundIntroducers;
assert(foundIntroducers);
for (auto value : introducers) {
builder.emitEndBorrowOperation(Loc, value.value);
}
}
return result;
}
// If we have a struct type, then aggregate the struct's elements into a full
// struct value.
if (auto *structDecl = getFullyReferenceableStruct(LoadTy)) {
SILValue result =
aggregateStructSubElts(structDecl, LoadTy, Address, FirstElt);
if (isTopLevel && result->getOwnershipKind() == OwnershipKind::Guaranteed) {
SILValue borrowedResult = result;
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
result = builder.emitCopyValueOperation(Loc, borrowedResult);
SmallVector<BorrowedValue, 4> introducers;
bool foundIntroducers =
getAllBorrowIntroducingValues(borrowedResult, introducers);
(void)foundIntroducers;
assert(foundIntroducers);
for (auto value : introducers) {
builder.emitEndBorrowOperation(Loc, value.value);
}
}
return result;
}
// Otherwise, we have a non-aggregate primitive. Load or extract the value.
//
// NOTE: We should never call this when taking since when taking we know that
// our underlying value is always fully available.
assert(!isTake());
return handlePrimitiveValue(LoadTy, Address, FirstElt);
}
// See if we have this value is fully available. In such a case, return it as an
// aggregate. This is a super-common case for single-element structs, but is
// also a general answer for arbitrary structs and tuples as well.
SILValue
AvailableValueAggregator::aggregateFullyAvailableValue(SILType loadTy,
unsigned firstElt) {
// Check if our underlying type is fully available. If it isn't, bail.
if (!isFullyAvailable(loadTy, firstElt))
return SILValue();
// Ok, grab out first value. (note: any actually will do).
auto &firstVal = AvailableValueList[firstElt];
// Ok, we know that all of our available values are all parts of the same
// value. Without ownership, we can just return the underlying first value.
if (!B.hasOwnership())
return firstVal.getValue();
// Otherwise, we need to put in a copy. This is b/c we only propagate along +1
// values and we are eliminating a load [copy].
ArrayRef<StoreInst *> insertPts = firstVal.getInsertionPoints();
if (insertPts.size() == 1) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(insertPts[0], &insertedInsts);
SILLocation loc = insertPts[0]->getLoc();
// If we have a take, just return the value.
if (isTake())
return firstVal.getValue();
// Otherwise, return a copy of the value.
return builder.emitCopyValueOperation(loc, firstVal.getValue());
}
// If we have multiple insertion points, put copies at each point and use the
// SSA updater to get a value. The reason why this is safe is that we can only
// have multiple insertion points if we are storing exactly the same value
// implying that we can just copy firstVal at each insertion point.
SILSSAUpdater updater(&insertedPhiNodes);
updater.initialize(&B.getFunction(), loadTy,
B.hasOwnership() ? OwnershipKind::Owned
: OwnershipKind::None);
std::optional<SILValue> singularValue;
for (auto *insertPt : insertPts) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(insertPt, &insertedInsts);
SILLocation loc = insertPt->getLoc();
SILValue eltVal = firstVal.getValue();
// If we are not taking, copy the element value.
if (!isTake()) {
eltVal = builder.emitCopyValueOperation(loc, eltVal);
}
if (!singularValue.has_value()) {
singularValue = eltVal;
} else if (*singularValue != eltVal) {
singularValue = SILValue();
}
// And then put the value into the SSA updater.
updater.addAvailableValue(insertPt->getParent(), eltVal);
}
// If we only are tracking a singular value, we do not need to construct
// SSA. Just return that value.
if (auto val = singularValue.value_or(SILValue())) {
// This assert documents that we are expecting that if we are in ossa, have
// a non-trivial value, and are not taking, we should never go down this
// code path. If we did, we would need to insert a copy here. The reason why
// we know we will never go down this code path is since we have been
// inserting copy_values implying that our potential singular value would be
// of the copy_values which are guaranteed to all be different.
assert((!B.hasOwnership() || isTake() ||
val->getType().isTrivial(*B.getInsertionBB()->getParent())) &&
"Should never reach this code path if we are in ossa and have a "
"non-trivial value");
return val;
}
// Finally, grab the value from the SSA updater.
SILValue result = updater.getValueInMiddleOfBlock(B.getInsertionBB());
assert(result->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
if (isTake() || !B.hasOwnership()) {
return result;
}
// Be careful with this value and insert a copy in our load block to prevent
// any weird control equivalence issues.
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
return builder.emitCopyValueOperation(Loc, result);
}
SILValue AvailableValueAggregator::aggregateTupleSubElts(TupleType *TT,
SILType LoadTy,
SILValue Address,
unsigned FirstElt) {
SmallVector<SILValue, 4> ResultElts;
for (unsigned EltNo : indices(TT->getElements())) {
SILType EltTy = LoadTy.getTupleElementType(EltNo);
unsigned NumSubElt =
getNumSubElements(EltTy, M, TypeExpansionContext(B.getFunction()));
// If we are missing any of the available values in this struct element,
// compute an address to load from.
SILValue EltAddr;
if (anyMissing(FirstElt, NumSubElt, AvailableValueList)) {
assert(!isTake() && "When taking, values should never be missing?!");
EltAddr =
B.createTupleElementAddr(Loc, Address, EltNo, EltTy.getAddressType());
}
ResultElts.push_back(
aggregateValues(EltTy, EltAddr, FirstElt, /*isTopLevel*/ false));
FirstElt += NumSubElt;
}
// If we are going to use this to promote a borrowed value, insert borrow
// operations. Eventually I am going to do this for everything, but this
// should make it easier to bring up.
if (!isTake()) {
for (unsigned i : indices(ResultElts)) {
ResultElts[i] = B.emitBeginBorrowOperation(Loc, ResultElts[i]);
}
}
return B.createTuple(Loc, LoadTy, ResultElts);
}
SILValue AvailableValueAggregator::aggregateStructSubElts(StructDecl *sd,
SILType loadTy,
SILValue address,
unsigned firstElt) {
SmallVector<SILValue, 4> resultElts;
for (auto *decl : sd->getStoredProperties()) {
auto context = TypeExpansionContext(B.getFunction());
SILType eltTy = loadTy.getFieldType(decl, M, context);
unsigned numSubElt = getNumSubElements(eltTy, M, context);
// If we are missing any of the available values in this struct element,
// compute an address to load from.
SILValue eltAddr;
if (anyMissing(firstElt, numSubElt, AvailableValueList)) {
assert(!isTake() && "When taking, values should never be missing?!");
eltAddr =
B.createStructElementAddr(Loc, address, decl, eltTy.getAddressType());
}
resultElts.push_back(
aggregateValues(eltTy, eltAddr, firstElt, /*isTopLevel*/ false));
firstElt += numSubElt;
}
if (!isTake()) {
for (unsigned i : indices(resultElts)) {
resultElts[i] = B.emitBeginBorrowOperation(Loc, resultElts[i]);
}
}
return B.createStruct(Loc, loadTy, resultElts);
}
// We have looked through all of the aggregate values and finally found a value
// that is not available without transforming, i.e. a "primitive value". If the
// value is available, use it (extracting if we need to), otherwise emit a load
// of the value with the appropriate qualifier.
SILValue AvailableValueAggregator::handlePrimitiveValue(SILType loadTy,
SILValue address,
unsigned firstElt) {
assert(!isTake() && "Should only take fully available values?!");
// If the value is not available, load the value and update our use list.
auto &val = AvailableValueList[firstElt];
if (!val) {
LoadInst *load = ([&]() {
if (B.hasOwnership()) {
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
return builder.createTrivialLoadOr(Loc, address,
LoadOwnershipQualifier::Copy);
}
return B.createLoad(Loc, address, LoadOwnershipQualifier::Unqualified);
}());
Uses.emplace_back(load, PMOUseKind::Load);
return load;
}
// If we have 1 insertion point, just extract the value and return.
//
// This saves us from having to spend compile time in the SSA updater in this
// case.
ArrayRef<StoreInst *> insertPts = val.getInsertionPoints();
if (insertPts.size() == 1) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(insertPts[0], &insertedInsts);
SILLocation loc = insertPts[0]->getLoc();
SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc);
assert(!builder.hasOwnership() ||
eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
assert(eltVal->getType() == loadTy && "Subelement types mismatch");
if (!builder.hasOwnership()) {
return eltVal;
}
SILBuilderWithScope builder2(&*B.getInsertionPoint(), &insertedInsts);
return builder2.emitCopyValueOperation(Loc, eltVal);
}
// If we have an available value, then we want to extract the subelement from
// the borrowed aggregate before each insertion point. Note that since we have
// inserted copies at each of these insertion points, we know that we will
// never have the same value along all paths unless we have a trivial value
// meaning the SSA updater given a non-trivial value must /always/ be used.
SILSSAUpdater updater(&insertedPhiNodes);
updater.initialize(&B.getFunction(), loadTy,
B.hasOwnership() ? OwnershipKind::Owned
: OwnershipKind::None);
std::optional<SILValue> singularValue;
for (auto *i : insertPts) {
// Use the scope and location of the store at the insertion point.
SILBuilderWithScope builder(i, &insertedInsts);
SILLocation loc = i->getLoc();
SILValue eltVal = nonDestructivelyExtractSubElement(val, builder, loc);
assert(!builder.hasOwnership() ||
eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
if (!singularValue.has_value()) {
singularValue = eltVal;
} else if (*singularValue != eltVal) {
singularValue = SILValue();
}
updater.addAvailableValue(i->getParent(), eltVal);
}
SILBasicBlock *insertBlock = B.getInsertionBB();
// If we are not in ossa and have a singular value or if we are in ossa and
// have a trivial singular value, just return that value.
//
// This can never happen for non-trivial values in ossa since we never should
// visit this code path if we have a take implying that non-trivial values
// /will/ have a copy and thus are guaranteed (since each copy yields a
// different value) to not be singular values.
if (auto val = singularValue.value_or(SILValue())) {
assert((!B.hasOwnership() ||
val->getType().isTrivial(*insertBlock->getParent())) &&
"Should have inserted copies for each insertion point, so shouldn't "
"have a singular value if non-trivial?!");
return val;
}
// Finally, grab the value from the SSA updater.
SILValue eltVal = updater.getValueInMiddleOfBlock(insertBlock);
assert(!B.hasOwnership() ||
eltVal->getOwnershipKind().isCompatibleWith(OwnershipKind::Owned));
assert(eltVal->getType() == loadTy && "Subelement types mismatch");
if (!B.hasOwnership())
return eltVal;
SILBuilderWithScope builder(&*B.getInsertionPoint(), &insertedInsts);
return builder.emitCopyValueOperation(Loc, eltVal);
}
static SILInstruction *
getNonPhiBlockIncomingValueDef(SILValue incomingValue,
SingleValueInstruction *phiCopy) {
assert(isa<CopyValueInst>(phiCopy));
auto *phiBlock = phiCopy->getParent();
if (phiBlock == incomingValue->getParentBlock()) {
return nullptr;
}
if (auto *cvi = dyn_cast<CopyValueInst>(incomingValue)) {
return cvi;
}
assert(isa<SILPhiArgument>(incomingValue));
// Otherwise, our copy_value may not be post-dominated by our phi. To
// work around that, we need to insert destroys along the other
// paths. So set base to the first instruction in our argument's block,
// so we can insert destroys for our base.
return &*incomingValue->getParentBlock()->begin();
}
static bool
terminatorHasAnyKnownPhis(TermInst *ti,
ArrayRef<SILPhiArgument *> insertedPhiNodesSorted) {
for (auto succArgList : ti->getSuccessorBlockArgumentLists()) {
if (llvm::any_of(succArgList, [&](SILArgument *arg) {
return binary_search(insertedPhiNodesSorted,
cast<SILPhiArgument>(arg));
})) {
return true;
}
}
return false;
}
namespace {
class PhiNodeCopyCleanupInserter {
llvm::SmallMapVector<SILValue, unsigned, 8> incomingValues;
/// Map from index -> (incomingValueIndex, copy).
///
/// We are going to stable_sort this array using the indices of
/// incomingValueIndex. This will ensure that we always visit in
/// insertion order our incoming values (since the indices we are
/// sorting by are the count of incoming values we have seen so far
/// when we see the incoming value) and maintain the internal
/// insertion sort within our range as well. This ensures that we
/// visit our incoming values in visitation order and that within
/// their own values, also visit them in visitation order with
/// respect to each other.
SmallFrozenMultiMap<unsigned, SingleValueInstruction *, 16> copiesToCleanup;
/// The lifetime frontier that we use to compute lifetime endpoints
/// when emitting cleanups.
ValueLifetimeAnalysis::Frontier lifetimeFrontier;
public:
PhiNodeCopyCleanupInserter() = default;
void trackNewCleanup(SILValue incomingValue, CopyValueInst *copy) {
auto entry = std::make_pair(incomingValue, incomingValues.size());
auto iter = incomingValues.insert(entry);
// If we did not succeed, then iter.first.second is the index of
// incoming value. Otherwise, it will be nextIndex.
copiesToCleanup.insert(iter.first->second, copy);
}
void emit(DeadEndBlocks &deadEndBlocks) &&;
};
} // end anonymous namespace
void PhiNodeCopyCleanupInserter::emit(DeadEndBlocks &deadEndBlocks) && {
// READ THIS: We are being very careful here to avoid allowing for
// non-determinism to enter here.
//
// 1. First we create a list of indices of our phi node data. Then we use a
// stable sort those indices into the order in which our phi node cleanups
// would be in if we compared just using incomingValues. We use a stable
// sort here to ensure that within the same "cohort" of values, our order
// is insertion order.
//
// 2. We go through the list of phiNodeCleanupStates in insertion order. We
// also maintain a set of already visited base values. When we visit the
// first phiNodeCleanupState for a specific phi, we process the phi
// then. This ensures that we always process the phis in insertion order as
// well.
copiesToCleanup.setFrozen();
for (auto keyValue : copiesToCleanup.getRange()) {
unsigned incomingValueIndex = keyValue.first;
auto copies = keyValue.second;
SILValue incomingValue =
std::next(incomingValues.begin(), incomingValueIndex)->first;
SingleValueInstruction *phiCopy = copies.front();
auto *insertPt = getNonPhiBlockIncomingValueDef(incomingValue, phiCopy);
auto loc = RegularLocation::getAutoGeneratedLocation();
// Before we do anything, see if we have a single cleanup state. In such a
// case, we could have that we have a phi node as an incoming value and a
// copy_value in that same block. In such a case, we want to just insert the
// copy and continue. This means that
// cleanupState.getNonPhiBlockIncomingValueDef() should always return a
// non-null value in the code below.
if (copies.size() == 1 && isa<SILArgument>(incomingValue) && !insertPt) {
SILBasicBlock *phiBlock = phiCopy->getParent();
SILBuilderWithScope builder(phiBlock->getTerminator());
builder.createDestroyValue(loc, incomingValue);
continue;
}
// Otherwise, we know that we have for this incomingValue, multiple
// potential insert pts that we need to handle at the same time with our
// lifetime query. Lifetime extend our base over these copy_value uses.
assert(lifetimeFrontier.empty());
auto *def = getNonPhiBlockIncomingValueDef(incomingValue, phiCopy);
assert(def && "Should never have a nullptr here since we handled all of "
"the single block cases earlier");
ValueLifetimeAnalysis analysis(def, copies);
bool foundCriticalEdges = !analysis.computeFrontier(
lifetimeFrontier, ValueLifetimeAnalysis::DontModifyCFG, &deadEndBlocks);
(void)foundCriticalEdges;
assert(!foundCriticalEdges);
while (!lifetimeFrontier.empty()) {
auto *insertPoint = lifetimeFrontier.pop_back_val();
SILBuilderWithScope builder(insertPoint);
builder.createDestroyValue(loc, incomingValue);
}
}
}
void AvailableValueAggregator::addHandOffCopyDestroysForPhis(
SILInstruction *load, SILValue newVal) {
assert(isa<LoadBorrowInst>(load) || isa<LoadInst>(load));
SmallVector<SILBasicBlock *, 8> leakingBlocks;
SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> incomingValues;
auto loc = RegularLocation::getAutoGeneratedLocation();
#ifndef NDEBUG
LLVM_DEBUG(llvm::dbgs() << "Inserted Phis!\n");
for (auto *phi : insertedPhiNodes) {
LLVM_DEBUG(llvm::dbgs() << "Phi: " << *phi);
}
#endif
// Before we begin, identify the offset for all phis that are intermediate
// phis inserted by the SSA updater. We are taking advantage of the fact that
// the SSA updater just constructs the web without knowledge of ownership. So
// if a phi node is only used by another phi node that we inserted, then we
// have an intermediate phi node.
//
// TODO: There should be a better way of doing this than doing a copy + sort.
SmallVector<SILPhiArgument *, 32> insertedPhiNodesSorted;
llvm::copy(insertedPhiNodes, std::back_inserter(insertedPhiNodesSorted));
llvm::sort(insertedPhiNodesSorted);
SmallBitVector intermediatePhiOffsets(insertedPhiNodes.size());
for (unsigned i : indices(insertedPhiNodes)) {
if (TermInst *termInst =
insertedPhiNodes[i]->getSingleUserOfType<TermInst>()) {
// Only set the value if we find termInst has a successor with a phi node
// in our insertedPhiNodes.
if (terminatorHasAnyKnownPhis(termInst, insertedPhiNodesSorted)) {
intermediatePhiOffsets.set(i);
}
}
}
// First go through all of our phi nodes doing the following:
//
// 1. If any of the phi node have a copy_value as an operand, we know that the
// copy_value does not dominate our final definition since otherwise the
// SSA updater would not have inserted a phi node here. In such a case
// since we may not have that the copy_value is post-dominated by the phi,
// we need to insert a copy_value at the phi to allow for post-domination
// and then use the ValueLifetimeChecker to determine the rest of the
// frontier for the base value.
//
// 2. If our phi node is used by another phi node, we run into a similar
// problem where we could have that our original phi node does not dominate
// our final definition (since the SSA updater would not have inserted the
// phi) and may not be strongly control dependent on our phi. To work
// around this problem, we insert at the phi a copy_value to allow for the
// phi to post_dominate its copy and then extend the lifetime of the phied
// value over that copy.
//
// As an extra complication to this, when we insert compensating releases for
// any copy_values from (1), we need to insert the destroy_value on "base
// values" (either a copy_value or the first instruction of a phi argument's
// block) /after/ we have found all of the base_values to ensure that if the
// same base value is used by multiple phis, we do not insert too many destroy
// value.
//
// NOTE: At first glance one may think that such a problem could not occur
// with phi nodes as well. Sadly if we allow for double backedge loops, it is
// possible (there may be more cases).
PhiNodeCopyCleanupInserter cleanupInserter;
for (unsigned i : indices(insertedPhiNodes)) {
auto *phi = insertedPhiNodes[i];
// If our phi is not owned, continue. No fixes are needed.
if (phi->getOwnershipKind() != OwnershipKind::Owned)
continue;
LLVM_DEBUG(llvm::dbgs() << "Visiting inserted phi: " << *phi);
// Otherwise, we have a copy_value that may not be strongly control
// equivalent with our phi node. In such a case, we need to use
// ValueLifetimeAnalysis to lifetime extend the copy such that we can
// produce a new copy_value at the phi. We insert destroys along the
// frontier.
leakingBlocks.clear();
incomingValues.clear();
phi->getIncomingPhiValues(incomingValues);
unsigned phiIndex = phi->getIndex();
for (auto pair : incomingValues) {
SILValue value = pair.second;
// If we had a non-trivial type with non-owned ownership, we will not see
// a copy_value, so skip them here.
if (value->getOwnershipKind() != OwnershipKind::Owned)
continue;
// Otherwise, value should be from a copy_value or a phi node.
assert(isa<CopyValueInst>(value) || isa<SILPhiArgument>(value));
// If we have a copy_value, remove it from the inserted insts set so we
// skip it when we start processing insertedInstrs.
if (auto *cvi = dyn_cast<CopyValueInst>(value)) {
copyValueProcessedWithPhiNodes.insert(cvi);
// Then check if our termInst is in the same block as our copy_value. In
// such a case, we can just use the copy_value as our phi's value
// without needing to worry about any issues around control equivalence.
if (pair.first == cvi->getParent())
continue;
} else {
assert(isa<SILPhiArgument>(value));
}
// Otherwise, insert a copy_value instruction right before the phi. We use
// that for our actual phi.
auto *termInst = pair.first->getTerminator();
SILBuilderWithScope builder(termInst);
CopyValueInst *phiCopy = builder.createCopyValue(loc, value);
termInst->setOperand(phiIndex, phiCopy);
// Now that we know our base, phi, phiCopy for this specific incoming
// value, append it to the phiNodeCleanupState so we can insert
// destroy_values late after we visit all insertedPhiNodes.
cleanupInserter.trackNewCleanup(value, phiCopy);
}
// Then see if our phi is an intermediate phi. If it is an intermediate phi,
// we know that this is not the phi node that is post-dominated by the
// load_borrow and that we will lifetime extend it via the child
// phi. Instead, we need to just ensure that our phi arg does not leak onto
// its set of post-dominating paths, subtracting from that set the path
// through our terminator use.
if (intermediatePhiOffsets[i]) {
continue;
}
// If we reach this point, then we know that we are a phi node that actually
// dominates our user so we need to lifetime extend it over the
// load_borrow. Thus insert copy_value along the incoming edges and then
// lifetime extend the phi node over the load_borrow.
//
// The linear lifetime checker doesn't care if the passed in load is
// actually a user of our copy_value. What we care about is that the load is
// guaranteed to be in the block where we have reformed the tuple in a
// consuming manner. This means if we add it as the consuming use of the
// copy, we can find the leaking places if any exist.
//
// Then perform the linear lifetime check. If we succeed, continue. We have
// no further work to do.
auto *loadOperand = &load->getAllOperands()[0];
LinearLifetimeChecker checker(&deadEndBlocks);
bool consumedInLoop = checker.completeConsumingUseSet(
phi, loadOperand, [&](SILBasicBlock::iterator iter) {
SILBuilderWithScope builder(iter);
builder.emitDestroyValueOperation(loc, phi);
});
// Ok, we found some leaking blocks and potentially that our load is
// "consumed" inside a different loop in the loop nest from cvi. If we are
// consumed in the loop, then our visit should have inserted all of the
// necessary destroys for us by inserting the destroys on the loop
// boundaries. So, continue.
//
// NOTE: This includes cases where due to an infinite loop, we did not
// insert /any/ destroys since the loop has no boundary in a certain sense.
if (consumedInLoop) {
continue;
}
// Otherwise, we need to insert one last destroy after the load for our phi.
auto next = std::next(load->getIterator());
SILBuilderWithScope builder(next);
builder.emitDestroyValueOperation(
RegularLocation::getAutoGeneratedLocation(), phi);
}
// Alright! In summary, we just lifetime extended all of our phis,
// lifetime extended them to the load block, and inserted phi copies
// at all of our intermediate phi nodes. Now we need to cleanup and
// insert all of the compensating destroy_value that we need.
std::move(cleanupInserter).emit(deadEndBlocks);
// Clear the phi node array now that we are done.
insertedPhiNodes.clear();
}
void AvailableValueAggregator::addMissingDestroysForCopiedValues(
SILInstruction *load, SILValue newVal) {
assert(B.hasOwnership() &&
"We assume this is only called if we have ownership");
SmallVector<SILBasicBlock *, 8> leakingBlocks;
auto loc = RegularLocation::getAutoGeneratedLocation();
for (auto *inst : insertedInsts) {
// Otherwise, see if this is a load [copy]. It if it a load [copy], then we
// know that the load [copy] must be in the load block meaning we can just
// put a destroy_value /after/ the load_borrow to ensure that the value
// lives long enough for us to copy_value it or a derived value for the
// begin_borrow.
if (auto *li = dyn_cast<LoadInst>(inst)) {
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
assert(li->getParent() == load->getParent());
auto next = std::next(load->getIterator());
SILBuilderWithScope builder(next);
builder.emitDestroyValueOperation(
RegularLocation::getAutoGeneratedLocation(), li);
continue;
}
}
// Our copy_value may have been unset above if it was used by a phi
// (implying it does not dominate our final user).
auto *cvi = dyn_cast<CopyValueInst>(inst);
if (!cvi)
continue;
// If we already handled this copy_value above when handling phi nodes, just
// continue.
if (copyValueProcessedWithPhiNodes.count(cvi))
continue;
// Clear our state.
leakingBlocks.clear();
// The linear lifetime checker doesn't care if the passed in load is
// actually a user of our copy_value. What we care about is that the load is
// guaranteed to be in the block where we have reformed the tuple in a
// consuming manner. This means if we add it as the consuming use of the
// copy, we can find the leaking places if any exist.
//
// Then perform the linear lifetime check. If we succeed, continue. We have
// no further work to do.
auto *loadOperand = &load->getAllOperands()[0];
LinearLifetimeChecker checker(&deadEndBlocks);
bool consumedInLoop = checker.completeConsumingUseSet(
cvi, loadOperand, [&](SILBasicBlock::iterator iter) {
SILBuilderWithScope builder(iter);
builder.emitDestroyValueOperation(loc, cvi);
});
// Ok, we found some leaking blocks and potentially that our load is
// "consumed" inside a different loop in the loop nest from cvi. If we are
// consumed in the loop, then our visit should have inserted all of the
// necessary destroys for us by inserting the destroys on the loop
// boundaries. So, continue.
//
// NOTE: This includes cases where due to an infinite loop, we did not
// insert /any/ destroys since the loop has no boundary in a certain sense.
if (consumedInLoop) {
continue;
}
// Otherwise, we need to insert one last destroy after the load for our phi.
auto next = std::next(load->getIterator());
SILBuilderWithScope builder(next);
builder.emitDestroyValueOperation(
RegularLocation::getAutoGeneratedLocation(), cvi);
}
}
//===----------------------------------------------------------------------===//
// Available Value Dataflow
//===----------------------------------------------------------------------===//
namespace {
/// Given a piece of memory, the memory's uses, and destroys perform a single
/// round of semi-optimistic backwards dataflow for each use. The result is the
/// set of available values that reach the specific use of the field in the
/// allocated object.
///
/// The general form of the algorithm is that in our constructor, we analyze our
/// uses and determine available values. Then users call computeAvailableValues
/// which looks backwards up the control flow graph for available values that we
/// can use.
///
/// NOTE: The reason why we say that the algorithm is semi-optimistic is that we
/// assume that all incoming elements into a loopheader will be the same. If we
/// find a conflict, we record it and fail.
class AvailableValueDataflowContext {
/// The base memory we are performing dataflow upon.
AllocationInst *TheMemory;
/// The number of sub elements of our memory.
unsigned NumMemorySubElements;
/// The set of uses that we are tracking. This is only here so we can update
/// when exploding copy_addr. It would be great if we did not have to store
/// this.
SmallVectorImpl<PMOMemoryUse> &Uses;
InstructionDeleter &deleter;
/// The set of blocks with local definitions.
///
/// We use this to determine if we should visit a block or look at a block's
/// predecessors during dataflow for an available value.
BasicBlockFlag HasLocalDefinition;
/// The set of blocks that have definitions which specifically "kill" the
/// given value. If a block is in this set, there must be an instruction in
/// LoadTakeUse whose parent is the block. This is just used to speed up
/// computation.
///
/// NOTE: These are not considered escapes.
BasicBlockFlag HasLocalKill;
/// This is a set of load takes that we are tracking. HasLocalKill is the set
/// of parent blocks of these instructions.
llvm::SmallPtrSet<SILInstruction *, 8> LoadTakeUses;
/// This is a map of uses that are not loads (i.e., they are Stores,
/// InOutUses, and Escapes), to their entry in Uses.
llvm::SmallDenseMap<SILInstruction *, unsigned, 16> NonLoadUses;
/// Does this value escape anywhere in the function. We use this very
/// conservatively.
bool HasAnyEscape = false;
public:
AvailableValueDataflowContext(AllocationInst *TheMemory,
unsigned NumMemorySubElements,
SmallVectorImpl<PMOMemoryUse> &Uses,
InstructionDeleter &deleter);
/// Try to compute available values for "TheMemory" at the instruction \p
/// StartingFrom. We only compute the values for set bits in \p
/// RequiredElts. We return the vailable values in \p Result. If any available
/// values were found, return true. Otherwise, return false.
bool computeAvailableValues(SILInstruction *StartingFrom,
unsigned FirstEltOffset,
unsigned NumLoadSubElements,
SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result);
/// Return true if the box has escaped at the specified instruction. We are
/// not
/// allowed to do load promotion in an escape region.
bool hasEscapedAt(SILInstruction *I);
/// Explode a copy_addr, updating the Uses at the same time.
void explodeCopyAddr(CopyAddrInst *CAI);
private:
SILModule &getModule() const { return TheMemory->getModule(); }
void updateAvailableValues(SILInstruction *Inst,
SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result,
SmallBitVector &ConflictingValues);
void computeAvailableValuesFrom(
SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB,
SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result,
llvm::SmallDenseMap<SILBasicBlock *, SmallBitVector, 32>
&VisitedBlocks,
SmallBitVector &ConflictingValues);
};
} // end anonymous namespace
AvailableValueDataflowContext::AvailableValueDataflowContext(
AllocationInst *InputTheMemory, unsigned NumMemorySubElements,
SmallVectorImpl<PMOMemoryUse> &InputUses, InstructionDeleter &deleter)
: TheMemory(InputTheMemory), NumMemorySubElements(NumMemorySubElements),
Uses(InputUses), deleter(deleter),
HasLocalDefinition(InputTheMemory->getFunction()),
HasLocalKill(InputTheMemory->getFunction()) {
// The first step of processing an element is to collect information about the
// element into data structures we use later.
for (unsigned ui : indices(Uses)) {
auto &Use = Uses[ui];
assert(Use.Inst && "No instruction identified?");
// If we have a load...
if (Use.Kind == PMOUseKind::Load) {
// Skip load borrow use and open_existential_addr.
if (isa<LoadBorrowInst>(Use.Inst) || isa<OpenExistentialAddrInst>(Use.Inst))
continue;
// That is not a load take, continue. Otherwise, stash the load [take].
if (auto *LI = dyn_cast<LoadInst>(Use.Inst)) {
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
LoadTakeUses.insert(LI);
HasLocalKill.set(LI->getParent());
}
continue;
}
// If we have a copy_addr as our load, it means we are processing a source
// of the value. If the copy_addr is taking from the source, we need to
// treat it like a load take use.
if (auto *CAI = dyn_cast<CopyAddrInst>(Use.Inst)) {
if (CAI->isTakeOfSrc() == IsTake) {
LoadTakeUses.insert(CAI);
HasLocalKill.set(CAI->getParent());
}
continue;
}
llvm_unreachable("Unhandled SILInstructionKind for PMOUseKind::Load?!");
}
// Keep track of all the uses that aren't loads.
NonLoadUses[Use.Inst] = ui;
HasLocalDefinition.set(Use.Inst->getParent());
if (Use.Kind == PMOUseKind::Escape) {
// Determine which blocks the value can escape from. We aren't allowed to
// promote loads in blocks reachable from an escape point.
HasAnyEscape = true;
}
}
// If isn't really a use, but we account for the alloc_box/mark_uninitialized
// as a use so we see it in our dataflow walks.
NonLoadUses[TheMemory] = ~0U;
HasLocalDefinition.set(TheMemory->getParent());
}
// This function takes in the current (potentially uninitialized) available
// values for theMemory and for the subset of AvailableValues corresponding to
// \p address either:
//
// 1. If uninitialized, optionally initialize the available value with a new
// SILValue. It is optional since in certain cases, (for instance when
// invalidating one just wants to skip empty available values).
//
// 2. Given an initialized value, either add the given instruction as an
// insertion point or state that we have a conflict.
static inline void updateAvailableValuesHelper(
SingleValueInstruction *theMemory, SILInstruction *inst, SILValue address,
SmallBitVector &requiredElts, SmallVectorImpl<AvailableValue> &result,
SmallBitVector &conflictingValues,
function_ref<std::optional<AvailableValue>(unsigned)> defaultFunc,
function_ref<bool(AvailableValue &, unsigned)> isSafeFunc) {
auto &mod = theMemory->getModule();
unsigned startSubElt = computeSubelement(address, theMemory);
// TODO: Is this needed now?
assert(startSubElt != ~0U && "Store within enum projection not handled");
for (unsigned i : range(getNumSubElements(
address->getType().getObjectType(), mod,
TypeExpansionContext(*theMemory->getFunction())))) {
// If this element is not required, don't fill it in.
if (!requiredElts[startSubElt + i])
continue;
// At this point we know that we will either mark the value as conflicting
// or give it a value.
requiredElts[startSubElt + i] = false;
// First see if we have an entry at all.
auto &entry = result[startSubElt + i];
// If we don't...
if (!entry) {
// and we are told to initialize it, do so.
if (auto defaultValue = defaultFunc(i)) {
entry = std::move(defaultValue.value());
} else {
// Otherwise, mark this as a conflicting value. There is some available
// value here, we just do not know what it is at this point. This
// ensures that if we visit a kill where we do not have an entry yet, we
// properly invalidate our state.
conflictingValues[startSubElt + i] = true;
}
continue;
}
// Check if our caller thinks that the value currently in entry is
// compatible with \p inst. If not, mark the values as conflicting and
// continue.
if (!isSafeFunc(entry, i)) {
conflictingValues[startSubElt + i] = true;
continue;
}
// Otherwise, we found another insertion point for our available
// value. Today this will always be a Store.
entry.addInsertionPoint(cast<StoreInst>(inst));
}
}
void AvailableValueDataflowContext::updateAvailableValues(
SILInstruction *Inst, SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result,
SmallBitVector &ConflictingValues) {
// If we are visiting a load [take], it invalidates the underlying available
// values.
//
// NOTE: Since we are always looking back from the instruction to promote,
// when we attempt to promote the load [take] itself, we will never hit this
// code since.
if (auto *LI = dyn_cast<LoadInst>(Inst)) {
// First see if this is a load inst that we are tracking.
if (LoadTakeUses.count(LI)) {
updateAvailableValuesHelper(
TheMemory, LI, LI->getOperand(), RequiredElts, Result,
ConflictingValues,
/*default*/
[](unsigned) -> std::optional<AvailableValue> {
// We never initialize values. We only
// want to invalidate.
return std::nullopt;
},
/*isSafe*/
[](AvailableValue &, unsigned) -> bool {
// Always assume values conflict.
return false;
});
return;
}
}
// Handle store.
if (auto *SI = dyn_cast<StoreInst>(Inst)) {
updateAvailableValuesHelper(
TheMemory, SI, SI->getDest(), RequiredElts, Result, ConflictingValues,
/*default*/
[&](unsigned ResultOffset) -> std::optional<AvailableValue> {
std::optional<AvailableValue> Result;
Result.emplace(SI->getSrc(), ResultOffset, SI);
return Result;
},
/*isSafe*/
[&](AvailableValue &Entry, unsigned ResultOffset) -> bool {
// TODO: This is /really/, /really/, conservative. This basically
// means that if we do not have an identical store, we will not
// promote.
return Entry.getValue() == SI->getSrc() &&
Entry.getSubElementNumber() == ResultOffset;
});
return;
}
// If we got here from an apply, we must either be initializing the element
// via an @out parameter or we are trying to model an invalidating load of the
// value (e.x.: indirect_in, indirect_inout).
// If we get here with a copy_addr, we must either be storing into the element
// or tracking some sort of take of the src. First check if we are taking (in
// which case, we just track invalidation of src) and continue. Otherwise we
// must be storing into the copy_addr so see which loaded subelements are
// being used, and if so, explode the copy_addr to its individual pieces.
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
// If we have a load take use, we must be tracking a store of CAI.
if (LoadTakeUses.count(CAI)) {
updateAvailableValuesHelper(
TheMemory, CAI, CAI->getSrc(), RequiredElts, Result,
ConflictingValues,
/*default*/
[](unsigned) -> std::optional<AvailableValue> {
// We never give values default initialized
// values. We only want to invalidate.
return std::nullopt;
},
/*isSafe*/
[](AvailableValue &, unsigned) -> bool {
// Always assume values conflict.
return false;
});
return;
}
unsigned StartSubElt = computeSubelement(CAI->getDest(), TheMemory);
assert(StartSubElt != ~0U && "Store within enum projection not handled");
SILType ValTy = CAI->getDest()->getType();
bool AnyRequired = false;
for (unsigned i : range(getNumSubElements(
ValTy, getModule(), TypeExpansionContext(*CAI->getFunction())))) {
// If this element is not required, don't fill it in.
AnyRequired = RequiredElts[StartSubElt+i];
if (AnyRequired) break;
}
// If this is a copy addr that doesn't intersect the loaded subelements,
// just continue with an unmodified load mask.
if (!AnyRequired)
return;
// If the copyaddr is of a non-loadable type, we can't promote it. Just
// consider it to be a clobber.
if (CAI->getSrc()->getType().isLoadable(*CAI->getFunction())) {
// Otherwise, some part of the copy_addr's value is demanded by a load, so
// we need to explode it to its component pieces. This only expands one
// level of the copyaddr.
explodeCopyAddr(CAI);
// The copy_addr doesn't provide any values, but we've arranged for our
// iterators to visit the newly generated instructions, which do.
return;
}
}
// TODO: inout apply's should only clobber pieces passed in.
// Otherwise, this is some unknown instruction, conservatively assume that all
// values are clobbered.
RequiredElts.clear();
ConflictingValues = SmallBitVector(Result.size(), true);
return;
}
bool AvailableValueDataflowContext::computeAvailableValues(
SILInstruction *StartingFrom, unsigned FirstEltOffset,
unsigned NumLoadSubElements, SmallBitVector &RequiredElts,
SmallVectorImpl<AvailableValue> &Result) {
llvm::SmallDenseMap<SILBasicBlock*, SmallBitVector, 32> VisitedBlocks;
SmallBitVector ConflictingValues(Result.size());
computeAvailableValuesFrom(StartingFrom->getIterator(),
StartingFrom->getParent(), RequiredElts, Result,
VisitedBlocks, ConflictingValues);
// If there are no values available at this load point, then we fail to
// promote this load and there is nothing to do.
SmallBitVector AvailableValueIsPresent(NumMemorySubElements);
for (unsigned i :
range(FirstEltOffset, FirstEltOffset + NumLoadSubElements)) {
AvailableValueIsPresent[i] = Result[i].getValue();
}
// If we do not have any values available, bail.
if (AvailableValueIsPresent.none())
return false;
// Otherwise, if we have any conflicting values, explicitly mask them out of
// the result, so we don't pick one arbitrary available value.
if (ConflictingValues.none()) {
return true;
}
// At this point, we know that we have /some/ conflicting values and some
// available values.
if (AvailableValueIsPresent.reset(ConflictingValues).none())
return false;
// Otherwise, mask out the available values and return true. We have at least
// 1 available value.
int NextIter = ConflictingValues.find_first();
while (NextIter != -1) {
assert(NextIter >= 0 && "Int can not be represented?!");
unsigned Iter = NextIter;
Result[Iter] = {};
NextIter = ConflictingValues.find_next(Iter);
}
return true;
}
void AvailableValueDataflowContext::computeAvailableValuesFrom(
SILBasicBlock::iterator StartingFrom, SILBasicBlock *BB,
SmallBitVector &RequiredElts, SmallVectorImpl<AvailableValue> &Result,
llvm::SmallDenseMap<SILBasicBlock *, SmallBitVector, 32>
&VisitedBlocks,
SmallBitVector &ConflictingValues) {
assert(!RequiredElts.none() && "Scanning with a goal of finding nothing?");
// If there is a potential modification in the current block, scan the block
// to see if the store, escape, or load [take] is before or after the load. If
// it is before, check to see if it produces the value we are looking for.
bool shouldCheckBlock =
HasLocalDefinition.get(BB) || HasLocalKill.get(BB);
if (shouldCheckBlock) {
for (SILBasicBlock::iterator BBI = StartingFrom; BBI != BB->begin();) {
SILInstruction *TheInst = &*std::prev(BBI);
// If this instruction is unrelated to the element, ignore it.
if (!NonLoadUses.count(TheInst) && !LoadTakeUses.count(TheInst)) {
--BBI;
continue;
}
// Given an interesting instruction, incorporate it into the set of
// results, and filter down the list of demanded subelements that we still
// need.
updateAvailableValues(TheInst, RequiredElts, Result, ConflictingValues);
// If this satisfied all of the demanded values, we're done.
if (RequiredElts.none())
return;
// Otherwise, keep scanning the block. If the instruction we were looking
// at just got exploded, don't skip the next instruction.
if (&*std::prev(BBI) == TheInst)
--BBI;
}
}
// Otherwise, we need to scan up the CFG looking for available values.
for (auto PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) {
SILBasicBlock *PredBB = *PI;
// If the predecessor block has already been visited (potentially due to a
// cycle in the CFG), don't revisit it. We can do this safely because we
// are optimistically assuming that all incoming elements in a cycle will be
// the same. If we ever detect a conflicting element, we record it and do
// not look at the result.
auto Entry = VisitedBlocks.insert({PredBB, RequiredElts});
if (!Entry.second) {
// If we are revisiting a block and asking for different required elements
// then anything that isn't agreeing is in conflict.
const auto &PrevRequired = Entry.first->second;
if (PrevRequired != RequiredElts) {
ConflictingValues |= (PrevRequired ^ RequiredElts);
RequiredElts &= ~ConflictingValues;
if (RequiredElts.none())
return;
}
continue;
}
// Make sure to pass in the same set of required elements for each pred.
SmallBitVector Elts = RequiredElts;
computeAvailableValuesFrom(PredBB->end(), PredBB, Elts, Result,
VisitedBlocks, ConflictingValues);
// If we have any conflicting values, don't bother searching for them.
RequiredElts &= ~ConflictingValues;
if (RequiredElts.none())
return;
}
}
/// Explode a copy_addr instruction of a loadable type into lower level
/// operations like loads, stores, retains, releases, retain_value, etc.
void AvailableValueDataflowContext::explodeCopyAddr(CopyAddrInst *CAI) {
LLVM_DEBUG(llvm::dbgs() << " -- Exploding copy_addr: " << *CAI << "\n");
SILType ValTy = CAI->getDest()->getType().getObjectType();
SILFunction *F = CAI->getFunction();
auto &TL = F->getTypeLowering(ValTy);
// Keep track of the new instructions emitted.
SmallVector<SILInstruction *, 4> NewInsts;
SILBuilder B(CAI, &NewInsts);
B.setCurrentDebugScope(CAI->getDebugScope());
// Use type lowering to lower the copyaddr into a load sequence + store
// sequence appropriate for the type.
SILValue StoredValue =
TL.emitLoadOfCopy(B, CAI->getLoc(), CAI->getSrc(), CAI->isTakeOfSrc());
TL.emitStoreOfCopy(B, CAI->getLoc(), StoredValue, CAI->getDest(),
CAI->isInitializationOfDest());
// Update our internal state for this being gone.
NonLoadUses.erase(CAI);
LoadTakeUses.erase(CAI);
// NOTE: We do not need to update HasLocalKill since the copy_addr
// and the loads/stores will have the same parent block.
// Remove the copy_addr from Uses. A single copy_addr can appear multiple
// times if the source and dest are to elements within a single aggregate, but
// we only want to pick up the CopyAddrKind from the store.
PMOMemoryUse LoadUse, StoreUse;
for (auto &Use : Uses) {
if (Use.Inst != CAI)
continue;
if (Use.Kind == PMOUseKind::Load) {
assert(LoadUse.isInvalid());
LoadUse = Use;
} else {
assert(StoreUse.isInvalid());
StoreUse = Use;
}
Use.Inst = nullptr;
// Keep scanning in case the copy_addr appears multiple times.
}
assert((LoadUse.isValid() || StoreUse.isValid()) &&
"we should have a load or a store, possibly both");
assert(StoreUse.isInvalid() || StoreUse.Kind == Assign ||
StoreUse.Kind == Initialization || StoreUse.Kind == InitOrAssign);
// Now that we've emitted a bunch of instructions, including a load and store
// but also including other stuff, update the internal state of
// LifetimeChecker to reflect them.
// Update the instructions that touch the memory. NewInst can grow as this
// iterates, so we can't use a foreach loop.
for (auto *NewInst : NewInsts) {
switch (NewInst->getKind()) {
default:
NewInst->dump();
llvm_unreachable("Unknown instruction generated by copy_addr lowering");
case SILInstructionKind::StoreInst:
// If it is a store to the memory object (as oppose to a store to
// something else), track it as an access.
if (StoreUse.isValid()) {
StoreUse.Inst = NewInst;
// If our store use by the copy_addr is an assign, then we know that
// before we store the new value, we loaded the old value implying that
// our store is technically initializing memory when it occurs. So
// change the kind to Initialization.
if (StoreUse.Kind == Assign)
StoreUse.Kind = Initialization;
NonLoadUses[NewInst] = Uses.size();
Uses.push_back(StoreUse);
}
continue;
case SILInstructionKind::LoadInst:
// If it is a load from the memory object (as oppose to a load from
// something else), track it as an access. We need to explicitly check to
// see if the load accesses "TheMemory" because it could either be a load
// for the copy_addr source, or it could be a load corresponding to the
// "assign" operation on the destination of the copyaddr.
if (LoadUse.isValid() &&
getAccessPathRoot(NewInst->getOperand(0)) == TheMemory) {
if (auto *LI = dyn_cast<LoadInst>(NewInst)) {
if (LI->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
LoadTakeUses.insert(LI);
HasLocalKill.set(LI->getParent());
}
}
LoadUse.Inst = NewInst;
Uses.push_back(LoadUse);
}
continue;
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::ReleaseValueInst: // Destroy overwritten value
// These are ignored.
continue;
}
}
// Next, remove the copy_addr itself.
deleter.forceDelete(CAI);
}
bool AvailableValueDataflowContext::hasEscapedAt(SILInstruction *I) {
// Return true if the box has escaped at the specified instruction. We are
// not allowed to do load promotion in an escape region.
// FIXME: This is not an aggressive implementation. :)
// TODO: At some point, we should special case closures that just *read* from
// the escaped value (by looking at the body of the closure). They should not
// prevent load promotion, and will allow promoting values like X in regions
// dominated by "... && X != 0".
return HasAnyEscape;
}
//===----------------------------------------------------------------------===//
// Allocation Optimization
//===----------------------------------------------------------------------===//
static SILType getMemoryType(AllocationInst *memory) {
// Compute the type of the memory object.
if (auto *abi = dyn_cast<AllocBoxInst>(memory)) {
assert(abi->getBoxType()->getLayout()->getFields().size() == 1 &&
"optimizing multi-field boxes not implemented");
return getSILBoxFieldType(TypeExpansionContext(*abi->getFunction()),
abi->getBoxType(), abi->getModule().Types, 0);
}
assert(isa<AllocStackInst>(memory));
return cast<AllocStackInst>(memory)->getElementType();
}
namespace {
/// This performs load promotion and deletes synthesized allocations if all
/// loads can be removed.
class AllocOptimize {
SILModule &Module;
/// This is either an alloc_box or alloc_stack instruction.
AllocationInst *TheMemory;
/// This is the SILType of the memory object.
SILType MemoryType;
/// The number of primitive subelements across all elements of this memory
/// value.
unsigned NumMemorySubElements;
SmallVectorImpl<PMOMemoryUse> &Uses;
SmallVectorImpl<SILInstruction *> &Releases;
DeadEndBlocks &deadEndBlocks;
InstructionDeleter &deleter;
DominanceInfo *domInfo;
/// A structure that we use to compute our available values.
AvailableValueDataflowContext DataflowContext;
public:
AllocOptimize(AllocationInst *memory, SmallVectorImpl<PMOMemoryUse> &uses,
SmallVectorImpl<SILInstruction *> &releases,
DeadEndBlocks &deadEndBlocks, InstructionDeleter &deleter,
DominanceInfo *domInfo)
: Module(memory->getModule()), TheMemory(memory),
MemoryType(getMemoryType(memory)),
NumMemorySubElements(getNumSubElements(
MemoryType, Module, TypeExpansionContext(*memory->getFunction()))),
Uses(uses), Releases(releases), deadEndBlocks(deadEndBlocks),
deleter(deleter), domInfo(domInfo),
DataflowContext(TheMemory, NumMemorySubElements, uses, deleter) {}
bool optimizeMemoryAccesses();
/// If the allocation is an autogenerated allocation that is only stored to
/// (after load promotion) then remove it completely.
bool tryToRemoveDeadAllocation();
private:
std::optional<std::pair<SILType, unsigned>>
computeAvailableValues(SILValue SrcAddr, SILInstruction *Inst,
SmallVectorImpl<AvailableValue> &AvailableValues);
bool promoteLoadCopy(LoadInst *li);
bool promoteLoadBorrow(LoadBorrowInst *lbi);
bool promoteCopyAddr(CopyAddrInst *cai);
/// Promote a load take cleaning up everything except for RAUWing the
/// instruction with the aggregated result. The routine returns the new
/// aggregated result to the caller and expects the caller to eventually RAUW
/// \p inst with the return value. The reason why we do this is to allow for
/// the caller to work around invalidation issues by not deleting the load
/// [take] until after all load [take] have been cleaned up.
///
/// \returns the value that the caller will RAUW with \p inst.
SILValue promoteLoadTake(LoadInst *inst,
MutableArrayRef<AvailableValue> values);
void promoteDestroyAddr(DestroyAddrInst *dai,
MutableArrayRef<AvailableValue> values);
bool canPromoteTake(SILInstruction *i,
SmallVectorImpl<AvailableValue> &availableValues);
};
} // end anonymous namespace
std::optional<std::pair<SILType, unsigned>>
AllocOptimize::computeAvailableValues(
SILValue SrcAddr, SILInstruction *Inst,
SmallVectorImpl<AvailableValue> &AvailableValues) {
// If the box has escaped at this instruction, we can't safely promote the
// load.
if (DataflowContext.hasEscapedAt(Inst))
return std::nullopt;
SILType LoadTy = SrcAddr->getType().getObjectType();
// If this is a load/copy_addr from a struct field that we want to promote,
// compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned FirstElt = computeSubelement(SrcAddr, TheMemory);
// If this is a load from within an enum projection, we can't promote it since
// we don't track subelements in a type that could be changing.
if (FirstElt == ~0U)
return std::nullopt;
unsigned NumLoadSubElements = getNumSubElements(
LoadTy, Module, TypeExpansionContext(*TheMemory->getFunction()));
// Set up the bitvector of elements being demanded by the load.
SmallBitVector RequiredElts(NumMemorySubElements);
RequiredElts.set(FirstElt, FirstElt + NumLoadSubElements);
AvailableValues.resize(NumMemorySubElements);
// Find out if we have any available values. If no bits are demanded, we
// trivially succeed. This can happen when there is a load of an empty struct.
if (NumLoadSubElements != 0 &&
!DataflowContext.computeAvailableValues(
Inst, FirstElt, NumLoadSubElements, RequiredElts, AvailableValues))
return std::nullopt;
return std::make_pair(LoadTy, FirstElt);
}
/// If we are able to optimize \p Inst, return the source address that
/// instruction is loading from. If we can not optimize \p Inst, then just
/// return an empty SILValue.
static SILValue tryFindSrcAddrForLoad(SILInstruction *i) {
// We can always promote a load_borrow.
if (auto *lbi = dyn_cast<LoadBorrowInst>(i))
return lbi->getOperand();
// We only handle load [copy], load [trivial], load and copy_addr right
// now. Notably we do not support load [take] when promoting loads.
if (auto *li = dyn_cast<LoadInst>(i))
if (li->getOwnershipQualifier() != LoadOwnershipQualifier::Take)
return li->getOperand();
// If this is a CopyAddr, verify that the element type is loadable. If not,
// we can't explode to a load.
auto *cai = dyn_cast<CopyAddrInst>(i);
if (!cai || !cai->getSrc()->getType().isLoadable(*cai->getFunction()))
return SILValue();
return cai->getSrc();
}
/// At this point, we know that this element satisfies the definitive init
/// requirements, so we can try to promote loads to enable SSA-based dataflow
/// analysis. We know that accesses to this element only access this element,
/// cross element accesses have been scalarized.
///
/// This returns true if the load has been removed from the program.
bool AllocOptimize::promoteLoadCopy(LoadInst *li) {
// Note that we intentionally don't support forwarding of weak pointers,
// because the underlying value may drop be deallocated at any time. We would
// have to prove that something in this function is holding the weak value
// live across the promoted region and that isn't desired for a stable
// diagnostics pass this like one.
// First attempt to find a source addr for our "load" instruction. If we fail
// to find a valid value, just return.
SILValue srcAddr = tryFindSrcAddrForLoad(li);
if (!srcAddr)
return false;
SmallVector<AvailableValue, 8> availableValues;
auto result = computeAvailableValues(srcAddr, li, availableValues);
if (!result.has_value())
return false;
SILType loadTy = result->first;
unsigned firstElt = result->second;
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller loads for any subelements that were
// not available. We are "propagating" a +1 available value from the store
// points.
AvailableValueAggregator agg(li, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Copy);
SILValue newVal = agg.aggregateValues(loadTy, li->getOperand(), firstElt);
LLVM_DEBUG(llvm::dbgs() << " *** Promoting load: " << *li);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
++NumLoadPromoted;
// If we did not have ownership, we did not insert extra copies at our stores,
// so we can just RAUW and return.
if (!li->getFunction()->hasOwnership()) {
li->replaceAllUsesWith(newVal);
SILValue addr = li->getOperand();
deleter.forceDelete(li);
if (auto *addrI = addr->getDefiningInstruction())
deleter.deleteIfDead(addrI);
return true;
}
// If we inserted any copies, we created the copies at our stores. We know
// that in our load block, we will reform the aggregate as appropriate at the
// load implying that the value /must/ be fully consumed. If we promoted a +0
// value, we created dominating destroys along those paths. Thus any leaking
// blocks that we may have can be found by performing a linear lifetime check
// over all copies that we found using the load as the "consuming uses" (just
// for the purposes of identifying the consuming block).
agg.fixupOwnership(li, newVal);
// Now that we have fixed up all of our missing destroys, insert the copy
// value for our actual load and RAUW.
newVal = SILBuilderWithScope(li).emitCopyValueOperation(li->getLoc(), newVal);
li->replaceAllUsesWith(newVal);
SILValue addr = li->getOperand();
deleter.forceDelete(li);
if (auto *addrI = addr->getDefiningInstruction())
deleter.deleteIfDead(addrI);
return true;
}
bool AllocOptimize::promoteCopyAddr(CopyAddrInst *cai) {
// Note that we intentionally don't support forwarding of weak pointers,
// because the underlying value may drop be deallocated at any time. We would
// have to prove that something in this function is holding the weak value
// live across the promoted region and that isn't desired for a stable
// diagnostics pass this like one.
// First attempt to find a source addr for our "load" instruction. If we fail
// to find a valid value, just return.
SILValue srcAddr = tryFindSrcAddrForLoad(cai);
if (!srcAddr)
return false;
SmallVector<AvailableValue, 8> availableValues;
auto result = computeAvailableValues(srcAddr, cai, availableValues);
if (!result.has_value())
return false;
// Ok, we have some available values. If we have a copy_addr, explode it now,
// exposing the load operation within it. Subsequent optimization passes will
// see the load and propagate the available values into it.
DataflowContext.explodeCopyAddr(cai);
// This is removing the copy_addr, but explodeCopyAddr takes care of
// removing the instruction from Uses for us, so we return false.
return false;
}
/// At this point, we know that this element satisfies the definitive init
/// requirements, so we can try to promote loads to enable SSA-based dataflow
/// analysis. We know that accesses to this element only access this element,
/// cross element accesses have been scalarized.
///
/// This returns true if the load has been removed from the program.
bool AllocOptimize::promoteLoadBorrow(LoadBorrowInst *lbi) {
// Note that we intentionally don't support forwarding of weak pointers,
// because the underlying value may drop be deallocated at any time. We would
// have to prove that something in this function is holding the weak value
// live across the promoted region and that isn't desired for a stable
// diagnostics pass this like one.
// First attempt to find a source addr for our "load" instruction. If we fail
// to find a valid value, just return.
SILValue srcAddr = tryFindSrcAddrForLoad(lbi);
if (!srcAddr)
return false;
SmallVector<AvailableValue, 8> availableValues;
auto result = computeAvailableValues(srcAddr, lbi, availableValues);
if (!result.has_value())
return false;
// Bail if the load_borrow has reborrows. In this case it's not so easy to
// find the insertion points for the destroys.
if (!lbi->getUsersOfType<BranchInst>().empty()) {
return false;
}
++NumLoadPromoted;
SILType loadTy = result->first;
unsigned firstElt = result->second;
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller loads for any subelements that were
// not available. We are "propagating" a +1 available value from the store
// points.
AvailableValueAggregator agg(lbi, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Borrow);
SILValue newVal = agg.aggregateValues(loadTy, lbi->getOperand(), firstElt);
LLVM_DEBUG(llvm::dbgs() << " *** Promoting load: " << *lbi);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
// If we inserted any copies, we created the copies at our
// stores. We know that in our load block, we will reform the
// aggregate as appropriate, will borrow the value there and give us
// a whole pristine new value. Now in this routine, we go through
// all of the copies and phis that we inserted and ensure that:
//
// 1. Phis are always strongly control equivalent to the copies that
// produced their incoming values.
//
// 2. All intermediate copies are properly lifetime extended to the
// load block and all leaking blocks are filled in as appropriate
// with destroy_values.
agg.fixupOwnership(lbi, newVal);
// Now that we have fixed up the lifetimes of all of our incoming copies so
// that they are alive over the load point, copy, borrow newVal and insert
// destroy_value after the end_borrow and then RAUW.
SILBuilderWithScope builder(lbi);
SILValue copiedVal = builder.emitCopyValueOperation(lbi->getLoc(), newVal);
newVal = builder.createBeginBorrow(lbi->getLoc(), copiedVal);
for (auto *ebi : lbi->getUsersOfType<EndBorrowInst>()) {
auto next = std::next(ebi->getIterator());
SILBuilderWithScope(next).emitDestroyValueOperation(ebi->getLoc(),
copiedVal);
}
lbi->replaceAllUsesWith(newVal);
SILValue addr = lbi->getOperand();
deleter.forceDelete(lbi);
if (auto *addrI = addr->getDefiningInstruction())
deleter.deleteIfDead(addrI);
return true;
}
/// Return true if we can promote the given destroy.
bool AllocOptimize::canPromoteTake(
SILInstruction *inst, SmallVectorImpl<AvailableValue> &availableValues) {
SILValue address = inst->getOperand(0);
// We cannot promote destroys of address-only types, because we can't expose
// the load.
SILType loadTy = address->getType().getObjectType();
if (loadTy.isAddressOnly(*inst->getFunction()))
return false;
// If the box has escaped at this instruction, we can't safely promote the
// load.
if (DataflowContext.hasEscapedAt(inst))
return false;
// Compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned firstElt = computeSubelement(address, TheMemory);
assert(firstElt != ~0U && "destroy within enum projection is not valid");
auto expansionContext = TypeExpansionContext(*inst->getFunction());
unsigned numLoadSubElements =
getNumSubElements(loadTy, Module, expansionContext);
// Find out if we have any available values. If no bits are demanded, we
// trivially succeed. This can happen when there is a load of an empty struct.
if (numLoadSubElements == 0)
return true;
// Set up the bitvector of elements being demanded by the load.
SmallBitVector requiredElts(NumMemorySubElements);
requiredElts.set(firstElt, firstElt + numLoadSubElements);
// Compute our available values. If we do not have any available values,
// return false. We have nothing further to do.
SmallVector<AvailableValue, 8> tmpList;
tmpList.resize(NumMemorySubElements);
if (!DataflowContext.computeAvailableValues(
inst, firstElt, numLoadSubElements, requiredElts, tmpList))
return false;
// Now check that we can perform a take upon our available values. This
// implies today that our value is fully available. If the value is not fully
// available, we would need to split stores to promote this destroy_addr. We
// do not support that yet.
AvailableValueAggregator agg(inst, tmpList, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Take);
if (!agg.canTake(loadTy, firstElt))
return false;
// As a final check, make sure that we have an available value for each value,
// if not bail.
for (const auto &av : tmpList)
if (!av.Value)
return false;
// Ok, we can promote this destroy_addr... move the temporary lists contents
// into the final AvailableValues list.
std::move(tmpList.begin(), tmpList.end(),
std::back_inserter(availableValues));
return true;
}
// DestroyAddr is a composed operation merging load [take] + destroy_value. If
// the implicit load's value is available, explode it.
//
// NOTE: We only do this if we have a fully available value.
//
// Note that we handle the general case of a destroy_addr of a piece of the
// memory object, not just destroy_addrs of the entire thing.
void AllocOptimize::promoteDestroyAddr(
DestroyAddrInst *dai, MutableArrayRef<AvailableValue> availableValues) {
SILValue address = dai->getOperand();
SILType loadTy = address->getType().getObjectType();
// Compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned firstElt = computeSubelement(address, TheMemory);
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller) loads for any subelements that were
// not available.
AvailableValueAggregator agg(dai, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Take);
SILValue newVal = agg.aggregateValues(loadTy, address, firstElt);
++NumDestroyAddrPromoted;
LLVM_DEBUG(llvm::dbgs() << " *** Promoting destroy_addr: " << *dai);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
SILBuilderWithScope(dai).emitDestroyValueOperation(dai->getLoc(), newVal);
deleter.forceDelete(dai);
}
SILValue AllocOptimize::promoteLoadTake(
LoadInst *li, MutableArrayRef<AvailableValue> availableValues) {
assert(li->getOwnershipQualifier() == LoadOwnershipQualifier::Take &&
"load [copy], load [trivial], load should be handled by "
"promoteLoadCopy");
SILValue address = li->getOperand();
SILType loadTy = address->getType().getObjectType();
// Compute the access path down to the field so we can determine precise
// def/use behavior.
unsigned firstElt = computeSubelement(address, TheMemory);
// Aggregate together all of the subelements into something that has the same
// type as the load did, and emit smaller) loads for any subelements that were
// not available.
AvailableValueAggregator agg(li, availableValues, Uses, deadEndBlocks,
AvailableValueExpectedOwnership::Take);
SILValue newVal = agg.aggregateValues(loadTy, address, firstElt);
assert(newVal);
++NumLoadTakePromoted;
LLVM_DEBUG(llvm::dbgs() << " *** Promoting load_take: " << *li);
LLVM_DEBUG(llvm::dbgs() << " To value: " << *newVal);
// Our parent RAUWs with newVal/erases li.
return newVal;
}
namespace {
struct TakePromotionState {
ArrayRef<SILInstruction *> takeInsts;
SmallVector<unsigned, 8> takeInstIndices;
SmallVector<AvailableValue, 32> availableValueList;
SmallVector<unsigned, 8> availableValueStartOffsets;
TakePromotionState(ArrayRef<SILInstruction *> takeInsts)
: takeInsts(takeInsts) {}
unsigned size() const { return takeInstIndices.size(); }
void verify() {
#ifndef NDEBUG
for (unsigned i : range(size())) {
SILInstruction *inst;
MutableArrayRef<AvailableValue> data;
std::tie(inst, data) = getData(i);
assert(inst);
inst->verifyOperandOwnership();
assert(!data.empty() && "Value without any available values?!");
}
#endif
}
void verify(unsigned startOffset) {
#ifndef NDEBUG
assert(startOffset < size());
for (unsigned i : range(startOffset, size())) {
SILInstruction *inst;
MutableArrayRef<AvailableValue> data;
std::tie(inst, data) = getData(i);
assert(inst);
inst->verifyOperandOwnership();
assert(!data.empty() && "Value without any available values?!");
}
#endif
}
void initializeForTakeInst(unsigned takeInstIndex) {
availableValueStartOffsets.push_back(availableValueList.size());
takeInstIndices.push_back(takeInstIndex);
}
std::pair<SILInstruction *, MutableArrayRef<AvailableValue>>
getData(unsigned index) {
unsigned takeInstIndex = takeInstIndices[index];
unsigned startOffset = availableValueStartOffsets[index];
unsigned count;
if ((availableValueStartOffsets.size() - 1) != index) {
count = availableValueStartOffsets[index + 1] - startOffset;
} else {
count = availableValueList.size() - startOffset;
}
auto values = MutableArrayRef<AvailableValue>(availableValueList);
return {takeInsts[takeInstIndex], values.slice(startOffset, count)};
}
};
} // end anonymous namespace
// Check if our use list has any non store, non take uses that keep the value
// alive. Returns nullptr on success and the user that prevents removal on
// failure.
//
// NOTE: This also gathers up any takes that we need to process.
static SILInstruction *
checkForNonStoreNonTakeUses(ArrayRef<PMOMemoryUse> uses,
SmallVectorImpl<SILInstruction *> &loadTakeList) {
for (auto &u : uses) {
// Ignore removed instructions.
if (u.Inst == nullptr)
continue;
switch (u.Kind) {
case PMOUseKind::Assign:
// Until we can promote the value being destroyed by the assign, we can
// not remove deallocations with such assigns.
return u.Inst;
case PMOUseKind::InitOrAssign:
continue; // These don't prevent removal.
case PMOUseKind::Load:
// For now only handle takes from alloc_stack.
//
// TODO: It should be implementable, but it has not been needed yet.
if (auto *li = dyn_cast<LoadInst>(u.Inst)) {
if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
loadTakeList.push_back(li);
continue;
}
}
return u.Inst;
case PMOUseKind::Initialization:
if (!isa<ApplyInst>(u.Inst) &&
// A copy_addr that is not a take affects the retain count
// of the source.
(!isa<CopyAddrInst>(u.Inst) ||
cast<CopyAddrInst>(u.Inst)->isTakeOfSrc()))
continue;
// FALL THROUGH.
LLVM_FALLTHROUGH;
case PMOUseKind::IndirectIn:
case PMOUseKind::InOutUse:
case PMOUseKind::Escape:
return u.Inst; // These do prevent removal.
}
}
return nullptr;
}
// We don't want to remove allocations that are required for useful debug
// information at -O0. As such, we only remove allocations if:
//
// 1. They are in a transparent function.
// 2. They are in a normal function, but didn't come from a VarDecl, or came
// from one that was autogenerated or inlined from a transparent function.
static bool isRemovableAutogeneratedAllocation(AllocationInst *TheMemory) {
SILLocation loc = TheMemory->getLoc();
return TheMemory->getFunction()->isTransparent() ||
!loc.getAsASTNode<VarDecl>() || loc.isAutoGenerated() ||
loc.is<MandatoryInlinedLocation>();
}
bool AllocOptimize::tryToRemoveDeadAllocation() {
assert(TheMemory->getFunction()->hasOwnership() &&
"Can only eliminate dead allocations with ownership enabled");
assert((isa<AllocBoxInst>(TheMemory) || isa<AllocStackInst>(TheMemory)) &&
"Unhandled allocation case");
if (!isRemovableAutogeneratedAllocation(TheMemory))
return false;
SmallVector<SILInstruction *, 8> loadTakeList;
// Check the uses list to see if there are any non-store uses left over after
// load promotion and other things PMO does.
if (auto *badUser = checkForNonStoreNonTakeUses(Uses, loadTakeList)) {
LLVM_DEBUG(llvm::dbgs() << "*** Failed to remove autogenerated alloc: "
"kept alive by: "
<< *badUser);
return false;
}
// If our memory is trivially typed, we can just remove it without needing to
// consider if the stored value needs to be destroyed. So at this point,
// delete the memory!
if (MemoryType.isTrivial(*TheMemory->getFunction())) {
LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated trivial allocation: "
<< *TheMemory);
// If it is safe to remove, do it. Recursively remove all instructions
// hanging off the allocation instruction, then return success. Let the
// caller remove the allocation itself to avoid iterator invalidation.
deleter.forceDeleteWithUsers(TheMemory);
return true;
}
// Now make sure we can promote all load [take] and prepare state for each of
// them.
TakePromotionState loadTakeState(loadTakeList);
for (auto p : llvm::enumerate(loadTakeList)) {
loadTakeState.initializeForTakeInst(p.index());
if (!canPromoteTake(p.value(), loadTakeState.availableValueList))
return false;
}
// Otherwise removing the deallocation will drop any releases. Check that
// there is nothing preventing removal.
TakePromotionState destroyAddrState(Releases);
for (auto p : llvm::enumerate(Releases)) {
auto *r = p.value();
if (r == nullptr)
continue;
// We stash all of the destroy_addr that we see.
if (auto *dai = dyn_cast<DestroyAddrInst>(r)) {
destroyAddrState.initializeForTakeInst(p.index() /*destroyAddrIndex*/);
// Make sure we can actually promote this destroy addr. If we can not,
// then we must bail. In order to not gather available values twice, we
// gather the available values here that we will use to promote the
// values.
if (!canPromoteTake(dai, destroyAddrState.availableValueList))
return false;
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "*** Failed to remove autogenerated non-trivial alloc: "
"kept alive by release: "
<< *r);
return false;
}
// If we reached this point, we can promote all of our destroy_addr and load
// take. Before we begin, gather up all found available values before we do
// anything so we can fix up lifetimes later if we need to.
SmallBlotSetVector<SILValue, 32> valuesNeedingLifetimeCompletion;
for (auto pmoMemUse : Uses) {
if (pmoMemUse.Inst && pmoMemUse.Kind == PMOUseKind::Initialization) {
// Today if we promote, this is always a store, since we would have
// blown up the copy_addr otherwise. Given that, always make sure we
// clean up the src as appropriate after we optimize.
auto *si = dyn_cast<StoreInst>(pmoMemUse.Inst);
if (!si)
return false;
auto src = si->getSrc();
// Bail if src has any uses that are forwarding unowned uses. This
// allows us to know that we never have to deal with forwarding unowned
// instructions like br. These are corner cases that complicate the
// logic below.
for (auto *use : src->getUses()) {
if (use->getOperandOwnership() == OperandOwnership::ForwardingUnowned)
return false;
}
valuesNeedingLifetimeCompletion.insert(src);
}
}
// Since our load [take] may be available values for our
// destroy_addr/load [take], we promote the destroy_addr first and then handle
// load [take] with extra rigour later to handle that possibility.
for (unsigned i : range(destroyAddrState.size())) {
SILInstruction *dai;
MutableArrayRef<AvailableValue> values;
std::tie(dai, values) = destroyAddrState.getData(i);
promoteDestroyAddr(cast<DestroyAddrInst>(dai), values);
// We do not need to unset releases, since we are going to exit here.
}
llvm::SmallMapVector<LoadInst *, SILValue, 32> loadsToDelete;
for (unsigned i : range(loadTakeState.size())) {
SILInstruction *li;
MutableArrayRef<AvailableValue> values;
std::tie(li, values) = loadTakeState.getData(i);
for (unsigned i : indices(values)) {
auto v = values[i].Value;
auto *li = dyn_cast<LoadInst>(v);
if (!li)
continue;
auto iter = loadsToDelete.find(li);
if (iter == loadsToDelete.end())
continue;
SILValue newValue = iter->second;
assert(newValue && "We should neer store a nil SILValue into this map");
values[i].Value = newValue;
}
auto *liCast = cast<LoadInst>(li);
SILValue result = promoteLoadTake(liCast, values);
assert(result);
// We need to erase liCast here before we erase it since a load [take] that
// we are promoting could be an available value for another load
// [take]. Consider the following SIL:
//
// %mem = alloc_stack
// store %arg to [init] %mem
// %0 = load [take] %mem
// store %0 to [init] %mem
// %1 = load [take] %mem
// destroy_value %1
// dealloc_stack %mem
//
// In such a case, we are going to delete %0 here, but %0 is an available
// value for %1, so we will
auto insertIter = loadsToDelete.insert({liCast, result});
valuesNeedingLifetimeCompletion.erase(liCast);
(void)insertIter;
assert(insertIter.second && "loadTakeState doesn't have unique loads?!");
}
// Now that we have promoted all of our load [take], perform the actual
// RAUW/removal.
for (auto p : loadsToDelete) {
LoadInst *li = p.first;
SILValue newValue = p.second;
li->replaceAllUsesWith(newValue);
deleter.forceDelete(li);
}
LLVM_DEBUG(llvm::dbgs() << "*** Removing autogenerated non-trivial alloc: "
<< *TheMemory);
// If it is safe to remove, do it. Recursively remove all instructions
// hanging off the allocation instruction, then return success.
deleter.forceDeleteWithUsers(TheMemory);
// Now look at all of our available values and complete any of their
// post-dominating consuming use sets. This can happen if we have an enum that
// is known dynamically none along a path. This is dynamically correct, but
// can not be represented in OSSA so we insert these destroys along said path.
OSSALifetimeCompletion completion(TheMemory->getFunction(), domInfo);
while (!valuesNeedingLifetimeCompletion.empty()) {
auto optV = valuesNeedingLifetimeCompletion.pop_back_val();
if (!optV)
continue;
SILValue v = *optV;
// Lexical enums can have incomplete lifetimes in non payload paths that
// don't end in unreachable. Force their lifetime to end immediately after
// the last use instead.
bool forceBoundaryCompletion = v->getType().isOrHasEnum();
LLVM_DEBUG(llvm::dbgs() << "Completing lifetime of: ");
LLVM_DEBUG(v->dump());
completion.completeOSSALifetime(v, forceBoundaryCompletion);
}
return true;
}
bool AllocOptimize::optimizeMemoryAccesses() {
bool changed = false;
// If we've successfully checked all of the definitive initialization
// requirements, try to promote loads. This can explode copy_addrs, so the
// use list may change size.
for (unsigned i = 0; i != Uses.size(); ++i) {
auto &use = Uses[i];
// Ignore entries for instructions that got expanded along the way.
if (use.Inst && use.Kind == PMOUseKind::Load) {
if (auto *cai = dyn_cast<CopyAddrInst>(use.Inst)) {
if (promoteCopyAddr(cai)) {
Uses[i].Inst = nullptr; // remove entry if load got deleted.
changed = true;
}
continue;
}
if (auto *lbi = dyn_cast<LoadBorrowInst>(use.Inst)) {
if (promoteLoadBorrow(lbi)) {
Uses[i].Inst = nullptr; // remove entry if load got deleted.
changed = true;
}
continue;
}
if (auto *li = dyn_cast<LoadInst>(use.Inst)) {
if (promoteLoadCopy(li)) {
Uses[i].Inst = nullptr; // remove entry if load got deleted.
changed = true;
}
continue;
}
}
}
return changed;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
static AllocationInst *getOptimizableAllocation(SILInstruction *i) {
if (!isa<AllocBoxInst>(i) && !isa<AllocStackInst>(i)) {
return nullptr;
}
auto *alloc = cast<AllocationInst>(i);
// If our aggregate has unreferencable storage, we can't optimize. Return
// nullptr.
if (getMemoryType(alloc).aggregateHasUnreferenceableStorage())
return nullptr;
// Do not perform this on move only values since we introduce copies to
// promote things.
if (getMemoryType(alloc).isMoveOnly())
return nullptr;
// Otherwise we are good to go. Lets try to optimize this memory!
return alloc;
}
bool swift::optimizeMemoryAccesses(SILFunction *fn, DominanceInfo *domInfo) {
bool changed = false;
DeadEndBlocks deadEndBlocks(fn);
InstructionDeleter deleter;
for (auto &bb : *fn) {
for (SILInstruction &inst : bb.deletableInstructions()) {
// First see if i is an allocation that we can optimize. If not, skip it.
AllocationInst *alloc = getOptimizableAllocation(&inst);
if (!alloc) {
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "*** PMO Optimize Memory Accesses looking at: " << *alloc);
PMOMemoryObjectInfo memInfo(alloc);
// Set up the datastructure used to collect the uses of the allocation.
SmallVector<PMOMemoryUse, 16> uses;
SmallVector<SILInstruction *, 4> destroys;
// Walk the use list of the pointer, collecting them. If we are not able
// to optimize, skip this value. *NOTE* We may still scalarize values
// inside the value.
if (!collectPMOElementUsesFrom(memInfo, uses, destroys)) {
// Avoid advancing this iterator until after collectPMOElementUsesFrom()
// runs. It creates and deletes instructions other than alloc.
continue;
}
AllocOptimize allocOptimize(alloc, uses, destroys, deadEndBlocks, deleter,
domInfo);
changed |= allocOptimize.optimizeMemoryAccesses();
// Move onto the next instruction. We know this is safe since we do not
// eliminate allocations here.
}
}
return changed;
}
bool swift::eliminateDeadAllocations(SILFunction *fn, DominanceInfo *domInfo) {
if (!fn->hasOwnership())
return false;
bool changed = false;
DeadEndBlocks deadEndBlocks(fn);
for (auto &bb : *fn) {
InstructionDeleter deleter;
for (SILInstruction &inst : bb.deletableInstructions()) {
// First see if i is an allocation that we can optimize. If not, skip it.
AllocationInst *alloc = getOptimizableAllocation(&inst);
if (!alloc) {
continue;
}
LLVM_DEBUG(llvm::dbgs()
<< "*** PMO Dead Allocation Elimination looking at: "
<< *alloc);
PMOMemoryObjectInfo memInfo(alloc);
// Set up the datastructure used to collect the uses of the allocation.
SmallVector<PMOMemoryUse, 16> uses;
SmallVector<SILInstruction *, 4> destroys;
// Walk the use list of the pointer, collecting them. If we are not able
// to optimize, skip this value. *NOTE* We may still scalarize values
// inside the value.
if (!collectPMOElementUsesFrom(memInfo, uses, destroys)) {
continue;
}
AllocOptimize allocOptimize(alloc, uses, destroys, deadEndBlocks, deleter,
domInfo);
if (allocOptimize.tryToRemoveDeadAllocation()) {
deleter.cleanupDeadInstructions();
++NumAllocRemoved;
changed = true;
}
}
}
return changed;
}
namespace {
class PredictableMemoryAccessOptimizations : public SILFunctionTransform {
/// The entry point to the transformation.
///
/// FIXME: This pass should not need to rerun on deserialized
/// functions. Nothing should have changed in the upstream pipeline after
/// deserialization. However, rerunning does improve some benchmarks. This
/// either indicates that this pass missing some opportunities the first time,
/// or has a pass order dependency on other early passes.
void run() override {
auto *func = getFunction();
LLVM_DEBUG(llvm::dbgs() << "Looking at: " << func->getName() << "\n");
auto *da = getAnalysis<DominanceAnalysis>();
// TODO: Can we invalidate here just instructions?
if (optimizeMemoryAccesses(func, da->get(func)))
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
};
class PredictableDeadAllocationElimination : public SILFunctionTransform {
void run() override {
auto *func = getFunction();
LLVM_DEBUG(llvm::dbgs() << "Looking at: " << func->getName() << "\n");
auto *da = getAnalysis<DominanceAnalysis>();
// If we are already canonical or do not have ownership, just bail.
if (func->wasDeserializedCanonical() || !func->hasOwnership())
return;
if (eliminateDeadAllocations(func, da->get(func)))
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
};
} // end anonymous namespace
SILTransform *swift::createPredictableMemoryAccessOptimizations() {
return new PredictableMemoryAccessOptimizations();
}
SILTransform *swift::createPredictableDeadAllocationElimination() {
return new PredictableDeadAllocationElimination();
}
|