1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
|
//===--- SILCombinerApplyVisitors.cpp -------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-combine"
#include "SILCombiner.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Range.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/Existential.h"
#include "swift/SILOptimizer/Utils/KeyPathProjector.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include <utility>
using namespace swift;
using namespace swift::PatternMatch;
STATISTIC(NumOptimizedKeypaths, "Number of optimized keypath instructions");
/// Remove pointless reabstraction thunk closures.
/// partial_apply %reabstraction_thunk_typeAtoB(
/// partial_apply %reabstraction_thunk_typeBtoA %closure_typeB))
/// ->
/// %closure_typeB
static bool foldInverseReabstractionThunks(PartialApplyInst *PAI,
SILCombiner *Combiner) {
auto PAIArg = isPartialApplyOfReabstractionThunk(PAI);
if (!PAIArg)
return false;
auto *PAI2 = dyn_cast<PartialApplyInst>(PAIArg);
if (!PAI2)
return false;
if (!hasOneNonDebugUse(PAI2))
return false;
auto PAI2Arg = isPartialApplyOfReabstractionThunk(PAI2);
if (!PAI2Arg)
return false;
// The types must match.
if (PAI->getType() != PAI2->getArgument(0)->getType())
return false;
// Replace the partial_apply(partial_apply(X)) by X and remove the
// partial_applies.
Combiner->replaceInstUsesWith(*PAI, PAI2->getArgument(0));
Combiner->eraseInstFromFunction(*PAI);
assert(onlyHaveDebugUses(PAI2) && "Should not have any uses");
Combiner->eraseInstFromFunction(*PAI2);
return true;
}
SILInstruction *SILCombiner::visitPartialApplyInst(PartialApplyInst *pai) {
// partial_apply without any substitutions or arguments is just a
// thin_to_thick_function. thin_to_thick_function supports only thin operands.
if (!pai->hasSubstitutions() && (pai->getNumArguments() == 0) &&
pai->getSubstCalleeType()->getRepresentation() ==
SILFunctionTypeRepresentation::Thin) {
if (!pai->isOnStack())
return Builder.createThinToThickFunction(pai->getLoc(), pai->getCallee(),
pai->getType());
// Remove dealloc_stack of partial_apply [stack].
// Iterating while delete use a copy.
SmallVector<Operand *, 8> uses(pai->getUses());
for (auto *use : uses)
if (auto *dealloc = dyn_cast<DeallocStackInst>(use->getUser()))
eraseInstFromFunction(*dealloc);
auto *thinToThick = Builder.createThinToThickFunction(
pai->getLoc(), pai->getCallee(), pai->getType());
replaceInstUsesWith(*pai, thinToThick);
eraseInstFromFunction(*pai);
return nullptr;
}
// partial_apply %reabstraction_thunk_typeAtoB(
// partial_apply %reabstraction_thunk_typeBtoA %closure_typeB))
// -> %closure_typeB
if (foldInverseReabstractionThunks(pai, this))
return nullptr;
bool argsAreKeptAlive = tryOptimizeApplyOfPartialApply(
pai, Builder.getBuilderContext(), getInstModCallbacks());
if (argsAreKeptAlive)
invalidatedStackNesting = true;
// Try to delete the partial_apply.
// In case it became dead because of tryOptimizeApplyOfPartialApply, we don't
// need to copy all arguments again (to extend their lifetimes), because it
// was already done in tryOptimizeApplyOfPartialApply.
if (tryDeleteDeadClosure(pai, getInstModCallbacks(), !argsAreKeptAlive))
invalidatedStackNesting = true;
return nullptr;
}
SILInstruction *
SILCombiner::optimizeApplyOfConvertFunctionInst(FullApplySite AI,
ConvertFunctionInst *CFI) {
// We only handle simplification of static function references. If we don't
// have one, bail.
SILValue funcOper = CFI->getOperand();
if (auto *TTI = dyn_cast<ThinToThickFunctionInst>(funcOper))
funcOper = TTI->getOperand();
if (!isa<FunctionRefInst>(funcOper) &&
// Optimizing partial_apply will then enable the partial_apply -> apply peephole.
!isa<PartialApplyInst>(funcOper))
return nullptr;
// Grab our relevant callee types...
CanSILFunctionType SubstCalleeTy = AI.getSubstCalleeType();
auto ConvertCalleeTy = funcOper->getType().castTo<SILFunctionType>();
// ... and make sure they have no unsubstituted generics. If they do, bail.
if (SubstCalleeTy->hasArchetype() || ConvertCalleeTy->hasArchetype())
return nullptr;
// Ok, we can now perform our transformation. Grab AI's operands and the
// relevant types from the ConvertFunction function type and AI.
Builder.setCurrentDebugScope(AI.getDebugScope());
OperandValueArrayRef Ops = AI.getArguments();
SILFunctionConventions substConventions(SubstCalleeTy, CFI->getModule());
SILFunctionConventions convertConventions(ConvertCalleeTy, CFI->getModule());
auto context = AI.getFunction()->getTypeExpansionContext();
auto oldOpRetTypes = substConventions.getIndirectSILResultTypes(context);
auto newOpRetTypes = convertConventions.getIndirectSILResultTypes(context);
auto oldIndirectErrorResultType =
substConventions.getIndirectErrorResultType(context);
auto newIndirectErrorResultType =
convertConventions.getIndirectErrorResultType(context);
auto oldOpParamTypes = substConventions.getParameterSILTypes(context);
auto newOpParamTypes = convertConventions.getParameterSILTypes(context);
llvm::SmallVector<SILValue, 8> Args;
auto convertOp = [&](SILValue Op, SILType OldOpType, SILType NewOpType) {
// Convert function takes refs to refs, address to addresses, and leaves
// other types alone.
if (OldOpType.isAddress()) {
assert(NewOpType.isAddress() && "Addresses should map to addresses.");
auto UAC = Builder.createUncheckedAddrCast(AI.getLoc(), Op, NewOpType);
Args.push_back(UAC);
} else if (OldOpType.getASTType() != NewOpType.getASTType()) {
auto URC =
Builder.createUncheckedForwardingCast(AI.getLoc(), Op, NewOpType);
Args.push_back(URC);
} else {
Args.push_back(Op);
}
};
unsigned OpI = 0;
auto newRetI = newOpRetTypes.begin();
auto oldRetI = oldOpRetTypes.begin();
for (auto e = newOpRetTypes.end(); newRetI != e;
++OpI, ++newRetI, ++oldRetI) {
convertOp(Ops[OpI], *oldRetI, *newRetI);
}
if (oldIndirectErrorResultType) {
assert(newIndirectErrorResultType);
convertOp(Ops[OpI], oldIndirectErrorResultType, newIndirectErrorResultType);
++OpI;
}
auto newParamI = newOpParamTypes.begin();
auto oldParamI = oldOpParamTypes.begin();
for (auto e = newOpParamTypes.end(); newParamI != e;
++OpI, ++newParamI, ++oldParamI) {
convertOp(Ops[OpI], *oldParamI, *newParamI);
}
// Convert the direct results if they changed.
auto oldResultTy = SubstCalleeTy
->getDirectFormalResultsType(AI.getModule(),
AI.getFunction()->getTypeExpansionContext());
auto newResultTy = ConvertCalleeTy
->getDirectFormalResultsType(AI.getModule(),
AI.getFunction()->getTypeExpansionContext());
// Create the new apply inst.
if (auto *TAI = dyn_cast<TryApplyInst>(AI)) {
// If the results need to change, create a new landing block to do that
// conversion.
auto normalBB = TAI->getNormalBB();
if (oldResultTy != newResultTy) {
normalBB = AI.getFunction()->createBasicBlockBefore(TAI->getNormalBB());
Builder.setInsertionPoint(normalBB);
SmallVector<SILValue, 4> branchArgs;
auto oldOpResultTypes = substConventions.getDirectSILResultTypes(context);
auto newOpResultTypes = convertConventions.getDirectSILResultTypes(context);
auto oldRetI = oldOpResultTypes.begin();
auto newRetI = newOpResultTypes.begin();
auto origArgs = TAI->getNormalBB()->getArguments();
auto origArgI = origArgs.begin();
for (auto e = newOpResultTypes.end(); newRetI != e;
++oldRetI, ++newRetI, ++origArgI) {
auto arg = normalBB->createPhiArgument(*newRetI, (*origArgI)->getOwnershipKind());
auto converted =
Builder.createUncheckedForwardingCast(AI.getLoc(), arg, *oldRetI);
branchArgs.push_back(converted);
}
Builder.createBranch(AI.getLoc(), TAI->getNormalBB(), branchArgs);
}
return Builder.createTryApply(AI.getLoc(), funcOper, SubstitutionMap(), Args,
normalBB, TAI->getErrorBB(),
TAI->getApplyOptions());
}
// Match the throwing bit of the underlying function_ref. We assume that if
// we got this far it is legal to perform the transformation (since
// otherwise, we would be creating malformed SIL).
ApplyOptions Options = AI.getApplyOptions();
Options -= ApplyFlags::DoesNotThrow;
if (funcOper->getType().castTo<SILFunctionType>()->hasErrorResult())
Options |= ApplyFlags::DoesNotThrow;
ApplyInst *NAI = Builder.createApply(AI.getLoc(), funcOper, SubstitutionMap(),
Args, Options);
SILInstruction *result = NAI;
if (oldResultTy != newResultTy) {
result =
Builder.createUncheckedForwardingCast(AI.getLoc(), NAI, oldResultTy);
}
return result;
}
/// Try to optimize a keypath application with an apply instruction.
///
/// Replaces (simplified SIL):
/// %kp = keypath ...
/// apply %keypath_runtime_function(%addr, %kp, %root_object)
/// with:
/// %addr = struct_element_addr/ref_element_addr %root_object
/// ...
/// load/store %addr
bool swift::tryOptimizeKeypathApplication(ApplyInst *AI,
SILFunction *callee, SILBuilder Builder) {
if (AI->getNumArguments() != 3)
return false;
SILValue keyPath, rootAddr, valueAddr;
bool isSet = false;
if (callee->getName() == "swift_setAtWritableKeyPath" ||
callee->getName() == "swift_setAtReferenceWritableKeyPath") {
keyPath = AI->getArgument(1);
rootAddr = AI->getArgument(0);
valueAddr = AI->getArgument(2);
isSet = true;
} else if (callee->getName() == "swift_getAtKeyPath") {
keyPath = AI->getArgument(2);
rootAddr = AI->getArgument(1);
valueAddr = AI->getArgument(0);
} else {
return false;
}
auto projector = KeyPathProjector::create(keyPath, rootAddr,
AI->getLoc(), Builder);
if (!projector)
return false;
KeyPathProjector::AccessType accessType;
if (isSet) accessType = KeyPathProjector::AccessType::Set;
else accessType = KeyPathProjector::AccessType::Get;
projector->project(accessType, [&](SILValue projectedAddr) {
if (isSet) {
Builder.createCopyAddr(AI->getLoc(), valueAddr, projectedAddr,
IsTake, IsInitialization);
} else {
Builder.createCopyAddr(AI->getLoc(), projectedAddr, valueAddr,
IsNotTake, IsInitialization);
}
});
++NumOptimizedKeypaths;
return true;
}
/// Replaces a call of the getter of AnyKeyPath._storedInlineOffset with a
/// "constant" offset, in case of a keypath literal.
///
/// "Constant" offset means a series of struct_element_addr and
/// tuple_element_addr instructions with a 0-pointer as base address.
/// These instructions can then be lowered to "real" constants in IRGen for
/// concrete types, or to metatype offset lookups for generic or resilient types.
///
/// Replaces:
/// %kp = keypath ...
/// %offset = apply %_storedInlineOffset_method(%kp)
/// with:
/// %zero = integer_literal $Builtin.Word, 0
/// %null_ptr = unchecked_trivial_bit_cast %zero to $Builtin.RawPointer
/// %null_addr = pointer_to_address %null_ptr
/// %projected_addr = struct_element_addr %null_addr
/// ... // other address projections
/// %offset_ptr = address_to_pointer %projected_addr
/// %offset_builtin_int = unchecked_trivial_bit_cast %offset_ptr
/// %offset_int = struct $Int (%offset_builtin_int)
/// %offset = enum $Optional<Int>, #Optional.some!enumelt, %offset_int
bool swift::tryOptimizeKeypathOffsetOf(ApplyInst *AI,
FuncDecl *calleeFn,
KeyPathInst *kp, SILBuilder Builder) {
auto *accessor = dyn_cast<AccessorDecl>(calleeFn);
if (!accessor || !accessor->isGetter())
return false;
AbstractStorageDecl *storage = accessor->getStorage();
DeclName name = storage->getName();
if (!name.isSimpleName() ||
(name.getBaseIdentifier().str() != "_storedInlineOffset"))
return false;
KeyPathPattern *pattern = kp->getPattern();
SubstitutionMap patternSubs = kp->getSubstitutions();
SILFunction *f = AI->getFunction();
SILType rootTy = f->getLoweredType(Lowering::AbstractionPattern::getOpaque(),
pattern->getRootType().subst(patternSubs)->getCanonicalType());
SILType parentTy = rootTy;
// First check if _storedInlineOffset would return an offset or nil. Basically
// only stored struct and tuple elements produce an offset. Everything else
// (e.g. computed properties, class properties) result in nil.
bool hasOffset = true;
for (const KeyPathPatternComponent &component : pattern->getComponents()) {
switch (component.getKind()) {
case KeyPathPatternComponent::Kind::StoredProperty: {
// Handle the special case of C tail-allocated arrays. IRGen would
// generate an undef offset for struct_element_addr of C tail-allocated
// arrays.
VarDecl *propDecl = component.getStoredPropertyDecl();
if (propDecl->hasClangNode() && propDecl->getInterfaceType()->isVoid())
return false;
if (!parentTy.getStructOrBoundGenericStruct())
hasOffset = false;
break;
}
case KeyPathPatternComponent::Kind::TupleElement:
break;
case KeyPathPatternComponent::Kind::GettableProperty:
case KeyPathPatternComponent::Kind::SettableProperty:
// We cannot predict the offset of fields in resilient types, because it's
// unknown if a resilient field is a computed or stored property.
if (component.getExternalDecl())
return false;
hasOffset = false;
break;
case KeyPathPatternComponent::Kind::OptionalChain:
case KeyPathPatternComponent::Kind::OptionalForce:
case KeyPathPatternComponent::Kind::OptionalWrap:
hasOffset = false;
break;
}
parentTy = f->getLoweredType(Lowering::AbstractionPattern::getOpaque(),
component.getComponentType());
}
SILLocation loc = AI->getLoc();
SILValue result;
if (hasOffset) {
SILType rootAddrTy = rootTy.getAddressType();
SILValue rootAddr = Builder.createBaseAddrForOffset(loc, rootAddrTy);
auto projector = KeyPathProjector::create(kp, rootAddr, loc, Builder);
if (!projector)
return false;
// Create the address projections of the keypath.
SILType ptrType = SILType::getRawPointerType(Builder.getASTContext());
SILValue offsetPtr;
projector->project(KeyPathProjector::AccessType::Get, [&](SILValue addr) {
offsetPtr = Builder.createAddressToPointer(loc, addr, ptrType,
/*needsStackProtection=*/ false);
});
// The result of the _storedInlineOffset call should be Optional<Int>. If
// not, something is wrong with the stdlib. Anyway, if it's not like we
// expect, bail.
SILType intType = AI->getType().getOptionalObjectType();
if (!intType)
return false;
StructDecl *intDecl = intType.getStructOrBoundGenericStruct();
if (!intDecl || intDecl->getStoredProperties().size() != 1)
return false;
VarDecl *member = intDecl->getStoredProperties()[0];
CanType builtinIntTy = member->getInterfaceType()->getCanonicalType();
if (!isa<BuiltinIntegerType>(builtinIntTy))
return false;
// Convert the projected address back to an optional integer.
SILValue offset = Builder.createUncheckedReinterpretCast(
loc, offsetPtr, SILType::getPrimitiveObjectType(builtinIntTy));
SILValue offsetInt = Builder.createStruct(loc, intType, { offset });
result = Builder.createOptionalSome(loc, offsetInt, AI->getType());
} else {
// The keypath has no offset.
result = Builder.createOptionalNone(loc, AI->getType());
}
AI->replaceAllUsesWith(result);
++NumOptimizedKeypaths;
return true;
}
/// Try to optimize a keypath KVC string access on a literal key path.
///
/// Replace:
/// %kp = keypath (objc "blah", ...)
/// %string = apply %keypath_kvcString_method(%kp)
/// With:
/// %string = string_literal "blah"
bool swift::tryOptimizeKeypathKVCString(ApplyInst *AI,
FuncDecl *calleeFn,
KeyPathInst *kp, SILBuilder Builder) {
if (!calleeFn->getAttrs()
.hasSemanticsAttr(semantics::KEYPATH_KVC_KEY_PATH_STRING))
return false;
// Method should return `String?`
auto &C = calleeFn->getASTContext();
auto objTy = AI->getType().getOptionalObjectType();
if (!objTy || !objTy.getASTType()->isString())
return false;
auto objcString = kp->getPattern()->getObjCString();
SILValue literalValue;
if (objcString.empty()) {
// Replace with a nil String value.
literalValue = Builder.createEnum(AI->getLoc(), SILValue(),
C.getOptionalNoneDecl(),
AI->getType());
} else {
// Construct a literal String from the ObjC string.
auto init = C.getStringBuiltinInitDecl(C.getStringDecl());
if (!init)
return false;
auto initRef = SILDeclRef(init.getDecl(), SILDeclRef::Kind::Allocator);
auto initFn = AI->getModule().loadFunction(initRef.mangle(),
SILModule::LinkingMode::LinkAll);
if (!initFn)
return false;
auto stringValue = Builder.createStringLiteral(AI->getLoc(), objcString,
StringLiteralInst::Encoding::UTF8);
auto stringLen = Builder.createIntegerLiteral(AI->getLoc(),
SILType::getBuiltinWordType(C),
objcString.size());
auto isAscii = Builder.createIntegerLiteral(AI->getLoc(),
SILType::getBuiltinIntegerType(1, C),
C.isASCIIString(objcString));
auto metaTy =
CanMetatypeType::get(objTy.getASTType(), MetatypeRepresentation::Thin);
auto self = Builder.createMetatype(AI->getLoc(),
SILType::getPrimitiveObjectType(metaTy));
auto initFnRef = Builder.createFunctionRef(AI->getLoc(), initFn);
auto string = Builder.createApply(AI->getLoc(),
initFnRef, {},
{stringValue, stringLen, isAscii, self});
literalValue = Builder.createEnum(AI->getLoc(), string,
C.getOptionalSomeDecl(), AI->getType());
}
AI->replaceAllUsesWith(literalValue);
++NumOptimizedKeypaths;
return true;
}
bool swift::tryOptimizeKeypath(ApplyInst *AI, SILBuilder Builder) {
if (SILFunction *callee = AI->getReferencedFunctionOrNull()) {
return tryOptimizeKeypathApplication(AI, callee, Builder);
}
// Try optimize keypath method calls.
auto *methodInst = dyn_cast<ClassMethodInst>(AI->getCallee());
if (!methodInst)
return false;
if (AI->getNumArguments() != 1) {
return false;
}
SILDeclRef callee = methodInst->getMember();
if (!callee.hasDecl()) {
return false;
}
auto *calleeFn = dyn_cast<FuncDecl>(callee.getDecl());
if (!calleeFn)
return false;
KeyPathInst *kp = KeyPathProjector::getLiteralKeyPath(AI->getArgument(0));
if (!kp || !kp->hasPattern())
return false;
if (tryOptimizeKeypathOffsetOf(AI, calleeFn, kp, Builder))
return true;
if (tryOptimizeKeypathKVCString(AI, calleeFn, kp, Builder))
return true;
return false;
}
/// Try to optimize a keypath application with an apply instruction.
///
/// Replaces (simplified SIL):
/// %kp = keypath ...
/// %inout_addr = begin_apply %keypath_runtime_function(%kp, %root_object)
/// // use %inout_addr
/// end_apply
/// with:
/// %addr = struct_element_addr/ref_element_addr %root_object
/// // use %inout_addr
bool SILCombiner::tryOptimizeInoutKeypath(BeginApplyInst *AI) {
// Disable in OSSA because KeyPathProjector is not fully ported
if (AI->getFunction()->hasOwnership())
return false;
SILFunction *callee = AI->getReferencedFunctionOrNull();
if (!callee)
return false;
if (AI->getNumArguments() != 2)
return false;
SILValue keyPath = AI->getArgument(1);
SILValue rootAddr = AI->getArgument(0);
bool isModify = false;
if (callee->getName() == "swift_modifyAtWritableKeyPath" ||
callee->getName() == "swift_modifyAtReferenceWritableKeyPath") {
isModify = true;
} else if (callee->getName() != "swift_readAtKeyPath") {
return false;
}
SILInstructionResultArray yields = AI->getYieldedValues();
if (yields.size() != 1)
return false;
SILValue valueAddr = yields[0];
Operand *AIUse = AI->getTokenResult()->getSingleUse();
if (!AIUse)
return false;
EndApplyInst *endApply = dyn_cast<EndApplyInst>(AIUse->getUser());
if (!endApply)
return false;
auto projector = KeyPathProjector::create(keyPath, rootAddr,
AI->getLoc(), Builder);
if (!projector)
return false;
KeyPathProjector::AccessType accessType;
if (isModify) accessType = KeyPathProjector::AccessType::Modify;
else accessType = KeyPathProjector::AccessType::Get;
projector->project(accessType, [&](SILValue projectedAddr) {
// Replace the projected address.
valueAddr->replaceAllUsesWith(projectedAddr);
// Skip to the end of the key path application before cleaning up.
Builder.setInsertionPoint(endApply);
});
invalidatedStackNesting = true;
eraseInstFromFunction(*endApply);
eraseInstFromFunction(*AI);
++NumOptimizedKeypaths;
return true;
}
bool
SILCombiner::recursivelyCollectARCUsers(UserListTy &Uses, ValueBase *Value) {
// FIXME: We could probably optimize this case too
if (auto *AI = dyn_cast<ApplyInst>(Value))
if (AI->hasIndirectResults())
return false;
for (auto *Use : Value->getUses()) {
SILInstruction *Inst = Use->getUser();
if (isa<RefCountingInst>(Inst) || isa<DestroyValueInst>(Inst) ||
isa<DebugValueInst>(Inst) || isa<EndBorrowInst>(Inst)) {
Uses.push_back(Inst);
continue;
}
if (isa<TupleExtractInst>(Inst) || isa<StructExtractInst>(Inst) ||
isa<CopyValueInst>(Inst) || isa<BeginBorrowInst>(Inst) ||
isa<PointerToAddressInst>(Inst)) {
Uses.push_back(Inst);
if (recursivelyCollectARCUsers(Uses, cast<SingleValueInstruction>(Inst)))
continue;
}
return false;
}
return true;
}
bool SILCombiner::eraseApply(FullApplySite FAS, const UserListTy &Users) {
// Compute the places where we have to insert release-instructions for the
// owned arguments. This must not be done before the result of the
// apply is destroyed. Therefore we compute the lifetime of the apply-result.
// TODO: this is not required anymore when we have ownership SIL. But with
// the current SIL it can happen that the retain of a parameter is moved
// _after_ the apply.
// When we have ownership SIL we can just destroy the parameters at the apply
// location.
ValueLifetimeAnalysis VLA(FAS.getInstruction(), Users);
ValueLifetimeAnalysis::Frontier Frontier;
if (Users.empty()) {
// If the call does not have any ARC-uses or if there is no return value at
// all, we insert the argument release instructions right before the call.
Frontier.push_back(FAS.getInstruction());
} else {
if (!VLA.computeFrontier(Frontier, ValueLifetimeAnalysis::DontModifyCFG))
return false;
// As we are extending the lifetimes of owned parameters, we have to make
// sure that no dealloc_ref or dealloc_stack_ref instructions are
// within this extended liferange.
// It could be that the dealloc_ref is deallocating a parameter and then
// we would have a release after the dealloc.
if (VLA.containsDeallocRef(Frontier))
return false;
}
// Release and destroy any owned or in-arguments.
auto FuncType = FAS.getOrigCalleeType();
assert(FuncType->getParameters().size() == FAS.getNumArguments() &&
"mismatching number of arguments");
for (SILInstruction *FrontierInst : Frontier) {
Builder.setInsertionPoint(FrontierInst);
for (int i = 0, e = FAS.getNumArguments(); i < e; ++i) {
SILParameterInfo PI = FuncType->getParameters()[i];
auto Arg = FAS.getArgument(i);
switch (PI.getConvention()) {
case ParameterConvention::Indirect_In:
case ParameterConvention::Direct_Owned:
case ParameterConvention::Pack_Owned:
Builder.emitDestroyOperation(FAS.getLoc(), Arg);
break;
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Inout:
break;
}
}
}
// Erase all of the reference counting instructions (in reverse order to have
// no dangling uses).
for (auto rit = Users.rbegin(), re = Users.rend(); rit != re; ++rit)
eraseInstFromFunction(**rit);
// And the Apply itself.
eraseInstFromFunction(*FAS.getInstruction());
return true;
}
/// This routine replaces the old witness method inst with a new one.
void SILCombiner::replaceWitnessMethodInst(
WitnessMethodInst *WMI, SILBuilderContext &BuilderCtx, CanType ConcreteType,
const ProtocolConformanceRef ConformanceRef) {
SILBuilderWithScope WMIBuilder(WMI, BuilderCtx);
auto *NewWMI = WMIBuilder.createWitnessMethod(
WMI->getLoc(), ConcreteType, ConformanceRef, WMI->getMember(),
WMI->getType());
WMI->replaceAllUsesWith(NewWMI);
if (WMI->use_empty())
eraseInstFromFunction(*WMI);
}
// This function determines concrete type of an opened existential argument
// using ProtocolConformanceAnalysis. The concrete type of the argument can be a
// class, struct, or an enum.
//
// If some ConcreteOpenedExistentialInfo is returned, then new cast instructions
// have already been added to Builder's tracking list. If the caller can't make
// real progress then it must reset the Builder.
std::optional<ConcreteOpenedExistentialInfo>
SILCombiner::buildConcreteOpenedExistentialInfoFromSoleConformingType(
Operand &ArgOperand) {
SILInstruction *AI = ArgOperand.getUser();
SILModule &M = AI->getModule();
SILFunction *F = AI->getFunction();
// SoleConformingType is only applicable in whole-module compilation.
if (!M.isWholeModule())
return std::nullopt;
// Determine the protocol.
ProtocolDecl *PD = nullptr;
WitnessMethodInst *WMI = nullptr;
FullApplySite FAS = FullApplySite::isa(AI);
if (FAS && (WMI = dyn_cast<WitnessMethodInst>(FAS.getCallee())) &&
(FAS.getSelfArgumentOperand().get() == ArgOperand.get())) {
// If the witness method mutates self, we cannot replace self.
//
// FIXME: Remove this out-dated check for mutating self. canReplaceCopiedArg
// is supposed to handle this case.
if (FAS.getOrigCalleeType()->getSelfParameter().isIndirectMutating())
return std::nullopt;
PD = WMI->getLookupProtocol();
} else {
auto ArgType = ArgOperand.get()->getType();
auto SwiftArgType = ArgType.getASTType();
/// If the argtype is an opened existential conforming to a protocol type
/// and that the protocol type has a sole conformance, then we can propagate
/// concrete type for it as well.
ArchetypeType *archetypeTy;
if (SwiftArgType->isOpenedExistential() &&
(archetypeTy = dyn_cast<ArchetypeType>(SwiftArgType)) &&
(archetypeTy->getConformsTo().size() == 1)) {
PD = archetypeTy->getConformsTo()[0];
} else if (ArgType.isExistentialType() && !ArgType.isAnyObject() &&
!SwiftArgType->isAny()) {
PD = dyn_cast_or_null<ProtocolDecl>(SwiftArgType->getAnyNominal());
}
}
if (!PD)
return std::nullopt;
// Determine the sole conforming type.
CanType ConcreteType;
if (!PCA->getSoleConformingType(PD, CHA, ConcreteType))
return std::nullopt;
// Determine OpenedArchetypeDef and SubstitutionMap.
ConcreteOpenedExistentialInfo COAI(ArgOperand, ConcreteType, PD);
if (!COAI.CEI)
return std::nullopt;
const OpenedArchetypeInfo &OAI = COAI.OAI;
ConcreteExistentialInfo &SoleCEI = *COAI.CEI;
assert(SoleCEI.isValid());
if (SoleCEI.ConcreteValue)
return COAI;
// Create SIL type for the concrete type.
SILType concreteSILType = F->getLoweredType(ConcreteType);
// Prepare the code by adding UncheckedCast instructions that cast opened
// existentials to concrete types. Set the ConcreteValue of CEI.
if (auto *OER = dyn_cast<OpenExistentialRefInst>(OAI.OpenedArchetypeValue)) {
// If we have an owned open_existential_ref, we only optimize for now if our
// open_existential_ref has a single non-debug consuming use that is a
// destroy_value.
if (OER->getForwardingOwnershipKind() != OwnershipKind::Owned) {
// We use OER as the insertion point so that
SILBuilderWithScope b(std::next(OER->getIterator()), Builder);
auto loc = RegularLocation::getAutoGeneratedLocation();
SoleCEI.ConcreteValue =
b.createUncheckedRefCast(loc, OER, concreteSILType);
return COAI;
}
auto *consumingUse = OER->getSingleConsumingUse();
if (!consumingUse || !isa<DestroyValueInst>(consumingUse->getUser())) {
return std::nullopt;
}
// We use std::next(OER) as the insertion point so that we can reuse the
// destroy_value of consumingUse.
SILBuilderWithScope b(std::next(OER->getIterator()), Builder);
auto loc = RegularLocation::getAutoGeneratedLocation();
auto *uri = b.createUncheckedRefCast(loc, OER, concreteSILType);
SoleCEI.ConcreteValue = uri;
replaceInstUsesWith(*OER, uri);
return COAI;
}
if (auto *OEA = dyn_cast<OpenExistentialAddrInst>(OAI.OpenedArchetypeValue)) {
// Bail if ConcreteSILType is not the same SILType as the type stored in the
// existential after maximal reabstraction.
auto abstractionPattern = Lowering::AbstractionPattern::getOpaque();
auto abstractTy = F->getLoweredType(abstractionPattern, ConcreteType);
if (abstractTy != concreteSILType)
return std::nullopt;
SoleCEI.ConcreteValue =
Builder.createUncheckedAddrCast(
OEA->getLoc(), OEA, concreteSILType.getAddressType());
return COAI;
}
// Bail if OpenArchetypeInfo recognizes any additional opened archetype
// producers. This shouldn't be hit currently because metatypes don't
// conform to protocols.
return std::nullopt;
}
// This function builds a ConcreteExistentialInfo by first following the data
// flow chain from the ArgOperand. Otherwise, we check if the operand is of
// protocol type that conforms to a single concrete type.
std::optional<ConcreteOpenedExistentialInfo>
SILCombiner::buildConcreteOpenedExistentialInfo(Operand &ArgOperand) {
// Build a ConcreteOpenedExistentialInfo following the data flow chain of the
// ArgOperand through the open_existential backward to an init_existential.
ConcreteOpenedExistentialInfo COEI(ArgOperand);
if (COEI.CEI)
return COEI;
// Use SoleConformingType information.
return buildConcreteOpenedExistentialInfoFromSoleConformingType(ArgOperand);
}
// Build ConcreteExistentialInfo for every existential argument of an Apply
// instruction including Self.
void SILCombiner::buildConcreteOpenedExistentialInfos(
FullApplySite Apply,
llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> &COEIs,
SILBuilderContext &BuilderCtx) {
for (unsigned ArgIdx = 0, e = Apply.getNumArguments(); ArgIdx < e;
++ArgIdx) {
auto ArgASTType = Apply.getArgument(ArgIdx)->getType().getASTType();
if (!ArgASTType->hasArchetype())
continue;
auto OptionalCOEI =
buildConcreteOpenedExistentialInfo(Apply.getArgumentOperands()[ArgIdx]);
if (!OptionalCOEI.has_value())
continue;
auto COEI = OptionalCOEI.value();
assert(COEI.isValid());
COEIs.try_emplace(ArgIdx, COEI);
}
}
/// Given an Apply and an argument value produced by InitExistentialAddrInst,
/// return true if the argument can be replaced by a copy of its value.
///
/// FIXME: remove this helper when we can assume SIL opaque values.
static bool canReplaceCopiedArg(FullApplySite Apply, SILValue Arg,
DominanceAnalysis *DA, unsigned ArgIdx) {
auto *IEA = dyn_cast<InitExistentialAddrInst>(Arg);
// Only init_existential_addr may be copied.
if (!IEA)
return false;
auto *DT = DA->get(Apply.getFunction());
auto *AI = Apply.getInstruction();
SILValue existentialAddr = IEA->getOperand();
// If we peeked through an InitEnumDataAddr or some such, then don't assume we
// can reuse the copied value. It's likely destroyed by
// UncheckedTakeEnumDataInst before the copy.
auto *ASI = dyn_cast<AllocStackInst>(existentialAddr);
if (!ASI)
return false;
// Return true only if the given value is guaranteed to be initialized across
// the given call site.
//
// It's possible for an address to be initialized/deinitialized/reinitialized.
// Rather than keeping track of liveness, we very conservatively check that
// all deinitialization occurs after the call.
auto isDestroy = [](Operand *use) {
switch (use->getUser()->getKind()) {
default:
return false;
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::DeinitExistentialAddrInst:
return true;
case SILInstructionKind::CopyAddrInst: {
auto *copy = cast<CopyAddrInst>(use->getUser());
return copy->getSrc() == use->get() && copy->isTakeOfSrc();
}
}
};
for (auto use : existentialAddr->getUses()) {
SILInstruction *user = use->getUser();
if (isDestroy(use)) {
if (!DT->properlyDominates(AI, user))
return false;
} else {
// The caller has to guarantee that there are no other instructions which
// use the address. This is done in findInitExistential called from
// the constructor of ConcreteExistentialInfo.
assert(isa<CopyAddrInst>(user) || isa<InitExistentialAddrInst>(user) ||
isa<OpenExistentialAddrInst>(user) ||
isa<DeallocStackInst>(user) ||
isa<ApplyInst>(user) || isa<TryApplyInst>(user) ||
user->isDebugInstruction() && "Unexpected instruction");
}
}
return true;
}
/// Determine if the result type or argument types of the given apply, except
/// for the argument at \p SkipArgIdx, contain an opened archetype rooted
/// on \p RootOA.
static bool applyInvolvesOpenedArchetypeWithRoot(FullApplySite Apply,
OpenedArchetypeType *RootOA,
unsigned SkipArgIdx) {
if (Apply.getType().getASTType()->hasOpenedExistentialWithRoot(RootOA)) {
return true;
}
const auto NumApplyArgs = Apply.getNumArguments();
for (unsigned Idx = 0; Idx < NumApplyArgs; ++Idx) {
if (Idx == SkipArgIdx)
continue;
if (Apply.getArgument(Idx)
->getType()
.getASTType()
->hasOpenedExistentialWithRoot(RootOA)) {
return true;
}
}
return false;
}
// Check the legal conditions under which a Arg parameter (specified as ArgIdx)
// can be replaced with a concrete type. Concrete type info is passed as CEI
// argument.
bool SILCombiner::canReplaceArg(FullApplySite Apply,
const OpenedArchetypeInfo &OAI,
const ConcreteExistentialInfo &CEI,
unsigned ArgIdx) {
// Don't specialize apply instructions if the result type references
// OpenedArchetype, because this optimization does not know how to substitute
// types in the users of this apply. In the function type substitution below,
// all references to OpenedArchetype will be substituted. So walk the type to
// find all possible references, such as returning Optional<OpenedArchetype>.
// The same holds for other arguments or indirect result that refer to the
// OpenedArchetype, because the following optimization will rewrite only the
// argument at ArgIdx.
//
// Note that the language does not allow Self to occur in contravariant
// position. However, SIL does allow this and it can happen as a result of
// upstream transformations. Since this is bail-out logic, it must handle
// all verifiable SIL.
if (applyInvolvesOpenedArchetypeWithRoot(Apply, OAI.OpenedArchetype,
ArgIdx)) {
return false;
}
// If the convention is mutating, then the existential must have been
// initialized by copying the concrete value (regardless of whether
// CEI.isConcreteValueCopied is true). Replacing the existential address with
// the concrete address would result in mutation of the wrong object.
auto origConv = Apply.getOrigCalleeConv();
if (origConv.getParamInfoForSILArg(ArgIdx).isIndirectMutating())
return false;
// If either the initialized existential or opened existential was copied,
// then check that the original value can be passed as the new argument.
if (CEI.isConcreteValueCopied
&& (!CEI.ConcreteValue
|| !canReplaceCopiedArg(Apply, CEI.ConcreteValue, DA, ArgIdx))) {
return false;
}
// It is safe to replace Arg.
return true;
}
/// Track temporary copies required for argument substitution when rewriting an
/// apply's argument types from an opened existential types to concrete types.
///
/// This is relevant for non-mutating arguments that are consumed by the call
/// (@in or @owned convention).
struct ConcreteArgumentCopy {
SILValue origArg;
AllocStackInst *tempArg;
ConcreteArgumentCopy(SILValue origArg, AllocStackInst *tempArg)
: origArg(origArg), tempArg(tempArg) {
assert(origArg->getType().isAddress());
}
static std::optional<ConcreteArgumentCopy>
generate(const ConcreteExistentialInfo &existentialInfo, ApplySite apply,
unsigned argIdx, SILBuilderContext &builderCtx) {
SILParameterInfo paramInfo =
apply.getOrigCalleeConv().getParamInfoForSILArg(argIdx);
// Mutation should have been checked before we get this far.
assert(!paramInfo.isIndirectMutating()
&& "A mutated opened existential value can't be replaced");
if (!paramInfo.isConsumed())
return std::nullopt;
SILValue origArg = apply.getArgument(argIdx);
// TODO_sil_opaque: With SIL opaque values, a formally indirect argument
// may be passed as a SIL object. In this case, generate a copy_value for
// the new argument and a destroy_value for the old argument, as should
// also be done for owned references.
assert(origArg->getType().isAddress() == paramInfo.isFormalIndirect());
// If argument convention is direct, then the existential reference was
// originally consumed by the call. After substitution, the concrete
// reference will be consumed by the call. This maintains the correct
// reference count.
//
// FIXME_ownership: to maintain ownership SSA, generate a copy_value from
// the concrete reference for the new argument (record this copy as a
// union with tempArgCopy above). After emitting the apply, emit a
// destroy_value of the existential, which is no longer consumed by the
// call.
if (!paramInfo.isFormalIndirect())
return std::nullopt;
SILBuilderWithScope builder(apply.getInstruction(), builderCtx);
auto loc = apply.getLoc();
auto *asi =
builder.createAllocStack(loc, existentialInfo.ConcreteValue->getType());
// If the type is an address, simple copy it.
if (existentialInfo.ConcreteValue->getType().isAddress()) {
builder.createCopyAddr(loc, existentialInfo.ConcreteValue, asi, IsNotTake,
IsInitialization_t::IsInitialization);
} else {
// Otherwise, we probably got the value from the source of a store
// instruction so, create a store into the temporary argument.
auto copy =
builder.emitCopyValueOperation(loc, existentialInfo.ConcreteValue);
builder.emitStoreValueOperation(loc, copy, asi,
StoreOwnershipQualifier::Init);
}
return ConcreteArgumentCopy(origArg, asi);
}
};
SILValue SILCombiner::canCastArg(FullApplySite Apply,
const OpenedArchetypeInfo &OAI,
const ConcreteExistentialInfo &CEI,
unsigned ArgIdx) {
if (!CEI.ConcreteValue || CEI.ConcreteType->isOpenedExistential() ||
!CEI.ConcreteValue->getType().isAddress())
return SILValue();
// Don't specialize apply instructions if the result type references
// OpenedArchetype, because this optimization does not know how to substitute
// types in the users of this apply. In the function type substitution below,
// all references to OpenedArchetype will be substituted. So walk the type to
// find all possible references, such as returning Optional<OpenedArchetype>.
// The same holds for other arguments or indirect result that refer to the
// OpenedArchetype, because the following optimization will rewrite only the
// argument at ArgIdx.
//
// Note that the language does not allow Self to occur in contravariant
// position. However, SIL does allow this and it can happen as a result of
// upstream transformations. Since this is bail-out logic, it must handle
// all verifiable SIL.
if (applyInvolvesOpenedArchetypeWithRoot(Apply, OAI.OpenedArchetype,
ArgIdx)) {
return SILValue();
}
return Builder.createUncheckedAddrCast(
Apply.getLoc(), Apply.getArgument(ArgIdx), CEI.ConcreteValue->getType());
}
/// Rewrite the given method apply instruction in terms of the provided concrete
/// type information.
///
/// If the rewrite is successful, the original apply will be removed and the new
/// apply is returned. Otherwise, the original apply will not be removed and
/// nullptr is returned.
///
/// Creates a new apply instruction that uses the concrete type instead of the
/// existential type. Type substitution will be performed from all occurrences
/// of CEI.OpenedArchetype to the replacement type CEI.ConcreteType within the
/// applied function type. The single self argument of the apply will be
/// rewritten. This helps the devirtualizer to replace witness_method by
/// class_method instructions and then devirtualize.
///
/// Note that the substituted type, CEI.OpenedArchetype, is the same type as the
/// self argument for nonstatic methods, but for static methods self is the
/// metatype instead. For witness methods, CEI.OpenedArchetype is usually the
/// same as WMI->getLookupType() but differs in the unusual situation in which
/// the witness method is looked up using a different opened archetype.
///
/// FIXME: Protocol methods (witness or default) that return Self will be given
/// a new return type. This implementation fails to update the type signature of
/// SSA uses in those cases. Currently we bail out on methods that return Self.
SILInstruction *SILCombiner::createApplyWithConcreteType(
FullApplySite Apply,
const llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> &COAIs,
SILBuilderContext &BuilderCtx) {
// Ensure that the callee is polymorphic.
assert(Apply.getOrigCalleeType()->isPolymorphic());
// Create the new set of arguments to apply including their substitutions.
SubstitutionMap NewCallSubs = Apply.getSubstitutionMap();
SmallVector<SILValue, 8> NewArgs;
unsigned ArgIdx = 0;
// Push the indirect result arguments.
for (unsigned EndIdx = Apply.getSubstCalleeConv().getSILArgIndexOfFirstParam();
ArgIdx < EndIdx; ++ArgIdx) {
NewArgs.push_back(Apply.getArgument(ArgIdx));
}
// Transform the parameter arguments.
SmallVector<ConcreteArgumentCopy, 4> concreteArgCopies;
for (unsigned EndIdx = Apply.getNumArguments(); ArgIdx < EndIdx; ++ArgIdx) {
auto ArgIt = COAIs.find(ArgIdx);
if (ArgIt == COAIs.end()) {
// Use the old argument if it does not have a valid concrete existential.
NewArgs.push_back(Apply.getArgument(ArgIdx));
continue;
}
const OpenedArchetypeInfo &OAI = ArgIt->second.OAI;
const ConcreteExistentialInfo &CEI = *ArgIt->second.CEI;
assert(CEI.isValid());
// Check for Arg's concrete type propagation legality.
if (!canReplaceArg(Apply, OAI, CEI, ArgIdx)) {
// As on last fall-back try to cast the argument.
if (auto cast = canCastArg(Apply, OAI, CEI, ArgIdx)) {
NewArgs.push_back(cast);
// Form a new set of substitutions where the argument is
// replaced with a concrete type.
NewCallSubs = NewCallSubs.subst(
[&](SubstitutableType *type) -> Type {
if (type == OAI.OpenedArchetype)
return CEI.ConcreteType;
return type;
},
[&](CanType origTy, Type substTy,
ProtocolDecl *proto) -> ProtocolConformanceRef {
if (origTy->isEqual(OAI.OpenedArchetype)) {
assert(substTy->isEqual(CEI.ConcreteType));
// Do a conformance lookup on this witness requirement using the
// existential's conformances. The witness requirement may be a
// base type of the existential's requirements.
return CEI.lookupExistentialConformance(proto);
}
return ProtocolConformanceRef(proto);
});
continue;
}
// Otherwise, use the original argument.
NewArgs.push_back(Apply.getArgument(ArgIdx));
continue;
}
// Ensure that we have a concrete value to propagate.
assert(CEI.ConcreteValue);
auto argSub =
ConcreteArgumentCopy::generate(CEI, Apply, ArgIdx, BuilderCtx);
if (argSub) {
concreteArgCopies.push_back(*argSub);
NewArgs.push_back(argSub->tempArg);
} else {
NewArgs.push_back(CEI.ConcreteValue);
}
// Form a new set of substitutions where the argument is
// replaced with a concrete type.
NewCallSubs = NewCallSubs.subst(
[&](SubstitutableType *type) -> Type {
if (type == OAI.OpenedArchetype)
return CEI.ConcreteType;
return type;
},
[&](CanType origTy, Type substTy,
ProtocolDecl *proto) -> ProtocolConformanceRef {
if (origTy->isEqual(OAI.OpenedArchetype)) {
assert(substTy->isEqual(CEI.ConcreteType));
// Do a conformance lookup on this witness requirement using the
// existential's conformances. The witness requirement may be a
// base type of the existential's requirements.
return CEI.lookupExistentialConformance(proto);
}
return ProtocolConformanceRef(proto);
});
}
// We need to make sure that we can a) update Apply to use the new args and b)
// at least one argument has changed. If no arguments have changed, we need
// to return nullptr. Otherwise, we will have an infinite loop.
auto context = Apply.getFunction()->getTypeExpansionContext();
auto substTy = Apply.getCallee()
->getType()
.substGenericArgs(Apply.getModule(), NewCallSubs, context)
.getAs<SILFunctionType>();
SILFunctionConventions conv(substTy,
SILModuleConventions(Apply.getModule()));
bool canUpdateArgs = true;
bool madeUpdate = false;
for (unsigned index = 0; index < conv.getNumSILArguments(); ++index) {
// Make sure that *all* the arguments in both the new substitution function
// and our vector of new arguments have the same type.
canUpdateArgs &=
conv.getSILArgumentType(index, context) == NewArgs[index]->getType();
// Make sure that we have changed at least one argument.
madeUpdate |=
NewArgs[index]->getType() != Apply.getArgument(index)->getType();
}
// If we can't update the args (because of a type mismatch) or the args don't
// change, bail out by removing the instructions we've added and returning
// nullptr.
if (!canUpdateArgs || !madeUpdate) {
// Remove any new instructions created while attempting to optimize this
// apply. Since the apply was never rewritten, if they aren't removed here,
// they will be removed later as dead when visited by SILCombine, causing
// SILCombine to loop infinitely, creating and destroying the casts.
//
// Use a new deleter with no callbacks so we can pretend this never
// happened. Otherwise SILCombine will infinitely iterate. This works as
// long as the instructions in this tracking list were never added to the
// SILCombine Worklist.
InstructionDeleter deleter;
for (SILInstruction *inst : *Builder.getTrackingList()) {
deleter.trackIfDead(inst);
}
deleter.cleanupDeadInstructions();
Builder.getTrackingList()->clear();
return nullptr;
}
// Now create the new apply instruction.
SILBuilderWithScope ApplyBuilder(Apply.getInstruction(), BuilderCtx);
FullApplySite NewApply;
if (auto *TAI = dyn_cast<TryApplyInst>(Apply))
NewApply = ApplyBuilder.createTryApply(
Apply.getLoc(), Apply.getCallee(), NewCallSubs, NewArgs,
TAI->getNormalBB(), TAI->getErrorBB(),
TAI->getApplyOptions());
else
NewApply = ApplyBuilder.createApply(
Apply.getLoc(), Apply.getCallee(), NewCallSubs, NewArgs,
cast<ApplyInst>(Apply)->getApplyOptions());
if (auto NewAI = dyn_cast<ApplyInst>(NewApply))
replaceInstUsesWith(*cast<ApplyInst>(Apply.getInstruction()), NewAI);
auto nextI = std::next(NewApply.getInstruction()->getIterator());
eraseInstFromFunction(*Apply.getInstruction(), nextI);
// cleanup immediately after the call on all paths reachable from the call.
SmallVector<SILInstruction *, 2> cleanupPositions;
if (nextI != NewApply.getParent()->end())
cleanupPositions.push_back(&*nextI);
else {
for (auto &succ : NewApply.getParent()->getSuccessors())
cleanupPositions.push_back(&*succ.getBB()->begin());
}
for (SILInstruction *cleanupPos : cleanupPositions) {
// For any argument that was copied from the original value, destroy the old
// argument (was must have been previously consumed by the call) and
// deallocate the temporary copy.
SILBuilder cleanupBuilder(cleanupPos, BuilderCtx, NewApply.getDebugScope());
auto cleanupLoc = RegularLocation::getAutoGeneratedLocation();
for (ConcreteArgumentCopy &argCopy : llvm::reverse(concreteArgCopies)) {
cleanupBuilder.createDestroyAddr(cleanupLoc, argCopy.origArg);
cleanupBuilder.createDeallocStack(cleanupLoc, argCopy.tempArg);
}
}
return NewApply.getInstruction();
}
/// Rewrite a witness method's lookup type from an archetype to a concrete type.
/// Example:
/// %existential = alloc_stack $Protocol
/// %value = init_existential_addr %existential : $Concrete
/// copy_addr ... to %value
/// %opened = open_existential_addr %existential
/// %witness = witness_method $@opened(...) Protocol
/// apply %witness<$@opened(...) Protocol>(%opened)
///
/// ==> apply %witness<$Concrete>(%existential)
SILInstruction *
SILCombiner::propagateConcreteTypeOfInitExistential(FullApplySite Apply,
WitnessMethodInst *WMI) {
// We do not perform this optimization in OSSA. In OSSA, we will have opaque
// values we will redo this.
if (WMI->getFunction()->hasOwnership())
return nullptr;
// Check if it is legal to perform the propagation.
if (WMI->getConformance().isConcrete())
return nullptr;
// If the lookup type is not an opened existential type,
// it cannot be made more concrete.
if (!WMI->getLookupType()->isOpenedExistential())
return nullptr;
// Try to derive the concrete type and the related conformance of self and
// other existential arguments by searching either for a preceding
// init_existential or looking up sole conforming type.
//
// buildConcreteOpenedExistentialInfo takes a SILBuilderContext because it may
// insert an unchecked cast to the concrete type, and it tracks the definition
// of any opened archetype needed to use the concrete type.
SILBuilderContext BuilderCtx(Builder.getModule(), Builder.getTrackingList());
llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> COEIs;
buildConcreteOpenedExistentialInfos(Apply, COEIs, BuilderCtx);
// Bail, if no argument has a concrete existential to propagate.
if (COEIs.empty())
return nullptr;
auto SelfCOEIIt =
COEIs.find(Apply.getCalleeArgIndex(Apply.getSelfArgumentOperand()));
// If no SelfCOEI is found, then just update the Apply with new COEIs for
// other arguments.
if (SelfCOEIIt == COEIs.end())
return createApplyWithConcreteType(Apply, COEIs, BuilderCtx);
auto &SelfCOEI = SelfCOEIIt->second;
assert(SelfCOEI.isValid());
const ConcreteExistentialInfo &SelfCEI = *SelfCOEI.CEI;
assert(SelfCEI.isValid());
// Get the conformance of the init_existential type, which is passed as the
// self argument, on the witness' protocol.
ProtocolConformanceRef SelfConformance =
SelfCEI.lookupExistentialConformance(WMI->getLookupProtocol());
// Propagate the concrete type into a callee-operand, which is a
// witness_method instruction. It's ok to rewrite the witness method in terms
// of a concrete type without rewriting the apply itself. In fact, doing so
// may allow the Devirtualizer pass to finish the job.
//
// If we create a new instruction that’s the same as the old one we’ll
// cause an infinite loop:
// NewWMI will be added to the Builder’s tracker list.
// SILCombine, in turn, uses the tracker list to populate the worklist
// As such, if we don’t remove the witness method later on in the pass, we
// are stuck:
// We will re-create the same instruction and re-populate the worklist
// with it.
if (SelfCEI.ConcreteType != WMI->getLookupType() ||
SelfConformance != WMI->getConformance()) {
replaceWitnessMethodInst(WMI, BuilderCtx, SelfCEI.ConcreteType,
SelfConformance);
}
/// Create the new apply instruction using concrete types for arguments.
return createApplyWithConcreteType(Apply, COEIs, BuilderCtx);
}
/// Rewrite a protocol extension lookup type from an archetype to a concrete
/// type.
/// Example:
/// %ref = alloc_ref $C
/// %existential = init_existential_ref %ref : $C : $C, $P
/// %opened = open_existential_ref %existential : $P to $@opened
/// %f = function_ref @defaultMethod
/// apply %f<@opened P>(%opened)
///
/// ==> apply %f<C : P>(%ref)
SILInstruction *
SILCombiner::propagateConcreteTypeOfInitExistential(FullApplySite Apply) {
if (Apply.getFunction()->hasOwnership())
return nullptr;
// This optimization requires a generic argument.
if (!Apply.hasSubstitutions())
return nullptr;
// Try to derive the concrete type and the related conformance of self and
// other existential arguments by searching either for a preceding
// init_existential or looking up sole conforming type.
llvm::SmallDenseMap<unsigned, ConcreteOpenedExistentialInfo> COEIs;
SILBuilderContext BuilderCtx(Builder.getModule(), Builder.getTrackingList());
buildConcreteOpenedExistentialInfos(Apply, COEIs, BuilderCtx);
// Bail, if no argument has a concrete existential to propagate.
if (COEIs.empty())
return nullptr;
// At least one COEI is present, so cast instructions may already have been
// inserted. We must either rewrite the apply or delete the casts and reset
// the Builder's tracking list.
return createApplyWithConcreteType(Apply, COEIs, BuilderCtx);
}
/// Should replace a call to `getContiguousArrayStorageType<A>(for:)` by the
/// metadata constructor of the return type.
/// getContiguousArrayStorageType<Int>(for:)
/// => metatype @thick ContiguousArrayStorage<Int>.Type
/// We know that `getContiguousArrayStorageType` will not return the AnyObject
/// type optimization for any non class or objc existential type instantiation
/// or a C++ foreign reference type.
static bool shouldReplaceCallByMetadataConstructor(CanType storageMetaTy) {
auto metaTy = dyn_cast<MetatypeType>(storageMetaTy);
if (!metaTy || metaTy->getRepresentation() != MetatypeRepresentation::Thick)
return false;
auto storageTy = metaTy.getInstanceType()->getCanonicalType();
if (!storageTy->is_ContiguousArrayStorage())
return false;
auto boundGenericTy = dyn_cast<BoundGenericType>(storageTy);
if (!boundGenericTy)
return false;
auto genericArgs = boundGenericTy->getGenericArgs();
if (genericArgs.size() != 1)
return false;
auto ty = genericArgs[0]->getCanonicalType();
if (ty->getStructOrBoundGenericStruct() || ty->getEnumOrBoundGenericEnum() ||
isa<BuiltinVectorType>(ty) || isa<BuiltinIntegerType>(ty) ||
isa<BuiltinFloatType>(ty) || isa<TupleType>(ty) ||
isa<AnyFunctionType>(ty) || ty->isForeignReferenceType() ||
(ty->isAnyExistentialType() && !ty->isObjCExistentialType()))
return true;
return false;
}
SILInstruction *SILCombiner::visitApplyInst(ApplyInst *AI) {
Builder.setCurrentDebugScope(AI->getDebugScope());
// apply{partial_apply(x,y)}(z) -> apply(z,x,y) is triggered
// from visitPartialApplyInst(), so bail here.
if (isa<PartialApplyInst>(AI->getCallee()))
return nullptr;
SILValue callee = AI->getCallee();
if (auto *cee = dyn_cast<ConvertEscapeToNoEscapeInst>(callee)) {
callee = cee->getOperand();
}
if (auto *CFI = dyn_cast<ConvertFunctionInst>(callee))
return optimizeApplyOfConvertFunctionInst(AI, CFI);
if (tryOptimizeKeypath(AI, Builder)) {
eraseInstFromFunction(*AI);
return nullptr;
}
// Optimize readonly functions with no meaningful users.
SILFunction *SF = AI->getReferencedFunctionOrNull();
if (SF && SF->getEffectsKind() < EffectsKind::ReleaseNone) {
UserListTy Users;
if (recursivelyCollectARCUsers(Users, AI)) {
if (eraseApply(AI, Users))
return nullptr;
}
// We found a user that we can't handle.
}
if (SF) {
if (SF->hasSemanticsAttr(semantics::ARRAY_UNINITIALIZED)) {
UserListTy Users;
// If the uninitialized array is only written into then it can be removed.
if (recursivelyCollectARCUsers(Users, AI)) {
if (eraseApply(AI, Users))
return nullptr;
}
}
if (SF->hasSemanticsAttr(semantics::ARRAY_GET_CONTIGUOUSARRAYSTORAGETYPE)) {
auto silTy = AI->getType();
auto storageTy = AI->getType().getASTType();
// getContiguousArrayStorageType<Int> => ContiguousArrayStorage<Int>
if (shouldReplaceCallByMetadataConstructor(storageTy)) {
auto metatype = Builder.createMetatype(AI->getLoc(), silTy);
AI->replaceAllUsesWith(metatype);
eraseInstFromFunction(*AI);
return nullptr;
}
}
}
// (apply (differentiable_function f)) to (apply f)
if (auto *DFI = dyn_cast<DifferentiableFunctionInst>(AI->getCallee())) {
return cloneFullApplySiteReplacingCallee(AI, DFI->getOperand(0),
Builder.getBuilderContext())
.getInstruction();
}
// (apply (thin_to_thick_function f)) to (apply f)
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(AI->getCallee())) {
// We currently don't remove any possible retain associated with the thick
// function when rewriting the callsite. This should be ok because the
// ABI normally expects a guaranteed callee.
if (!AI->getOrigCalleeType()->isCalleeConsumed())
return cloneFullApplySiteReplacingCallee(AI, TTTFI->getOperand(),
Builder.getBuilderContext())
.getInstruction();
}
// (apply (witness_method)) -> propagate information about
// a concrete type from init_existential_addr or init_existential_ref.
if (auto *WMI = dyn_cast<WitnessMethodInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI, WMI)) {
return nullptr;
}
}
// (apply (function_ref method_from_protocol_extension)) ->
// propagate information about a concrete type from init_existential_addr or
// init_existential_ref.
if (isa<FunctionRefInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI)) {
return nullptr;
}
}
return nullptr;
}
SILInstruction *SILCombiner::visitBeginApplyInst(BeginApplyInst *BAI) {
if (tryOptimizeInoutKeypath(BAI))
return nullptr;
return nullptr;
}
bool SILCombiner::
isTryApplyResultNotUsed(UserListTy &AcceptedUses, TryApplyInst *TAI) {
SILBasicBlock *NormalBB = TAI->getNormalBB();
SILBasicBlock *ErrorBB = TAI->getErrorBB();
// The results of a try_apply are not only the normal and error return values,
// but also the decision whether it throws or not. Therefore we have to check
// if both, the normal and the error block, are empty and lead to a common
// destination block.
// Check if the normal and error blocks have a common single successor.
auto *NormalBr = dyn_cast<BranchInst>(NormalBB->getTerminator());
if (!NormalBr)
return false;
auto *ErrorBr = dyn_cast<BranchInst>(ErrorBB->getTerminator());
if (!ErrorBr || ErrorBr->getDestBB() != NormalBr->getDestBB())
return false;
assert(NormalBr->getNumArgs() == ErrorBr->getNumArgs() &&
"mismatching number of arguments for the same destination block");
// Check if both blocks pass the same arguments to the common destination.
for (unsigned Idx = 0, End = NormalBr->getNumArgs(); Idx < End; ++Idx) {
if (NormalBr->getArg(Idx) != ErrorBr->getArg(Idx))
return false;
}
// Check if the normal and error results only have ARC operations as uses.
if (!recursivelyCollectARCUsers(AcceptedUses, NormalBB->getArgument(0)))
return false;
if (!recursivelyCollectARCUsers(AcceptedUses, ErrorBB->getArgument(0)))
return false;
InstructionSet UsesSet(NormalBB->getFunction());
for (auto *I : AcceptedUses)
UsesSet.insert(I);
// Check if the normal and error blocks are empty, except the ARC uses.
for (auto &I : *NormalBB) {
if (!UsesSet.contains(&I) && !isa<TermInst>(&I))
return false;
}
for (auto &I : *ErrorBB) {
if (!UsesSet.contains(&I) && !isa<TermInst>(&I))
return false;
}
return true;
}
SILInstruction *SILCombiner::visitTryApplyInst(TryApplyInst *AI) {
// apply{partial_apply(x,y)}(z) -> apply(z,x,y) is triggered
// from visitPartialApplyInst(), so bail here.
if (isa<PartialApplyInst>(AI->getCallee()))
return nullptr;
// Optimize readonly functions with no meaningful users.
SILFunction *Fn = AI->getReferencedFunctionOrNull();
if (Fn && Fn->getEffectsKind() < EffectsKind::ReleaseNone) {
UserListTy Users;
if (isTryApplyResultNotUsed(Users, AI)) {
SILBasicBlock *BB = AI->getParent();
SILBasicBlock *NormalBB = AI->getNormalBB();
SILBasicBlock *ErrorBB = AI->getErrorBB();
SILLocation Loc = AI->getLoc();
const SILDebugScope *DS = AI->getDebugScope();
if (eraseApply(AI, Users)) {
// Replace the try_apply with a cond_br false, which will be removed by
// SimplifyCFG. We don't want to modify the CFG in SILCombine.
Builder.setInsertionPoint(BB);
Builder.setCurrentDebugScope(DS);
auto *TrueLit = Builder.createIntegerLiteral(Loc,
SILType::getBuiltinIntegerType(1, Builder.getASTContext()), 0);
Builder.createCondBranch(Loc, TrueLit, NormalBB, ErrorBB);
NormalBB->eraseArgument(0);
ErrorBB->eraseArgument(0);
return nullptr;
}
}
// We found a user that we can't handle.
}
// (try_apply (thin_to_thick_function f)) to (try_apply f)
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(AI->getCallee())) {
// We currently don't remove any possible retain associated with the thick
// function when rewriting the callsite. This should be ok because the
// ABI normally expects a guaranteed callee.
if (!AI->getOrigCalleeType()->isCalleeConsumed())
return cloneFullApplySiteReplacingCallee(AI, TTTFI->getOperand(),
Builder.getBuilderContext())
.getInstruction();
}
// (apply (witness_method)) -> propagate information about
// a concrete type from init_existential_addr or init_existential_ref.
if (auto *WMI = dyn_cast<WitnessMethodInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI, WMI)) {
return nullptr;
}
}
// (apply (function_ref method_from_protocol_extension)) ->
// propagate information about a concrete type from init_existential_addr or
// init_existential_ref.
if (isa<FunctionRefInst>(AI->getCallee())) {
if (propagateConcreteTypeOfInitExistential(AI)) {
return nullptr;
}
}
return nullptr;
}
|