1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
|
//===------ YieldOnceCheck.cpp - Check usage of yields in accessors ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// This pass statically verifies that yield-once coroutines, such as the
// generalized accessors `read` and `modify`, yield exactly once in every
// invocation, and diagnoses any violation of this property. This pass uses a
// linear-time, data-flow analysis to check that every path in the control-flow
// graph of the coroutine has a yield instruction before a return instruction.
#define DEBUG_TYPE "yield-once-check"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Stmt.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/TerminatorUtils.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockData.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "llvm/ADT/BreadthFirstIterator.h"
#include "llvm/ADT/DenseSet.h"
using namespace swift;
namespace {
class YieldOnceCheck : public SILFunctionTransform {
template <typename... T, typename... U>
static InFlightDiagnostic diagnose(ASTContext &Context, SourceLoc loc,
Diag<T...> diag, U &&... args) {
return Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
/// Data-flow analysis state that is associated with basic blocks.
struct BBState {
/// Indicates whether a basic block is encountered before seeing a yield
/// (BeforeYield) or after seeing a yield (AfterYield), or in both states
/// (Conflict). This enum is a semi-lattice where Conflict is the top and
/// the merge of BeforeYield and AfterYield states is Conflict.
enum YieldState { BeforeYield, AfterYield, Conflict } yieldState = Conflict;
private:
friend class BasicBlockData<BBState>;
// The following states are maintained for emitting diagnostics.
/// For AfterYield and Conflict states, this field records the yield
/// instruction that was seen while propagating the state.
SILInstruction *yieldInst = nullptr;
/// For Conflict state, these fields record the basic blocks that
/// propagated the 'AfterYield' and 'BeforeYield' states which resulted
/// in the Conflict.
SILBasicBlock *yieldingPred = nullptr;
SILBasicBlock *nonYieldingPred = nullptr;
bool visited = false;
BBState() {}
BBState(YieldState yState, SILInstruction *yieldI, SILBasicBlock *yieldPred,
SILBasicBlock *noYieldPred)
: yieldState(yState), yieldInst(yieldI), yieldingPred(yieldPred),
nonYieldingPred(noYieldPred), visited(true) {}
public:
static BBState getInitialState() {
return BBState(BeforeYield, nullptr, nullptr, nullptr);
}
static BBState getAfterYieldState(SILInstruction *yieldI) {
assert(yieldI);
return BBState(AfterYield, yieldI, nullptr, nullptr);
}
static BBState getConflictState(SILInstruction *yieldI,
SILBasicBlock *yieldPred,
SILBasicBlock *noYieldPred) {
assert(yieldI && yieldPred && noYieldPred);
return BBState(Conflict, yieldI, yieldPred, noYieldPred);
}
SILInstruction *getYieldInstruction() const {
assert(yieldState == AfterYield || yieldState == Conflict);
return yieldInst;
}
SILBasicBlock *getYieldingPred() {
assert(yieldState == Conflict);
return yieldingPred;
}
SILBasicBlock *getNonYieldingPred() {
assert(yieldState == Conflict);
return nonYieldingPred;
}
bool isVisited() const { return visited; }
};
/// A structure that records an error found during the analysis along with
/// some context information that will be used by diagnostics.
struct YieldError {
/// The kind of error.
enum Kind { MultipleYield, ReturnBeforeYield, ReturnOnConflict } errorKind;
/// The termination instruction where the error should be reported.
SILInstruction *termInst;
/// The input state when the error is encountered.
BBState inState;
private:
YieldError(Kind kind, SILInstruction *term, BBState state)
: errorKind(kind), termInst(term), inState(state) {}
public:
static YieldError getMultipleYieldError(YieldInst *yield, BBState state) {
assert(state.yieldState != BBState::BeforeYield);
return YieldError(MultipleYield, yield, state);
}
static YieldError getReturnBeforeYieldError(ReturnInst *returnI,
BBState state) {
assert(state.yieldState == BBState::BeforeYield);
return YieldError(ReturnBeforeYield, returnI, state);
}
static YieldError getReturnOnConflict(ReturnInst *returnI, BBState state) {
assert(state.yieldState == BBState::Conflict);
return YieldError(ReturnOnConflict, returnI, state);
}
};
/// Transfer function of the data-flow analysis.
///
/// \param bb Basic block that should be processed
/// \param inState BBState at the start of the basic block
/// \param error out parameter that will contain information about
/// an error that is detected.
/// \return the state at the exit of the basic block if it can be computed
/// and None otherwise.
static std::optional<BBState>
transferStateThroughBasicBlock(SILBasicBlock *bb, BBState inState,
std::optional<YieldError> &error) {
error = std::nullopt;
auto *term = bb->getTerminator();
if (auto *returnInst = dyn_cast<ReturnInst>(term)) {
if (inState.yieldState == BBState::BeforeYield) {
error = YieldError::getReturnBeforeYieldError(returnInst, inState);
return std::nullopt;
}
if (inState.yieldState == BBState::Conflict) {
error = YieldError::getReturnOnConflict(returnInst, inState);
return std::nullopt;
}
return inState;
}
if (auto *yieldInst = dyn_cast<YieldInst>(term)) {
if (inState.yieldState != BBState::BeforeYield) {
error = YieldError::getMultipleYieldError(yieldInst, inState);
return std::nullopt;
}
// If the current state is BeforeYield and if the basic block ends in a
// yield the new state is AfterYield.
return inState.getAfterYieldState(term);
}
// We cannot have throws within generalized accessors.
assert(!isa<ThrowInst>(term));
return inState;
}
/// Merge operation of the data-flow analysis.
///
/// \param mergeBlock the basic block that is reached with two states
/// \param oldState the previous state at the entry of the basic block
/// \param newState the current state at the entry of the basic block
/// \param newStatePred the predecessor of 'mergeBlock' that has propagated
/// the 'newState'.
/// \param bbToStateMap a map from the basic blocks visited by the analysis
/// to the BBStates in which they were seen. This is used to identify
/// blocks that propagate conflicting states when the merge results
/// in a conflict.
/// \return the new state obtained by merging the oldState with the newState
static BBState merge(SILBasicBlock *mergeBlock, BBState oldState,
BBState newState, SILBasicBlock *newStatePred,
BasicBlockData<BBState> &bbToStateMap) {
auto oldYieldState = oldState.yieldState;
auto newYieldState = newState.yieldState;
if (oldYieldState == BBState::Conflict) {
return oldState;
}
if (newYieldState == BBState::Conflict) {
return newState;
}
if (oldYieldState == newYieldState) {
return oldState;
}
// Here, one state is AfterYield and the other one is BeforeYield.
// Merging them will result in Conflict.
assert((newYieldState == BBState::AfterYield &&
oldYieldState == BBState::BeforeYield) ||
(newYieldState == BBState::BeforeYield &&
oldYieldState == BBState::AfterYield));
// For diagnostics, find another predecessor of 'mergeBlock' that was
// previously seen by the analysis. This predecessor would have
// propagated the 'oldState'.
SILBasicBlock *oldStatePred = nullptr;
for (auto predBB : mergeBlock->getPredecessorBlocks()) {
if (predBB != newStatePred && bbToStateMap[predBB].isVisited()) {
oldStatePred = predBB;
break;
}
}
assert(oldStatePred);
if (oldState.yieldState == BBState::BeforeYield) {
return BBState::getConflictState(newState.getYieldInstruction(),
/* yieldPred */ newStatePred,
/* noYieldPred */ oldStatePred);
} else {
return BBState::getConflictState(oldState.getYieldInstruction(),
/* yieldPred */ oldStatePred,
/* noYieldPred */ newStatePred);
}
}
/// Perform a data-flow analysis to check whether there is exactly one
/// yield before a return in every path in the control-flow graph.
/// Diagnostics are not reported for nodes unreachable from the entry of
/// the control-flow graph.
void diagnoseYieldOnceUsage(SILFunction &fun) {
BasicBlockData<BBState> bbToStateMap(&fun);
SmallVector<SILBasicBlock *, 16> worklist;
auto *entryBB = fun.getEntryBlock();
bbToStateMap[entryBB] = BBState::getInitialState();
worklist.push_back(entryBB);
// ReturnBeforeYield errors, which denote that no paths yield before
// returning, are not diagnosed until the analysis completes, in order to
// distinguish them from ReturnOnConflict errors, which happen when some
// paths yield and some don't.
std::optional<YieldError> returnBeforeYieldError = std::nullopt;
// The algorithm uses a worklist to propagate the state through basic
// blocks until a fix point. Since the state lattice has height one, each
// basic block will be visited at most twice, and at most once if there are
// no conflicts (which are errors). The basic blocks are added to the
// worklist in a breadth-first fashion. The order of visiting basic blocks
// is not important for correctness, but it could change the errors
// diagnosed when there are multiple errors. Breadth-first order diagnoses
// errors along shorter paths to return.
while (!worklist.empty()) {
SILBasicBlock *bb = worklist.pop_back_val();
const BBState &state = bbToStateMap[bb];
assert(state.isVisited());
std::optional<YieldError> errorResult = std::nullopt;
auto resultState = transferStateThroughBasicBlock(bb, state, errorResult);
if (!resultState.has_value()) {
auto error = errorResult.value();
// ReturnBeforeYield errors will not be reported until the analysis
// completes. So record it and continue.
if (error.errorKind == YieldError::ReturnBeforeYield) {
if (!returnBeforeYieldError.has_value()) {
returnBeforeYieldError = error;
}
continue;
}
emitDiagnostics(error, fun, bbToStateMap);
return;
}
auto nextState = resultState.value();
for (auto *succBB : bb->getSuccessorBlocks()) {
BBState &succState = bbToStateMap[succBB];
if (!succState.isVisited()) {
// We are seeing the successor for the first time.
// Add the successor to the worklist.
succState = nextState;
worklist.insert(worklist.begin(), succBB);
continue;
}
// Here the successor already has a state. Merge the current and
// previous states and propagate it if it is different from the
// old state.
auto mergedState = merge(succBB, succState, nextState, bb, bbToStateMap);
if (mergedState.yieldState == succState.yieldState)
continue;
// Even though at this point there has to be an error since there is an
// inconsistency between states coming along two different paths,
// continue propagation of this conflict state to determine
// whether this results in multiple-yields error or return-on-conflict
// error.
succState = mergedState;
worklist.insert(worklist.begin(), succBB);
}
}
if (returnBeforeYieldError.has_value()) {
emitDiagnostics(returnBeforeYieldError.value(), fun, bbToStateMap);
}
}
void emitDiagnostics(YieldError &error, SILFunction &fun,
BasicBlockData<BBState> &visitedBBs) {
ASTContext &astCtx = fun.getModule().getASTContext();
switch (error.errorKind) {
case YieldError::ReturnBeforeYield: {
diagnose(astCtx, error.termInst->getLoc().getSourceLoc(),
diag::return_before_yield);
return;
}
case YieldError::MultipleYield: {
diagnose(astCtx, error.termInst->getLoc().getSourceLoc(),
diag::multiple_yields);
// Add a note that points to the previous yield.
diagnose(astCtx,
error.inState.getYieldInstruction()->getLoc().getSourceLoc(),
diag::previous_yield);
return;
}
case YieldError::ReturnOnConflict: {
// Emit an error on the return statement.
diagnose(astCtx, error.termInst->getLoc().getSourceLoc(),
diag::possible_return_before_yield);
// Here, the yield state of 'error' is Conflict.
auto &conflictState = error.inState;
// Emit a note that pin points the branch construct that resulted in
// this conflict. Note that a conflict state is created at a merge block
// when along one incoming edge the analysis sees a BeforeYield state
// and along another it sees an AfterYield state.
// Also note that, by the definition of the merge operation,
// 'error.yieldingPred()' is the immediate predecessor of the merge block
// that propagates AfterYield state, and 'error.nonYieldingPred()' is
// the immediate predecessor of the merge block that propagates a
// BeforeYield state.
auto yieldPred = conflictState.getYieldingPred();
auto noYieldPred = conflictState.getNonYieldingPred();
// Step 1: find a branching SIL instruction where one branch has
// 'yieldPred' and another branch has 'noYieldPred'. For instance,
// in the following example, cond_br is the instruction to find.
// cond_br bb1, bb2
// bb1:
// yield resume yieldPred, unwind err
// bb2:
// br noYieldPred
// yieldPred:
// br mergePoint
// noYieldPred:
// br mergePoint
// mergePoint:
// ...
// Intuitively, the conflicting branch is the instruction where
// 'yieldPred' and 'noYieldPred' meet when traversing the CFG in the
// reverse order. More formally, the branching instruction is a
// "lowest common ancestor" of 'yieldPred' and 'noYieldPred' in the
// the DAG obtained from the CFG by ignoring back edges of loops.
//
// Note that the lowest common ancestor may not be unique in a DAG.
// But, any such ancestor could be considered as the conflicting branch as
// 'yieldPred' and 'noYieldPred' will belong to two different branches of
// every such ancestor.
// Find all transitive predecessors of 'yieldPred' that were visited
// during the analysis
BasicBlockSet predecessorsOfYieldPred(&fun);
for (auto *predBB :
llvm::breadth_first<llvm::Inverse<SILBasicBlock *>>(yieldPred)) {
if (visitedBBs[predBB].isVisited()) {
predecessorsOfYieldPred.insert(predBB);
}
}
// Find the first predecessor of 'noYieldPred' that is also a predecessor
// of 'yieldPred', in the breadth-first search order of the reversed CFG.
SILBasicBlock *lowestCommonAncestorBB = nullptr;
BasicBlockSet predecessorsOfNoYieldPred(&fun);
for (auto *pred :
llvm::breadth_first<llvm::Inverse<SILBasicBlock *>>(noYieldPred)) {
if (!visitedBBs[pred].isVisited()) {
continue;
}
if (predecessorsOfYieldPred.contains(pred)) {
lowestCommonAncestorBB = pred;
break;
}
predecessorsOfNoYieldPred.insert(pred);
}
assert(lowestCommonAncestorBB);
auto *conflictingBranch = lowestCommonAncestorBB->getTerminator();
// Step 2: Find the target basic block of the 'conflictingBranch' that
// doesn't yield.
SILBasicBlock *noYieldTarget = nullptr;
for (auto *succ : lowestCommonAncestorBB->getSuccessorBlocks()) {
if (predecessorsOfNoYieldPred.contains(succ)) {
noYieldTarget = succ;
break;
}
}
assert(noYieldTarget);
// Step 3: Report specialized diagnostics for each kind of conflicting
// branch.
// For conditional-branch instructions, which correspond to the
// conditions of 'if', 'where' or 'guard' statements, report for what
// truth value the branch doesn't yield.
if (auto *condbr = dyn_cast<CondBranchInst>(conflictingBranch)) {
diagnose(astCtx, condbr->getLoc().getSourceLoc(),
diag::branch_doesnt_yield,
/*non-yielding branch*/ condbr->getTrueBB() == noYieldTarget);
return;
}
// For switch_enum instructions, report the case that doesn't yield.
enum SwitchCaseKind { Default, OptionNil, OptionSome };
if (auto switchEnum = SwitchEnumTermInst(conflictingBranch)) {
auto enumCaseLoc = noYieldTarget->begin()->getLoc().getSourceLoc();
if (switchEnum.hasDefault() &&
switchEnum.getDefaultBB() == noYieldTarget) {
diagnose(astCtx, enumCaseLoc, diag::case_doesnt_yield, Default);
return;
}
// Find the case identifier that doesn't yield.
NullablePtr<EnumElementDecl> enumElemDecl =
switchEnum.getUniqueCaseForDestination(noYieldTarget);
assert(enumElemDecl.isNonNull());
// Specialize diagnostics for cases of an optional.
if (enumElemDecl.get() == astCtx.getOptionalNoneDecl()) {
diagnose(astCtx, enumCaseLoc, diag::case_doesnt_yield, OptionNil);
} else if (enumElemDecl.get() == astCtx.getOptionalSomeDecl()) {
diagnose(astCtx, enumCaseLoc, diag::case_doesnt_yield, OptionSome);
} else {
diagnose(astCtx, enumCaseLoc, diag::named_case_doesnt_yield,
enumElemDecl.get()->getBaseIdentifier());
}
return;
}
// For switch_value instructions, report the case number that doesn't
// yield.
if (auto *switchValue = dyn_cast<SwitchValueInst>(conflictingBranch)) {
auto enumCaseLoc = noYieldTarget->begin()->getLoc().getSourceLoc();
if (switchValue->hasDefault() &&
switchValue->getDefaultBB() == noYieldTarget) {
diagnose(astCtx, enumCaseLoc, diag::case_doesnt_yield, Default);
return;
}
// Find the case that doesn't yield.
std::optional<unsigned> caseNumberOpt =
switchValue->getUniqueCaseForDestination(noYieldTarget);
assert(caseNumberOpt.has_value());
auto caseNumber = caseNumberOpt.value();
diagnose(
astCtx, enumCaseLoc, diag::switch_value_case_doesnt_yield,
(Twine(caseNumber) + llvm::getOrdinalSuffix(caseNumber)).str());
return;
}
// For try-apply instructions, report whether throwing or non-throwing
// case doesn't yield.
if (auto *tryApply = dyn_cast<TryApplyInst>(conflictingBranch)) {
diagnose(astCtx, tryApply->getLoc().getSourceLoc(),
diag::try_branch_doesnt_yield,
/*does error case not yield?*/ tryApply->getErrorBB() ==
noYieldTarget);
return;
}
llvm_unreachable("unexpected branch resulting in conflicting yield "
"states found in generalized accessor");
}
}
}
/// The entry point to the transformation.
void run() override {
auto *fun = getFunction();
if (fun->getLoweredFunctionType()->getCoroutineKind() !=
SILCoroutineKind::YieldOnce)
return;
diagnoseYieldOnceUsage(*fun);
}
};
} // end anonymous namespace
SILTransform *swift::createYieldOnceCheck() {
return new YieldOnceCheck();
}
|