File: SILCombinerMiscVisitors.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2198 lines) | stat: -rw-r--r-- 79,690 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
//===--- SILCombinerMiscVisitors.cpp --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sil-combine"

#include "SILCombiner.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/Devirtualize.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"

using namespace swift;
using namespace swift::PatternMatch;

/// This flag is used to disable alloc stack optimizations to ease testing of
/// other SILCombine optimizations.
static llvm::cl::opt<bool>
    DisableAllocStackOpts("sil-combine-disable-alloc-stack-opts",
                          llvm::cl::init(false));

SILInstruction*
SILCombiner::visitAllocExistentialBoxInst(AllocExistentialBoxInst *AEBI) {
  // Optimize away the pattern below that happens when exceptions are created
  // and in some cases, due to inlining, are not needed.
  //
  //   %6 = alloc_existential_box $Error, $ColorError
  //   %6a = project_existential_box %6
  //   %7 = enum $VendingMachineError, #ColorError.Red
  //   store %7 to %6a : $*ColorError
  //   debug_value %6 : $Error
  //   strong_release %6 : $Error
  //
  //   %6 = alloc_existential_box $Error, $ColorError
  //   %6a = project_existential_box %6
  //   %7 = enum $VendingMachineError, #ColorError.Red
  //   store %7 to [init] %6a : $*ColorError
  //   debug_value %6 : $Error
  //   destroy_value %6 : $Error
  SILValue boxedValue =
    getConcreteValueOfExistentialBox(AEBI, /*ignoreUser*/ nullptr);
  if (!boxedValue)
    return nullptr;

  // Check if the box is destroyed at a single place. That's the end of its
  // lifetime.
  SILInstruction *singleDestroy = nullptr;
  if (hasOwnership()) {
    if (auto *use = AEBI->getSingleConsumingUse()) {
      singleDestroy = dyn_cast<DestroyValueInst>(use->getUser());
    }
  } else {
    for (Operand *use : AEBI->getUses()) {
      auto *user = use->getUser();
      if (isa<StrongReleaseInst>(user) || isa<ReleaseValueInst>(user)) {
        if (singleDestroy)
          return nullptr;
        singleDestroy = user;
      }
    }
  }

  if (!singleDestroy)
    return nullptr;

  // Release the value that was stored into the existential box. The box
  // is going away so we need to release the stored value.
  // NOTE: It's important that the release is inserted at the single
  // release of the box and not at the store, because a balancing retain could
  // be _after_ the store, e.g:
  //      %box = alloc_existential_box
  //      %addr = project_existential_box %box
  //      store %value to %addr
  //      retain_value %value    // must insert the release after this retain
  //      strong_release %box
  Builder.setInsertionPoint(singleDestroy);
  Builder.emitDestroyValueOperation(AEBI->getLoc(), boxedValue);

  eraseInstIncludingUsers(AEBI);
  return nullptr;
}

/// Return the enum case injected by an inject_enum_addr if it is the only
/// instruction which writes to \p Addr.
static EnumElementDecl *getInjectEnumCaseTo(SILValue Addr) {
  while (true) {
    // For everything else than an alloc_stack we cannot easily prove that we
    // see all writes.
    if (!isa<AllocStackInst>(Addr))
      return nullptr;

    SILInstruction *WritingInst = nullptr;
    int NumWrites = 0;
    for (auto *Use : getNonDebugUses(Addr)) {
      SILInstruction *User = Use->getUser();
      switch (User->getKind()) {
        // Handle a very narrow set of known not harmful instructions.
        case swift::SILInstructionKind::DestroyAddrInst:
        case swift::SILInstructionKind::DeallocStackInst:
        case swift::SILInstructionKind::SwitchEnumAddrInst:
          break;
        case swift::SILInstructionKind::ApplyInst:
        case swift::SILInstructionKind::TryApplyInst: {
          // Check if the addr is only passed to in_guaranteed arguments.
          FullApplySite AI(User);
          for (Operand &Op : AI.getArgumentOperands()) {
            if (Op.get() == Addr &&
                AI.getArgumentConvention(Op) !=
                  SILArgumentConvention::Indirect_In_Guaranteed)
              return nullptr;
          }
          break;
        }
        case swift::SILInstructionKind::InjectEnumAddrInst:
          WritingInst = User;
          ++NumWrites;
          break;
        case swift::SILInstructionKind::CopyAddrInst:
          if (Addr == cast<CopyAddrInst>(User)->getDest()) {
            WritingInst = User;
            ++NumWrites;
          }
          break;
        default:
          return nullptr;
      }
    }
    if (NumWrites != 1)
      return nullptr;
    if (auto *IEA = dyn_cast<InjectEnumAddrInst>(WritingInst))
      return IEA->getElement();

    // In case of a copy_addr continue with the source of the copy.
    Addr = dyn_cast<CopyAddrInst>(WritingInst)->getSrc();
  }
}

SILInstruction *SILCombiner::visitSwitchEnumAddrInst(SwitchEnumAddrInst *SEAI) {
  SILValue Addr = SEAI->getOperand();

  // Convert switch_enum_addr -> br
  //
  // If the only thing which writes to the address is an inject_enum_addr. We
  // only perform these optimizations when we are not in OSSA since this
  // eliminates an edge from the CFG and we want SILCombine in OSSA to never do
  // that, so in the future we can invalidate less.
  if (!SEAI->getFunction()->hasOwnership()) {
    if (EnumElementDecl *EnumCase = getInjectEnumCaseTo(Addr)) {
      SILBasicBlock *Dest = SEAI->getCaseDestination(EnumCase);
      // If the only instruction which writes to Addr is an inject_enum_addr we
      // know that there cannot be an enum payload.
      assert(Dest->getNumArguments() == 0 &&
             "didn't expect a payload argument");
      Builder.createBranch(SEAI->getLoc(), Dest);
      return eraseInstFromFunction(*SEAI);
    }
  }

  SILType Ty = Addr->getType();
  if (!Ty.isLoadable(*SEAI->getFunction()))
    return nullptr;

  // Promote switch_enum_addr to switch_enum if the enum is loadable.
  //   switch_enum_addr %ptr : $*Optional<SomeClass>, case ...
  //     ->
  //   %value = load %ptr
  //   switch_enum %value
  //
  // If we are using ownership, we perform a load_borrow right before the new
  // switch_enum and end the borrow scope right afterwards.
  Builder.setCurrentDebugScope(SEAI->getDebugScope());
  SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 8> Cases;
  for (int i : range(SEAI->getNumCases())) {
    Cases.push_back(SEAI->getCase(i));
  }

  SILBasicBlock *Default = SEAI->hasDefault() ? SEAI->getDefaultBB() : nullptr;
  SILValue EnumVal = Builder.emitLoadBorrowOperation(SEAI->getLoc(), Addr);
  auto *sei = Builder.createSwitchEnum(SEAI->getLoc(), EnumVal, Default, Cases);

  if (Builder.hasOwnership()) {
    for (int i : range(sei->getNumCases())) {
      auto c = sei->getCase(i);
      if (c.first->hasAssociatedValues()) {
        auto eltType = Addr->getType().getEnumElementType(
            c.first, Builder.getModule(), Builder.getTypeExpansionContext());
        eltType = eltType.getObjectType();
        sei->createResult(c.second, eltType);
      }
      Builder.setInsertionPoint(c.second->front().getIterator());
      Builder.emitEndBorrowOperation(sei->getLoc(), EnumVal);
    }
    sei->createDefaultResult();
    if (auto defaultBlock = sei->getDefaultBBOrNull()) {
      Builder.setInsertionPoint(defaultBlock.get()->front().getIterator());
      Builder.emitEndBorrowOperation(sei->getLoc(), EnumVal);
    }
  }

  return eraseInstFromFunction(*SEAI);
}

SILInstruction *SILCombiner::visitSelectEnumAddrInst(SelectEnumAddrInst *seai) {
  // Canonicalize a select_enum_addr: if the default refers to exactly one case,
  // then replace the default with that case.
  Builder.setCurrentDebugScope(seai->getDebugScope());
  if (seai->hasDefault()) {
    NullablePtr<EnumElementDecl> elementDecl = seai->getUniqueCaseForDefault();
    if (elementDecl.isNonNull()) {
      // Construct a new instruction by copying all the case entries.
      SmallVector<std::pair<EnumElementDecl *, SILValue>, 4> caseValues;
      for (int idx = 0, numIdcs = seai->getNumCases(); idx < numIdcs; ++idx) {
        caseValues.push_back(seai->getCase(idx));
      }
      // Add the default-entry of the original instruction as case-entry.
      caseValues.push_back(
          std::make_pair(elementDecl.get(), seai->getDefaultResult()));

      return Builder.createSelectEnumAddr(
          seai->getLoc(), seai->getEnumOperand(), seai->getType(), SILValue(),
          caseValues);
    }
  }

  // Promote select_enum_addr to select_enum if the enum is loadable.
  //   = select_enum_addr %ptr : $*Optional<SomeClass>, case ...
  //     ->
  //   %value = load %ptr
  //   = select_enum %value
  SILType ty = seai->getEnumOperand()->getType();
  if (!ty.isLoadable(*seai->getFunction()))
    return nullptr;

  SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> cases;
  for (int i = 0, e = seai->getNumCases(); i < e; ++i)
    cases.push_back(seai->getCase(i));

  SILValue defaultCase =
      seai->hasDefault() ? seai->getDefaultResult() : SILValue();
  auto enumVal =
      Builder.emitLoadBorrowOperation(seai->getLoc(), seai->getEnumOperand());
  auto *result = Builder.createSelectEnum(seai->getLoc(), enumVal,
                                          seai->getType(), defaultCase, cases);
  Builder.emitEndBorrowOperation(seai->getLoc(), enumVal);
  replaceInstUsesWith(*seai, result);
  return eraseInstFromFunction(*seai);
}

SILInstruction *SILCombiner::visitSwitchValueInst(SwitchValueInst *svi) {
  SILValue cond = svi->getOperand();
  BuiltinIntegerType *condTy = cond->getType().getAs<BuiltinIntegerType>();
  if (!condTy || !condTy->isFixedWidth(1))
    return nullptr;

  SILBasicBlock *falseBB = nullptr;
  SILBasicBlock *trueBB = nullptr;
  for (unsigned idx : range(svi->getNumCases())) {
    auto switchCase = svi->getCase(idx);
    auto *caseVal = dyn_cast<IntegerLiteralInst>(switchCase.first);
    if (!caseVal)
      return nullptr;
    SILBasicBlock *destBB = switchCase.second;
    assert(destBB->args_empty() &&
           "switch_value case destination cannot take arguments");
    if (caseVal->getValue() == 0) {
      assert(!falseBB && "double case value 0 in switch_value");
      falseBB = destBB;
    } else {
      assert(!trueBB && "double case value 1 in switch_value");
      trueBB = destBB;
    }
  }

  if (svi->hasDefault()) {
    assert(svi->getDefaultBB()->args_empty() &&
           "switch_value default destination cannot take arguments");
    if (!falseBB) {
      falseBB = svi->getDefaultBB();
    } else if (!trueBB) {
      trueBB = svi->getDefaultBB();
    }
  }

  if (!falseBB || !trueBB)
    return nullptr;

  Builder.setCurrentDebugScope(svi->getDebugScope());
  return Builder.createCondBranch(svi->getLoc(), cond, trueBB, falseBB);
}

namespace {

/// A SILInstruction visitor that analyzes alloc stack values for dead live
/// range and promotion opportunities.
///
/// init_existential_addr instructions behave like memory allocation within the
/// allocated object. We can promote the init_existential_addr allocation into a
/// dedicated allocation.
///
/// We detect this pattern
/// %0 = alloc_stack $LogicValue
/// %1 = init_existential_addr %0 : $*LogicValue, $*Bool
/// ...
/// use of %1
/// ...
/// destroy_addr %0 : $*LogicValue
/// dealloc_stack %0 : $*LogicValue
///
/// At the same we time also look for dead alloc_stack live ranges that are only
/// copied into.
///
/// %0 = alloc_stack
/// copy_addr %src, %0
/// destroy_addr %0 : $*LogicValue
/// dealloc_stack %0 : $*LogicValue
struct AllocStackAnalyzer : SILInstructionVisitor<AllocStackAnalyzer> {
  /// The alloc_stack that we are analyzing.
  AllocStackInst *ASI;

  /// Do all of the users of the alloc stack allow us to perform optimizations.
  bool LegalUsers = true;

  /// If we saw an init_existential_addr in the use list of the alloc_stack,
  /// this is the init_existential_addr. We are conservative in the face of
  /// having multiple init_existential_addr. In such a case, we say that the use
  /// list of the alloc_stack does not allow for optimizations to occur.
  InitExistentialAddrInst *IEI = nullptr;

  /// If we saw an open_existential_addr in the use list of the alloc_stack,
  /// this is the open_existential_addr. We are conservative in the case of
  /// multiple open_existential_addr. In such a case, we say that the use list
  /// of the alloc_stack does not allow for optimizations to occur.
  OpenExistentialAddrInst *OEI = nullptr;

  /// Did we see any copies into the alloc stack.
  bool HaveSeenCopyInto = false;

public:
  AllocStackAnalyzer(AllocStackInst *ASI) : ASI(ASI) {}

  /// Analyze the alloc_stack instruction's uses.
  void analyze() {
    // Scan all of the uses of the AllocStack and check if it is not used for
    // anything other than the init_existential_addr/open_existential_addr
    // container.

    // There is no interesting scenario where a non-copyable type should have
    // its allocation eliminated. A destroy_addr cannot be removed because it
    // may run the struct-deinit, and the lifetime cannot be shortened. A
    // copy_addr [take] [init] cannot be replaced by a destroy_addr because the
    // destination may hold a 'discard'ed value, which is never destroyed. This
    // analysis assumes memory is deinitialized on all paths, which is not the
    // case for discarded values. Eventually copyable types may also be
    // discarded; to support that, we will leave a drop_deinit_addr in place.
    if (ASI->getType().isMoveOnly(/*orWrapped=*/false)) {
      LegalUsers = false;
      return;
    }
    for (auto *Op : getNonDebugUses(ASI)) {
      visit(Op->getUser());

      // If we found a non-legal user, bail early.
      if (!LegalUsers)
        break;
    }
  }

  /// Given an unhandled case, we have an illegal use for our optimization
  /// purposes. Set LegalUsers to false and return.
  void visitSILInstruction(SILInstruction *I) { LegalUsers = false; }

  // Destroy and dealloc are both fine.
  void visitDestroyAddrInst(DestroyAddrInst *I) {}
  void visitDeinitExistentialAddrInst(DeinitExistentialAddrInst *I) {}
  void visitDeallocStackInst(DeallocStackInst *I) {}

  void visitInitExistentialAddrInst(InitExistentialAddrInst *I) {
    // If we have already seen an init_existential_addr, we cannot
    // optimize. This is because we only handle the single init_existential_addr
    // case.
    if (IEI || HaveSeenCopyInto) {
      LegalUsers = false;
      return;
    }
    IEI = I;
  }

  void visitOpenExistentialAddrInst(OpenExistentialAddrInst *I) {
    // If we have already seen an open_existential_addr, we cannot
    // optimize. This is because we only handle the single open_existential_addr
    // case.
    if (OEI) {
      LegalUsers = false;
      return;
    }

    // Make sure that the open_existential does not have any uses except
    // destroy_addr.
    for (auto *Use : getNonDebugUses(I)) {
      if (!isa<DestroyAddrInst>(Use->getUser())) {
        LegalUsers = false;
        return;
      }
    }

    OEI = I;
  }

  void visitCopyAddrInst(CopyAddrInst *I) {
    if (IEI) {
      LegalUsers = false;
      return;
    }

    // Copies into the alloc_stack live range are safe.
    if (I->getDest() == ASI) {
      HaveSeenCopyInto = true;
      return;
    }

    LegalUsers = false;
  }
};

} // end anonymous namespace

/// Returns true if there is a retain instruction between \p from and the
/// destroy or deallocation of \p alloc.
static bool somethingIsRetained(SILInstruction *from, AllocStackInst *alloc) {
  llvm::SmallVector<SILInstruction *, 8> workList;
  BasicBlockSet handled(from->getFunction());
  workList.push_back(from);
  while (!workList.empty()) {
    SILInstruction *start = workList.pop_back_val();
    for (auto iter = start->getIterator(), end = start->getParent()->end();
         iter != end;
         ++iter) {
      SILInstruction *inst = &*iter;
      if (isa<RetainValueInst>(inst) || isa<StrongRetainInst>(inst)) {
        return true;
      }
      if ((isa<DeallocStackInst>(inst) || isa<DestroyAddrInst>(inst)) &&
          inst->getOperand(0) == alloc) {
        break;
      }
      if (isa<TermInst>(inst)) {
        for (SILBasicBlock *succ : start->getParent()->getSuccessors()) {
          if (handled.insert(succ))
            workList.push_back(&*succ->begin());
        }
      }
    }
  }
  return false;
}

/// Replaces an alloc_stack of an enum by an alloc_stack of the payload if only
/// one enum case (with payload) is stored to that location.
///
/// For example:
///
///   %loc = alloc_stack $Optional<T>
///   %payload = init_enum_data_addr %loc
///   store %value to %payload
///   ...
///   %take_addr = unchecked_take_enum_data_addr %loc
///   %l = load %take_addr
///
/// is transformed to
///
///   %loc = alloc_stack $T
///   store %value to %loc
///   ...
///   %l = load %loc
bool SILCombiner::optimizeStackAllocatedEnum(AllocStackInst *AS) {
  EnumDecl *enumDecl = AS->getType().getEnumOrBoundGenericEnum();
  if (!enumDecl)
    return false;
  
  EnumElementDecl *element = nullptr;
  unsigned numInits =0;
  unsigned numTakes = 0;
  SILBasicBlock *initBlock = nullptr;
  SILBasicBlock *takeBlock = nullptr;
  SILType payloadType;
  
  // First step: check if the stack location is only used to hold one specific
  // enum case with payload.
  for (auto *use : AS->getUses()) {
    SILInstruction *user = use->getUser();
    switch (user->getKind()) {
      case SILInstructionKind::DestroyAddrInst:
      case SILInstructionKind::DeallocStackInst:
      case SILInstructionKind::InjectEnumAddrInst:
        // We'll check init_enum_addr below.
        break;
      case SILInstructionKind::DebugValueInst:
        if (DebugValueInst::hasAddrVal(user))
          break;
        return false;
      case SILInstructionKind::InitEnumDataAddrInst: {
        auto *ieda = cast<InitEnumDataAddrInst>(user);
        auto *el = ieda->getElement();
        if (element && el != element)
          return false;
        element = el;
        assert(!payloadType || payloadType == ieda->getType());
        payloadType = ieda->getType();
        numInits++;
        initBlock = user->getParent();
        break;
      }
      case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
        auto *el = cast<UncheckedTakeEnumDataAddrInst>(user)->getElement();
        if (element && el != element)
          return false;
        element = el;
        numTakes++;
        takeBlock = user->getParent();
        break;
      }
      default:
        return false;
    }
  }
  if (!element || !payloadType)
    return false;

  // If the enum has a single init-take pair in a single block, we know that
  // the enum cannot contain any valid payload outside that init-take pair.
  //
  // This also means that we can ignore any inject_enum_addr of another enum
  // case, because this can only inject a case without a payload.
  bool singleInitTakePair =
    (numInits == 1 && numTakes == 1 && initBlock == takeBlock);
  if (!singleInitTakePair) {
    // No single init-take pair: We cannot ignore inject_enum_addrs with a
    // mismatching case.
    for (auto *use : AS->getUses()) {
      if (auto *inject = dyn_cast<InjectEnumAddrInst>(use->getUser())) {
        if (inject->getElement() != element)
          return false;
      }
    }
  }

  // Second step: replace the enum alloc_stack with a payload alloc_stack.
  Builder.setCurrentDebugScope(AS->getDebugScope());
  auto *newAlloc = Builder.createAllocStack(
      AS->getLoc(), payloadType, {}, AS->hasDynamicLifetime(), IsNotLexical,
      IsNotFromVarDecl, DoesNotUseMoveableValueDebugInfo, true);
  if (auto varInfo = AS->getVarInfo()) {
    // TODO: Add support for op_enum_fragment
    // For now, we can't represent this variable correctly, so we drop it.
    Builder.createDebugValue(AS->getLoc(), SILUndef::get(AS), *varInfo);
  }

  while (!AS->use_empty()) {
    Operand *use = *AS->use_begin();
    SILInstruction *user = use->getUser();
    switch (user->getKind()) {
      case SILInstructionKind::InjectEnumAddrInst:
        eraseInstFromFunction(*user);
        break;
      case SILInstructionKind::DestroyAddrInst:
        if (singleInitTakePair) {
          // It's not possible that the enum has a payload at the destroy_addr,
          // because it must have already been taken by the take of the
          // single init-take pair.
          // We _have_ to remove the destroy_addr, because we also remove all
          // inject_enum_addrs which might inject a payload-less case before
          // the destroy_addr.
          eraseInstFromFunction(*user);
        } else {
          // The enum payload can still be valid at the destroy_addr, so we have
          // to keep the destroy_addr. Just replace the enum with the payload
          // (and because it's not a singleInitTakePair, we can be sure that the
          // enum cannot have any other case than the payload case).
          use->set(newAlloc);
        }
        break;
      case SILInstructionKind::DeallocStackInst:
        use->set(newAlloc);
        break;
      case SILInstructionKind::InitEnumDataAddrInst:
      case SILInstructionKind::UncheckedTakeEnumDataAddrInst: {
        auto *svi = cast<SingleValueInstruction>(user);
        svi->replaceAllUsesWith(newAlloc);
        eraseInstFromFunction(*svi);
        break;
      }
      case SILInstructionKind::DebugValueInst:
        // TODO: Add support for op_enum_fragment
        use->set(SILUndef::get(AS));
        break;
      default:
        llvm_unreachable("unexpected alloc_stack user");
    }
  }
  return true;
}

SILInstruction *SILCombiner::visitAllocStackInst(AllocStackInst *AS) {
  if (AS->getFunction()->hasOwnership())
    return nullptr;

  if (optimizeStackAllocatedEnum(AS))
    return nullptr;

  // If we are testing SILCombine and we are asked not to eliminate
  // alloc_stacks, just return.
  if (DisableAllocStackOpts)
    return nullptr;

  AllocStackAnalyzer Analyzer(AS);
  Analyzer.analyze();

  // If when analyzing, we found a user that makes our optimization, illegal,
  // bail early.
  if (!Analyzer.LegalUsers)
    return nullptr;

  InitExistentialAddrInst *IEI = Analyzer.IEI;
  OpenExistentialAddrInst *OEI = Analyzer.OEI;

  // If the only users of the alloc_stack are alloc, destroy and
  // init_existential_addr then we can promote the allocation of the init
  // existential.
  // Be careful with open archetypes, because they cannot be moved before
  // their definitions.
  if (IEI && !OEI &&
      !IEI->getLoweredConcreteType().hasOpenedExistential()) {
    assert(!IEI->getLoweredConcreteType().isOpenedExistential());
    Builder.setCurrentDebugScope(AS->getDebugScope());
    auto varInfo = AS->getVarInfo();
    if (varInfo) {
      if (varInfo->Type == AS->getElementType()) {
        varInfo->Type = {}; // Lower the variable's type too.
      } else {
        // Cannot salvage the variable, its type has changed and its expression
        // cannot be rewritten.
        Builder.createDebugValue(AS->getLoc(), SILUndef::get(AS), *varInfo);
        varInfo = {};
      }
    }
    auto *ConcAlloc = Builder.createAllocStack(
        AS->getLoc(), IEI->getLoweredConcreteType(), varInfo);
    IEI->replaceAllUsesWith(ConcAlloc);
    eraseInstFromFunction(*IEI);

    for (auto UI = AS->use_begin(), UE = AS->use_end(); UI != UE;) {
      auto *Op = *UI;
      ++UI;
      if (auto *DA = dyn_cast<DestroyAddrInst>(Op->getUser())) {
        Builder.setInsertionPoint(DA);
        Builder.createDestroyAddr(DA->getLoc(), ConcAlloc);
        eraseInstFromFunction(*DA);
        continue;
      }

      if (isa<DeinitExistentialAddrInst>(Op->getUser())) {
        eraseInstFromFunction(*Op->getUser());
        continue;
      }

      if (!isa<DeallocStackInst>(Op->getUser()))
        continue;

      auto *DS = cast<DeallocStackInst>(Op->getUser());
      Builder.setInsertionPoint(DS);
      Builder.createDeallocStack(DS->getLoc(), ConcAlloc);
      eraseInstFromFunction(*DS);
    }

    return eraseInstFromFunction(*AS);
  }

  // If we have a live 'live range' or a live range that we have not sen a copy
  // into, bail.
  if (!Analyzer.HaveSeenCopyInto || IEI)
    return nullptr;

  // Otherwise remove the dead live range that is only copied into.
  //
  // TODO: Do we not remove purely dead live ranges here? Seems like we should.
  SmallPtrSet<SILInstruction *, 16> ToDelete;
  SmallVector<CopyAddrInst *, 4> takingCopies;

  for (auto *Op : AS->getUses()) {
    // Replace a copy_addr [take] %src ... by a destroy_addr %src if %src is
    // no the alloc_stack.
    // Otherwise, just delete the copy_addr.
    if (auto *CopyAddr = dyn_cast<CopyAddrInst>(Op->getUser())) {
      if (CopyAddr->isTakeOfSrc() && CopyAddr->getSrc() != AS) {
        takingCopies.push_back(CopyAddr);
      }
    }

    if (auto *OEAI = dyn_cast<OpenExistentialAddrInst>(Op->getUser())) {
      for (auto *Op : OEAI->getUses()) {
        assert(isa<DestroyAddrInst>(Op->getUser()) ||
               Op->getUser()->isDebugInstruction() && "Unexpected instruction");
        ToDelete.insert(Op->getUser());
      }
    }

    assert(isa<CopyAddrInst>(Op->getUser()) ||
           isa<OpenExistentialAddrInst>(Op->getUser()) ||
           isa<DestroyAddrInst>(Op->getUser()) ||
           isa<DeallocStackInst>(Op->getUser()) ||
           isa<DeinitExistentialAddrInst>(Op->getUser()) ||
           Op->getUser()->isDebugInstruction() && "Unexpected instruction");
    ToDelete.insert(Op->getUser());
  }

  // Check if a retain is moved after the copy_addr. If the retained object
  // happens to be the source of the copy_addr it might be only kept alive by
  // the stack location. This cannot happen with OSSA.
  // TODO: remove this check once we have OSSA.
  for (CopyAddrInst *copy : takingCopies) {
    if (somethingIsRetained(copy, AS))
      return nullptr;
  }

  for (CopyAddrInst *copy : takingCopies) {
    SILBuilderWithScope destroyBuilder(copy, Builder.getBuilderContext());
    destroyBuilder.createDestroyAddr(copy->getLoc(), copy->getSrc());
  }

  // Erase the 'live-range'
  for (auto *Inst : ToDelete) {
    Inst->replaceAllUsesOfAllResultsWithUndef();
    eraseInstFromFunction(*Inst);
  }
  return eraseInstFromFunction(*AS);
}

/// Returns the base address if \p val is an index_addr with constant index.
static SILValue isConstIndexAddr(SILValue val, unsigned &index) {
  auto *IA = dyn_cast<IndexAddrInst>(val);
  if (!IA)
    return nullptr;
  auto *Index = dyn_cast<IntegerLiteralInst>(IA->getIndex());

  // Limiting to 32 bits is more than enough. The reason why not limiting to 64
  // bits is to leave room for overflow when we add two indices.
  if (!Index || Index->getValue().getActiveBits() > 32)
    return nullptr;

  index = Index->getValue().getZExtValue();
  return IA->getBase();
}

SILInstruction *SILCombiner::visitLoadBorrowInst(LoadBorrowInst *lbi) {
  // If we have a load_borrow that only has non_debug end_borrow uses, delete
  // it.
  if (llvm::all_of(getNonDebugUses(lbi), [](Operand *use) {
        return isa<EndBorrowInst>(use->getUser());
      })) {
    eraseInstIncludingUsers(lbi);
    return nullptr;
  }

  return nullptr;
}

/// Optimize nested index_addr instructions:
/// Example in SIL pseudo code:
///    %1 = index_addr %ptr, x
///    %2 = index_addr %1, y
/// ->
///    %2 = index_addr %ptr, x+y
SILInstruction *SILCombiner::visitIndexAddrInst(IndexAddrInst *IA) {
  unsigned index = 0;
  SILValue base = isConstIndexAddr(IA, index);
  if (!base)
    return nullptr;

  unsigned index2 = 0;
  SILValue base2 = isConstIndexAddr(base, index2);
  if (!base2)
    return nullptr;

  auto *newIndex = Builder.createIntegerLiteral(IA->getLoc(),
                                    IA->getIndex()->getType(), index + index2);
  return Builder.createIndexAddr(IA->getLoc(), base2, newIndex,
    IA->needsStackProtection() || cast<IndexAddrInst>(base)->needsStackProtection());
}

SILInstruction *SILCombiner::visitCondFailInst(CondFailInst *CFI) {
  // Remove runtime asserts such as overflow checks and bounds checks.
  if (RemoveCondFails)
    return eraseInstFromFunction(*CFI);

  auto *I = dyn_cast<IntegerLiteralInst>(CFI->getOperand());
  if (!I)
    return nullptr;

  // Erase. (cond_fail 0)
  if (!I->getValue().getBoolValue())
    return eraseInstFromFunction(*CFI);

  // Remove non-lifetime-ending code that follows a (cond_fail 1) and set the
  // block's terminator to unreachable.

  // Are there instructions after this point to delete?

  // First check if the next instruction is unreachable.
  if (isa<UnreachableInst>(std::next(SILBasicBlock::iterator(CFI))))
    return nullptr;

  // Otherwise, check if the only instructions are unreachables and destroys of
  // lexical values.

  // Collect all instructions and, in OSSA, the values they define.
  llvm::SmallVector<SILInstruction *, 32> ToRemove;
  ValueSet DefinedValues(CFI->getFunction());
  for (auto Iter = std::next(CFI->getIterator());
       Iter != CFI->getParent()->end(); ++Iter) {

    if (isBeginScopeMarker(&*Iter)) {
      for (auto *scopeUse : cast<SingleValueInstruction>(&*Iter)->getUses()) {
        auto *scopeEnd = scopeUse->getUser();
        if (isEndOfScopeMarker(scopeEnd)) {
          ToRemove.push_back(scopeEnd);
        }
      }
    }
    if (!CFI->getFunction()->hasOwnership()) {
      ToRemove.push_back(&*Iter);
      continue;
    }

    for (auto result : Iter->getResults()) {
      DefinedValues.insert(result);
    }
    // Look for destroys of lexical values whose def isn't after the cond_fail.
    if (auto *dvi = dyn_cast<DestroyValueInst>(&*Iter)) {
      auto value = dvi->getOperand();
      if (!DefinedValues.contains(value) && value->isLexical())
        continue;
    }
    ToRemove.push_back(&*Iter);
  }

  unsigned instructionsToDelete = ToRemove.size();
  // If the last instruction is an unreachable already, it needn't be deleted.
  if (isa<UnreachableInst>(ToRemove.back())) {
    --instructionsToDelete;
  }
  if (instructionsToDelete == 0)
    return nullptr;

  for (auto *Inst : ToRemove) {
    if (Inst->isDeleted())
      continue;

    // Replace any still-remaining uses with undef and erase.
    Inst->replaceAllUsesOfAllResultsWithUndef();
    eraseInstFromFunction(*Inst);
  }

  // Add an `unreachable` to be the new terminator for this block
  Builder.setInsertionPoint(CFI->getParent());
  Builder.createUnreachable(ArtificialUnreachableLocation());

  return nullptr;
}

/// Create a value from stores to an address.
///
/// If there are only stores to \p addr, return the stored value. Also, if there
/// are address projections, create aggregate instructions for it.
/// If builder is null, it's just a dry-run to check if it's possible.
static SILValue createValueFromAddr(SILValue addr, SILBuilder *builder,
                                    SILLocation loc) {
  SmallVector<SILValue, 4> elems;
  enum Kind {
    none, store, tuple
  } kind = none;

  for (Operand *use : addr->getUses()) {
    SILInstruction *user = use->getUser();
    if (user->isDebugInstruction())
      continue;

    auto *st = dyn_cast<StoreInst>(user);
    if (st && kind == none && st->getDest() == addr) {
      elems.push_back(st->getSrc());
      kind = store;
      // We cannot just return st->getSrc() here because we also have to check
      // if the store destination is the only use of addr.
      continue;
    }

    if (auto *telem = dyn_cast<TupleElementAddrInst>(user)) {
      if (kind == none) {
        elems.resize(addr->getType().castTo<TupleType>()->getNumElements());
        kind = tuple;
      }
      if (kind == tuple) {
        if (elems[telem->getFieldIndex()])
          return SILValue();
        elems[telem->getFieldIndex()] = createValueFromAddr(telem, builder, loc);
        continue;
      }
    }
    // TODO: handle StructElementAddrInst to create structs.

    return SILValue();
  }
  switch (kind) {
  case none:
    return SILValue();
  case store:
    assert(elems.size() == 1);
    return elems[0];
  case tuple:
    if (std::any_of(elems.begin(), elems.end(),
                    [](SILValue v){ return !(bool)v; }))
      return SILValue();
    if (builder) {
      return builder->createTuple(loc, addr->getType().getObjectType(), elems);
    }
    // Just return anything not null for the dry-run.
    return elems[0];
  }
  llvm_unreachable("invalid kind");
}

/// Simplify the following two frontend patterns:
///
///   %payload_addr = init_enum_data_addr %payload_allocation
///   store %payload to %payload_addr
///   inject_enum_addr %payload_allocation, $EnumType.case
///
///   inject_enum_addr %nopayload_allocation, $EnumType.case
///
/// for a concrete enum type $EnumType.case to:
///
///   %1 = enum $EnumType, $EnumType.case, %payload
///   store %1 to %payload_addr
///
///   %1 = enum $EnumType, $EnumType.case
///   store %1 to %nopayload_addr
///
/// We leave the cleaning up to mem2reg.
SILInstruction *
SILCombiner::visitInjectEnumAddrInst(InjectEnumAddrInst *IEAI) {
  if (IEAI->getFunction()->hasOwnership())
    return nullptr;

  // Disable this for empty typle type because empty tuple stack locations maybe
  // uninitialized. And converting to value form loses tag information.
  if (IEAI->getElement()->hasAssociatedValues()) {
    SILType elemType = IEAI->getOperand()->getType().getEnumElementType(
        IEAI->getElement(), IEAI->getFunction());
    if (elemType.isEmpty(*IEAI->getFunction())) {
      return nullptr;
    }
  }

  // Given an inject_enum_addr of a concrete type without payload, promote it to
  // a store of an enum. Mem2reg/load forwarding will clean things up for us. We
  // can't handle the payload case here due to the flow problems caused by the
  // dependency in between the enum and its data.

  assert(IEAI->getOperand()->getType().isAddress() && "Must be an address");
  Builder.setCurrentDebugScope(IEAI->getDebugScope());

  if (IEAI->getOperand()->getType().isAddressOnly(*IEAI->getFunction())) {
    // Check for the following pattern inside the current basic block:
    // inject_enum_addr %payload_allocation, $EnumType.case1
    // ... no insns storing anything into %payload_allocation
    // select_enum_addr  %payload_allocation,
    //                   case $EnumType.case1: %Result1,
    //                   case case $EnumType.case2: %bResult2
    //                   ...
    //
    // Replace the select_enum_addr by %Result1

    auto *Term = IEAI->getParent()->getTerminator();
    if (isa<CondBranchInst>(Term) || isa<SwitchValueInst>(Term)) {
      auto BeforeTerm = std::prev(std::prev(IEAI->getParent()->end()));
      auto *SEAI = dyn_cast<SelectEnumAddrInst>(BeforeTerm);
      if (!SEAI)
        return nullptr;

      if (SEAI->getOperand() != IEAI->getOperand())
        return nullptr;

      SILBasicBlock::iterator II = IEAI->getIterator();
      StoreInst *SI = nullptr;
      for (;;) {
        SILInstruction *CI = &*II;
        if (CI == SEAI)
          break;
        ++II;
        SI = dyn_cast<StoreInst>(CI);
        if (SI) {
          if (SI->getDest() == IEAI->getOperand())
            return nullptr;
        }
        // Allow all instructions in between, which don't have any dependency to
        // the store.
        if (AA->mayWriteToMemory(&*II, IEAI->getOperand()))
          return nullptr;
      }

      auto *InjectedEnumElement = IEAI->getElement();
      auto Result = SEAI->getCaseResult(InjectedEnumElement);

      // Replace select_enum_addr by the result
      replaceInstUsesWith(*SEAI, Result);
      return nullptr;
    }

    // Check for the following pattern inside the current basic block:
    // inject_enum_addr %payload_allocation, $EnumType.case1
    // ... no insns storing anything into %payload_allocation
    // switch_enum_addr  %payload_allocation,
    //                   case $EnumType.case1: %bbX,
    //                   case case $EnumType.case2: %bbY
    //                   ...
    //
    // Replace the switch_enum_addr by select_enum_addr, switch_value.
    if (auto *SEI = dyn_cast<SwitchEnumAddrInst>(Term)) {
      if (SEI->getOperand() != IEAI->getOperand())
        return nullptr;

      SILBasicBlock::iterator II = IEAI->getIterator();
      StoreInst *SI = nullptr;
      for (;;) {
        SILInstruction *CI = &*II;
        if (CI == SEI)
          break;
        ++II;
        SI = dyn_cast<StoreInst>(CI);
        if (SI) {
          if (SI->getDest() == IEAI->getOperand())
            return nullptr;
        }
        // Allow all instructions in between, which don't have any dependency to
        // the store.
        if (AA->mayWriteToMemory(&*II, IEAI->getOperand()))
          return nullptr;
      }

      // Replace switch_enum_addr by a branch instruction.
      SILBuilderWithScope B(SEI);
      SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> CaseValues;
      SmallVector<std::pair<SILValue, SILBasicBlock *>, 8> CaseBBs;

      auto IntTy = SILType::getBuiltinIntegerType(32, B.getASTContext());

      for (int i = 0, e = SEI->getNumCases(); i < e; ++i) {
        auto Pair = SEI->getCase(i);
        auto *IL = B.createIntegerLiteral(SEI->getLoc(), IntTy, APInt(32, i, false));
        SILValue ILValue = SILValue(IL);
        CaseValues.push_back(std::make_pair(Pair.first, ILValue));
        CaseBBs.push_back(std::make_pair(ILValue, Pair.second));
      }

      SILValue DefaultValue;
      SILBasicBlock *DefaultBB = nullptr;

      if (SEI->hasDefault()) {
        auto *IL = B.createIntegerLiteral(
          SEI->getLoc(), IntTy,
          APInt(32, static_cast<uint64_t>(SEI->getNumCases()), false));
        DefaultValue = SILValue(IL);
        DefaultBB = SEI->getDefaultBB();
      }

      auto *SEAI = B.createSelectEnumAddr(SEI->getLoc(), SEI->getOperand(), IntTy, DefaultValue, CaseValues);

      B.createSwitchValue(SEI->getLoc(), SILValue(SEAI), DefaultBB, CaseBBs);

      return eraseInstFromFunction(*SEI);
    }

    return nullptr;
  }

  // If the enum does not have a payload create the enum/store since we don't
  // need to worry about payloads.
  if (!IEAI->getElement()->hasAssociatedValues()) {
    EnumInst *E =
      Builder.createEnum(IEAI->getLoc(), SILValue(), IEAI->getElement(),
                          IEAI->getOperand()->getType().getObjectType());
    Builder.createStore(IEAI->getLoc(), E, IEAI->getOperand(),
                        StoreOwnershipQualifier::Unqualified);
    return eraseInstFromFunction(*IEAI);
  }

  // Ok, we have a payload enum, make sure that we have a store previous to
  // us...
  SILValue ASO = IEAI->getOperand();
  if (!isa<AllocStackInst>(ASO)) {
    return nullptr;
  }
  InitEnumDataAddrInst *DataAddrInst = nullptr;
  InjectEnumAddrInst *EnumAddrIns = nullptr;
  InstructionSetWithSize WriteSet(IEAI->getFunction());
  for (auto UsersIt : ASO->getUses()) {
    SILInstruction *CurrUser = UsersIt->getUser();
    if (CurrUser->isDeallocatingStack()) {
      // we don't care about the dealloc stack instructions
      continue;
    }
    if (CurrUser->isDebugInstruction() || isa<LoadInst>(CurrUser)) {
      // These Instructions are a non-risky use we can ignore
      continue;
    }
    if (auto *CurrInst = dyn_cast<InitEnumDataAddrInst>(CurrUser)) {
      if (DataAddrInst) {
        return nullptr;
      }
      DataAddrInst = CurrInst;
      continue;
    }
    if (auto *CurrInst = dyn_cast<InjectEnumAddrInst>(CurrUser)) {
      if (EnumAddrIns) {
        return nullptr;
      }
      EnumAddrIns = CurrInst;
      continue;
    }
    if (isa<StoreInst>(CurrUser)) {
      // The only MayWrite Instruction we can safely handle
      WriteSet.insert(CurrUser);
      continue;
    }
    // It is too risky to continue if it is any other instruction.
    return nullptr;
  }

  if (!DataAddrInst || !EnumAddrIns) {
    return nullptr;
  }
  assert((EnumAddrIns == IEAI) &&
         "Found InitEnumDataAddrInst differs from IEAI");
  // Make sure the enum pattern instructions are the only ones which write to
  // this location
  if (!WriteSet.empty()) {
    // Analyze the instructions (implicit dominator analysis)
    // If we find any of MayWriteSet, return nullptr
    SILBasicBlock *InitEnumBB = DataAddrInst->getParent();
    assert(InitEnumBB && "DataAddrInst is not in a valid Basic Block");
    llvm::SmallVector<SILInstruction *, 64> Worklist;
    Worklist.push_back(IEAI);
    BasicBlockSet Preds(InitEnumBB->getParent());
    Preds.insert(IEAI->getParent());
    while (!Worklist.empty()) {
      SILInstruction *CurrIns = Worklist.pop_back_val();
      SILBasicBlock *CurrBB = CurrIns->getParent();

      if (CurrBB->isEntry() && CurrBB != InitEnumBB) {
        // reached prologue without encountering the init bb
        return nullptr;
      }

      for (auto InsIt = ++CurrIns->getIterator().getReverse();
           InsIt != CurrBB->rend(); ++InsIt) {
        SILInstruction *Ins = &*InsIt;
        if (Ins == DataAddrInst) {
          // don't care about what comes before init enum in the basic block
          break;
        }
        if (WriteSet.contains(Ins) != 0) {
          return nullptr;
        }
      }

      if (CurrBB == InitEnumBB) {
        continue;
      }

      // Go to predecessors and do all that again
      for (SILBasicBlock *Pred : CurrBB->getPredecessorBlocks()) {
        // If it's already in the set, then we've already queued and/or
        // processed the predecessors.
        if (Preds.insert(Pred)) {
          Worklist.push_back(&*Pred->rbegin());
        }
      }
    }
  }

  // Check if we can replace all stores to the enum data with an enum of the
  // stored value. We can also handle tuples as payloads, e.g.
  //
  //   %payload_addr = init_enum_data_addr %enum_addr
  //   %elem0_addr = tuple_element_addr %payload_addr, 0
  //   %elem1_addr = tuple_element_addr %payload_addr, 1
  //   store %payload0 to %elem0_addr
  //   store %payload1 to %elem1_addr
  //   inject_enum_addr %enum_addr, $EnumType.case
  //
  if (createValueFromAddr(DataAddrInst, nullptr, DataAddrInst->getLoc())) {
    SILValue en =
      createValueFromAddr(DataAddrInst, &Builder, DataAddrInst->getLoc());
    assert(en);

    // In that case, create the payload enum/store.
    EnumInst *E = Builder.createEnum(
        DataAddrInst->getLoc(), en, DataAddrInst->getElement(),
        DataAddrInst->getOperand()->getType().getObjectType());
    Builder.createStore(DataAddrInst->getLoc(), E, DataAddrInst->getOperand(),
                        StoreOwnershipQualifier::Unqualified);
    // Cleanup.
    getInstModCallbacks().notifyWillBeDeleted(DataAddrInst);
    deleter.forceDeleteWithUsers(DataAddrInst);
    deleter.forceDelete(IEAI);
    deleter.cleanupDeadInstructions();
    return nullptr;
  }

  // Check whether we have an apply initializing the enum.
  //  %iedai = init_enum_data_addr %enum_addr
  //         = apply(%iedai,...)
  //  inject_enum_addr %enum_addr
  //
  // We can localize the store to an alloc_stack.
  // Allowing us to perform the same optimization as for the store.
  //
  //  %alloca = alloc_stack
  //            apply(%alloca,...)
  //  %load = load %alloca
  //  %1 = enum $EnumType, $EnumType.case, %load
  //  store %1 to %nopayload_addr
  //
  auto *AI = dyn_cast_or_null<ApplyInst>(getSingleNonDebugUser(DataAddrInst));
  if (!AI)
    return nullptr;

  unsigned ArgIdx = 0;
  Operand *EnumInitOperand = nullptr;
  for (auto &Opd : AI->getArgumentOperands()) {
    // Found an apply that initializes the enum. We can optimize this by
    // localizing the initialization to an alloc_stack and loading from it.
    DataAddrInst = dyn_cast<InitEnumDataAddrInst>(Opd.get());
    if (DataAddrInst && DataAddrInst->getOperand() == IEAI->getOperand()
        && ArgIdx < AI->getSubstCalleeConv().getNumIndirectSILResults()) {
      EnumInitOperand = &Opd;
      break;
    }
    ++ArgIdx;
  }

  if (!EnumInitOperand) {
    return nullptr;
  }

  SILType elemType = IEAI->getOperand()->getType().getEnumElementType(
      IEAI->getElement(), IEAI->getFunction());
  auto *structDecl = elemType.getStructOrBoundGenericStruct();

  // We cannot create a struct when it has unreferenceable storage.
  if (elemType.isEmpty(*IEAI->getFunction()) && structDecl &&
      findUnreferenceableStorage(structDecl, elemType, IEAI->getFunction())) {
    return nullptr;
  }

  // Localize the address access.
  Builder.setInsertionPoint(AI);
  auto *AllocStack = Builder.createAllocStack(DataAddrInst->getLoc(),
                                              EnumInitOperand->get()->getType());
  EnumInitOperand->set(AllocStack);
  Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(AI)));
  SILValue enumValue;

  // If it is an empty type, apply may not initialize it.
  // Create an empty value of the empty type and store it to a new local.
  if (elemType.isEmpty(*IEAI->getFunction())) {
    enumValue = createEmptyAndUndefValue(
        elemType.getObjectType(), &*Builder.getInsertionPoint(),
        Builder.getBuilderContext(), /*noUndef*/ true);
  } else {
    enumValue = Builder.createLoad(DataAddrInst->getLoc(), AllocStack,
                                   LoadOwnershipQualifier::Unqualified);
  }
  EnumInst *E = Builder.createEnum(
      DataAddrInst->getLoc(), enumValue, DataAddrInst->getElement(),
      DataAddrInst->getOperand()->getType().getObjectType());
  Builder.createStore(DataAddrInst->getLoc(), E, DataAddrInst->getOperand(),
                      StoreOwnershipQualifier::Unqualified);
  Builder.createDeallocStack(DataAddrInst->getLoc(), AllocStack);
  eraseInstFromFunction(*DataAddrInst);
  return eraseInstFromFunction(*IEAI);
}

SILInstruction *
SILCombiner::
visitUnreachableInst(UnreachableInst *UI) {
  // Make sure that this unreachable instruction
  // is the last instruction in the basic block.
  if (UI->getParent()->getTerminator() == UI)
    return nullptr;

  // Collect together all the instructions after this point
  llvm::SmallVector<SILInstruction *, 32> ToRemove;
  for (auto Inst = UI->getParent()->rbegin(); &*Inst != UI; ++Inst)
    ToRemove.push_back(&*Inst);

  for (auto *Inst : ToRemove) {
    // Replace any still-remaining uses with undef values and erase.
    Inst->replaceAllUsesOfAllResultsWithUndef();
    eraseInstFromFunction(*Inst);
  }

  return nullptr;
}

/// We really want to eliminate unchecked_take_enum_data_addr. Thus if we find
/// one go through all of its uses and see if they are all loads and address
/// projections (in many common situations this is true). If so, perform:
///
/// (load (unchecked_take_enum_data_addr x)) -> (unchecked_enum_data (load x))
///
/// FIXME: Implement this for address projections.
///
/// Also remove dead unchecked_take_enum_data_addr:
///   (destroy_addr (unchecked_take_enum_data_addr x)) -> (destroy_addr x)
SILInstruction *SILCombiner::visitUncheckedTakeEnumDataAddrInst(
    UncheckedTakeEnumDataAddrInst *tedai) {
  // If our TEDAI has no users, there is nothing to do.
  if (tedai->use_empty())
    return nullptr;

  bool onlyLoads = true;
  bool onlyDestroys = true;
  for (auto U : getNonDebugUses(tedai)) {
    // Check if it is load. If it is not a load, bail...
    if (!isa<LoadInst>(U->getUser()) && !isa<LoadBorrowInst>(U->getUser()))
      onlyLoads = false;

    // If we have a load_borrow, perform an additional check that we do not have
    // any reborrow uses. We do not handle reborrows in this optimization.
    if (auto *lbi = dyn_cast<LoadBorrowInst>(U->getUser())) {
      // false if any consuming use is not an end_borrow.
      for (auto *use : lbi->getConsumingUses()) {
        if (!isa<EndBorrowInst>(use->getUser())) {
          onlyLoads = false;
          break;
        }
      }
    }

    if (!isa<DestroyAddrInst>(U->getUser()))
      onlyDestroys = false;
  }

  if (onlyDestroys) {
    // The unchecked_take_enum_data_addr is dead: remove it and replace all
    // destroys with a destroy of its operand.
    while (!tedai->use_empty()) {
      Operand *use = *tedai->use_begin();
      SILInstruction *user = use->getUser();
      if (auto *dai = dyn_cast<DestroyAddrInst>(user)) {
        dai->setOperand(tedai->getOperand());
      } else {
        assert(user->isDebugInstruction());
        eraseInstFromFunction(*user);
      }
    }
    return eraseInstFromFunction(*tedai);
  }

  if (!onlyLoads)
    return nullptr;

  // If our enum type is address only, we cannot do anything here. The key
  // thing to remember is that an enum is address only if any of its cases are
  // address only. So we *could* have a loadable payload resulting from the
  // TEDAI without the TEDAI being loadable itself.
  if (tedai->getOperand()->getType().isAddressOnly(*tedai->getFunction()))
    return nullptr;

  // Grab the EnumAddr.
  SILLocation loc = tedai->getLoc();
  Builder.setCurrentDebugScope(tedai->getDebugScope());
  SILValue enumAddr = tedai->getOperand();
  EnumElementDecl *enumElt = tedai->getElement();
  SILType payloadType = tedai->getType().getObjectType();

  // Go back through a second time now that we know all of our users are
  // loads. Perform the transformation on each load at the load's use site. The
  // reason that we have to do this is that otherwise we would be hoisting the
  // loads causing us to need to consider additional ARC issues.
  while (!tedai->use_empty()) {
    auto *use = *tedai->use_begin();
    auto *user = use->getUser();

    // Delete debug insts.
    if (user->isDebugInstruction()) {
      eraseInstFromFunction(*user);
      continue;
    }

    // Insert a new Load of the enum and extract the data from that.
    //
    // NOTE: This is potentially hoisting the load, so we need to insert
    // compensating destroys.
    auto *svi = cast<SingleValueInstruction>(user);
    SILValue newValue;
    if (auto *oldLoad = dyn_cast<LoadInst>(svi)) {
      SILBuilderWithScope localBuilder(oldLoad, Builder);
      // If the old load is trivial and our enum addr is non-trivial, we need to
      // use a load_borrow here. We know that the unchecked_enum_data will
      // produce a trivial value meaning that we can just do a
      // load_borrow/immediately end the lifetime here.
      if (oldLoad->getOwnershipQualifier() == LoadOwnershipQualifier::Trivial &&
          !enumAddr->getType().isTrivial(Builder.getFunction())) {
        localBuilder.emitScopedBorrowOperation(
            loc, enumAddr, [&](SILValue newLoad) {
              newValue = localBuilder.createUncheckedEnumData(
                  loc, newLoad, enumElt, payloadType);
            });
      } else {
        auto newLoad = localBuilder.emitLoadValueOperation(
            loc, enumAddr, oldLoad->getOwnershipQualifier());
        newValue = localBuilder.createUncheckedEnumData(loc, newLoad, enumElt,
                                                        payloadType);
      }
    } else if (auto *lbi = cast<LoadBorrowInst>(svi)) {
      SILBuilderWithScope localBuilder(lbi, Builder);
      auto newLoad = localBuilder.emitLoadBorrowOperation(loc, enumAddr);
      for (auto ui = lbi->consuming_use_begin(), ue = lbi->consuming_use_end();
           ui != ue; ui = lbi->consuming_use_begin()) {
        // We already checked that all of our uses here are end_borrow above.
        assert(isa<EndBorrowInst>(ui->getUser()) &&
               "Expected only end_borrow consuming uses");
        ui->set(newLoad);
      }
      // Any lifetime ending uses of our original load_borrow have been
      // rewritten by the previous loop to be on the new load_borrow. The reason
      // that we must do this is end_borrows only are placed on borrow
      // introducing guaranteed values and our unchecked_enum_data (unlike the
      // old load_borrow of the same type) is not one.
      newValue = localBuilder.createUncheckedEnumData(loc, newLoad, enumElt,
                                                      payloadType);
    }
    assert(newValue);

    // Replace all uses of the old load with the newValue and erase the old
    // load.
    replaceInstUsesWith(*svi, newValue);
    eraseInstFromFunction(*svi);
  }

  return eraseInstFromFunction(*tedai);
}

SILInstruction *SILCombiner::visitCondBranchInst(CondBranchInst *CBI) {
  // NOTE: All of the following optimizations do invalidates branches by
  // replacing the branches, but do not modify the underlying CFG properties
  // such as dominance and reachability.

  // cond_br(xor(x, 1)), t_label, f_label -> cond_br x, f_label, t_label
  // cond_br(x == 0), t_label, f_label -> cond_br x, f_label, t_label
  // cond_br(x != 1), t_label, f_label -> cond_br x, f_label, t_label
  SILValue X;
  if (match(CBI->getCondition(),
            m_CombineOr(
                // xor(x, 1)
                m_ApplyInst(BuiltinValueKind::Xor, m_SILValue(X), m_One()),
                // xor(1,x)
                m_ApplyInst(BuiltinValueKind::Xor, m_One(), m_SILValue(X)),
                // x == 0
                m_ApplyInst(BuiltinValueKind::ICMP_EQ, m_SILValue(X), m_Zero()),
                // x != 1
                m_ApplyInst(BuiltinValueKind::ICMP_NE, m_SILValue(X),
                            m_One()))) &&
      X->getType() ==
          SILType::getBuiltinIntegerType(1, CBI->getModule().getASTContext())) {
    SmallVector<SILValue, 4> OrigTrueArgs, OrigFalseArgs;
    for (const auto Op : CBI->getTrueArgs())
      OrigTrueArgs.push_back(Op);
    for (const auto Op : CBI->getFalseArgs())
      OrigFalseArgs.push_back(Op);
    return Builder.createCondBranch(CBI->getLoc(), X,
                                    CBI->getFalseBB(), OrigFalseArgs,
                                    CBI->getTrueBB(), OrigTrueArgs);
  }

  // cond_br (select_enum) -> switch_enum
  // This pattern often occurs as a result of using optionals.
  if (auto *SEI = dyn_cast<SelectEnumInst>(CBI->getCondition())) {
    // No bb args should be passed
    if (!CBI->getTrueArgs().empty() || !CBI->getFalseArgs().empty())
      return nullptr;
    auto EnumOperandTy = SEI->getEnumOperand()->getType();
    // Type should be loadable and copyable.
    // TODO: Generalize to work without copying address-only or noncopyable
    // values.
    if (!EnumOperandTy.isLoadable(*SEI->getFunction())) {
      return nullptr;
    }
    if (EnumOperandTy.isMoveOnly()) {
      return nullptr;
    }

    // Result of the select_enum should be a boolean.
    if (SEI->getType() != CBI->getCondition()->getType())
      return nullptr;

    // If any of cond_br edges are critical edges, do not perform
    // the transformation, as SIL in canonical form may
    // only have critical edges that are originating from cond_br
    // instructions.
    if (!CBI->getTrueBB()->getSinglePredecessorBlock())
      return nullptr;

    if (!CBI->getFalseBB()->getSinglePredecessorBlock())
      return nullptr;

    SILBasicBlock *DefaultBB = nullptr;
    match_integer<0> Zero;

    if (SEI->hasDefault()) {
      // Default result should be an integer constant.
      if (!isa<IntegerLiteralInst>(SEI->getDefaultResult()))
        return nullptr;
      bool isFalse = match(SEI->getDefaultResult(), Zero);
      // Pick the default BB.
      DefaultBB = isFalse ? CBI->getFalseBB() : CBI->getTrueBB();
    }

    if (!DefaultBB) {
      // Find the targets for the majority of cases and pick it
      // as a default BB.
      unsigned TrueBBCases = 0;
      unsigned FalseBBCases = 0;
      for (int i = 0, e = SEI->getNumCases(); i < e; ++i) {
        auto Pair = SEI->getCase(i);
        if (isa<IntegerLiteralInst>(Pair.second)) {
          bool isFalse = match(Pair.second, Zero);
          if (!isFalse) {
            ++TrueBBCases;
          } else {
            ++FalseBBCases;
          }
          continue;
        }
        return nullptr;
      }

      if (FalseBBCases > TrueBBCases)
        DefaultBB = CBI->getFalseBB();
      else
        DefaultBB = CBI->getTrueBB();
    }

    assert(DefaultBB && "Default should be defined at this point");

    unsigned NumTrueBBCases = 0;
    unsigned NumFalseBBCases = 0;

    if (DefaultBB == CBI->getFalseBB())
      ++NumFalseBBCases;
    else
      ++NumTrueBBCases;

    // We can now convert cond_br(select_enum) into switch_enum.
    SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 8> Cases;
    for (int i = 0, e = SEI->getNumCases(); i < e; ++i) {
      auto Pair = SEI->getCase(i);

      // Bail if one of the results is not an integer constant.
      if (!isa<IntegerLiteralInst>(Pair.second))
        return nullptr;

      // Add a switch case.
      bool isFalse = match(Pair.second, Zero);
      if (!isFalse && DefaultBB != CBI->getTrueBB()) {
        Cases.push_back(std::make_pair(Pair.first, CBI->getTrueBB()));
        ++NumTrueBBCases;
      }
      if (isFalse && DefaultBB != CBI->getFalseBB()) {
        Cases.push_back(std::make_pair(Pair.first, CBI->getFalseBB()));
        ++NumFalseBBCases;
      }
    }

    // Bail if a switch_enum would introduce a critical edge.
    if (NumTrueBBCases > 1 || NumFalseBBCases > 1)
      return nullptr;

    if (!hasOwnership()) {
      return Builder.createSwitchEnum(SEI->getLoc(), SEI->getEnumOperand(),
                                      DefaultBB, Cases);
    }

    // If we do have ownership, we need to do significantly more
    // work. Specifically:
    //
    // 1. Our select_enum may not be right next to our cond_br, so we need to
    //    lifetime extend our enum parameter to our switch_enum.
    //
    // 2. A switch_enum needs to propagate its operands into destination block
    //    arguments. We need to create those.
    //
    // 3. In each destination block, we need to create an argument and end the
    //    lifetime of that argument.
    SILValue selectEnumOperand = SEI->getEnumOperand();
    SILValue switchEnumOperand = selectEnumOperand;
    if (selectEnumOperand->getOwnershipKind() != OwnershipKind::None) {
      switchEnumOperand =
          makeCopiedValueAvailable(selectEnumOperand, Builder.getInsertionBB());
    }
    auto *switchEnum = Builder.createSwitchEnum(
        SEI->getLoc(), switchEnumOperand, DefaultBB, Cases);
    auto enumOperandType = SEI->getEnumOperand()->getType();
    for (auto pair : Cases) {
      // We only need to create the phi argument if our case doesn't have an
      // associated value.
      auto *enumEltDecl = pair.first;
      if (!enumEltDecl->hasAssociatedValues())
        continue;

      auto *block = pair.second;

      auto enumEltType =
          enumOperandType.getEnumElementType(enumEltDecl, block->getParent());
      auto *arg = switchEnum->createResult(block, enumEltType);
      SILBuilderWithScope innerBuilder(arg->getNextInstruction(), Builder);
      // The switch enum may change ownership resulting in Guaranteed or None.
      if (arg->getOwnershipKind() == OwnershipKind::Owned) {
        auto loc = RegularLocation::getAutoGeneratedLocation();
        innerBuilder.emitDestroyValueOperation(loc, arg);
      }
    }
    if (auto defaultArg = switchEnum->createDefaultResult()) {
      SILBuilderWithScope innerBuilder(defaultArg->getNextInstruction(), SEI);
      // The switch enum may change ownership resulting in Guaranteed or None.
      if (defaultArg->getOwnershipKind() == OwnershipKind::Owned) {
        auto loc = RegularLocation::getAutoGeneratedLocation();
        innerBuilder.emitDestroyValueOperation(loc, defaultArg);
      }
    }
    return switchEnum;
  }
  return nullptr;
}

SILInstruction *SILCombiner::visitSelectEnumInst(SelectEnumInst *SEI) {
  // Canonicalize a select_enum: if the default refers to exactly one case, then
  // replace the default with that case.
  if (SEI->hasDefault()) {
    NullablePtr<EnumElementDecl> elementDecl = SEI->getUniqueCaseForDefault();
    if (elementDecl.isNonNull()) {
      // Construct a new instruction by copying all the case entries.
      SmallVector<std::pair<EnumElementDecl *, SILValue>, 4> CaseValues;
      for (int idx = 0, numIdcs = SEI->getNumCases(); idx < numIdcs; ++idx) {
        CaseValues.push_back(SEI->getCase(idx));
      }
      // Add the default-entry of the original instruction as case-entry.
      CaseValues.push_back(
          std::make_pair(elementDecl.get(), SEI->getDefaultResult()));

      return Builder.createSelectEnum(SEI->getLoc(), SEI->getEnumOperand(),
                                      SEI->getType(), SILValue(), CaseValues);
    }
  }

  // TODO: We should be able to flat-out replace the select_enum instruction
  // with the selected value in another pass. For parity with the enum_is_tag
  // combiner pass, handle integer literals for now.
  auto *EI = dyn_cast<EnumInst>(SEI->getEnumOperand());
  if (!EI)
    return nullptr;

  SILValue selected;
  for (unsigned i = 0, e = SEI->getNumCases(); i < e; ++i) {
    auto casePair = SEI->getCase(i);
    if (casePair.first == EI->getElement()) {
      selected = casePair.second;
      break;
    }
  }
  if (!selected)
    selected = SEI->getDefaultResult();

  if (auto *ILI = dyn_cast<IntegerLiteralInst>(selected)) {
    return Builder.createIntegerLiteral(ILI->getLoc(), ILI->getType(),
                                        ILI->getValue());
  }

  return nullptr;
}

SILInstruction *SILCombiner::visitTupleExtractInst(TupleExtractInst *TEI) {
  // tuple_extract(apply([add|sub|...]overflow(x, 0)), 1) -> 0
  // if it can be proven that no overflow can happen.
  if (TEI->getFieldIndex() == 1) {
    Builder.setCurrentDebugScope(TEI->getDebugScope());
    if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand()))
      if (!canOverflow(BI))
        return Builder.createIntegerLiteral(TEI->getLoc(), TEI->getType(),
                                            APInt(1, 0));
  }

  return nullptr;
}

SILInstruction *SILCombiner::visitFixLifetimeInst(FixLifetimeInst *fli) {
  // fix_lifetime(alloc_stack) -> fix_lifetime(load(alloc_stack))
  Builder.setCurrentDebugScope(fli->getDebugScope());
  if (auto *ai = dyn_cast<AllocStackInst>(fli->getOperand())) {
    if (fli->getOperand()->getType().isLoadable(*fli->getFunction())) {
      // load when ossa is disabled
      auto load = Builder.emitLoadBorrowOperation(fli->getLoc(), ai);
      Builder.createFixLifetime(fli->getLoc(), load);
      // no-op when ossa is disabled
      Builder.emitEndBorrowOperation(fli->getLoc(), load);
      return eraseInstFromFunction(*fli);
    }
  }
  return nullptr;
}

static std::optional<SILType>
shouldReplaceCallByContiguousArrayStorageAnyObject(SILFunction &F,
                                                   CanType storageMetaTy) {
  auto metaTy = dyn_cast<MetatypeType>(storageMetaTy);
  if (!metaTy || metaTy->getRepresentation() != MetatypeRepresentation::Thick)
    return std::nullopt;

  auto storageTy = metaTy.getInstanceType()->getCanonicalType();
  if (!storageTy->is_ContiguousArrayStorage())
    return std::nullopt;

  auto boundGenericTy = dyn_cast<BoundGenericType>(storageTy);
  if (!boundGenericTy)
    return std::nullopt;

  // On SwiftStdlib 5.7 we can replace the call.
  auto &ctxt = storageMetaTy->getASTContext();
  auto deployment = AvailabilityContext::forDeploymentTarget(ctxt);
  if (!deployment.isContainedIn(ctxt.getSwift57Availability()))
    return std::nullopt;

  auto genericArgs = boundGenericTy->getGenericArgs();
  if (genericArgs.size() != 1)
    return std::nullopt;

  auto ty = genericArgs[0]->getCanonicalType();
  if (!ty->getClassOrBoundGenericClass() && !ty->isObjCExistentialType())
    return std::nullopt;
  // C++ foreign reference types have custom release/retain operations and are
  // not AnyObjects.
  if (ty->isForeignReferenceType())
    return std::nullopt;

  auto anyObjectTy = ctxt.getAnyObjectType();
  auto arrayStorageTy =
      BoundGenericClassType::get(ctxt.get_ContiguousArrayStorageDecl(), nullptr,
                                 {anyObjectTy})
          ->getCanonicalType();
  return F.getTypeLowering(arrayStorageTy).getLoweredType();
}

SILInstruction *
SILCombiner::
visitAllocRefDynamicInst(AllocRefDynamicInst *ARDI) {
  SmallVector<SILValue, 4> Counts;
  auto getCounts = [&] (AllocRefDynamicInst *AI) -> ArrayRef<SILValue> {
    for (Operand &Op : AI->getTailAllocatedCounts()) {
      Counts.push_back(Op.get());
    }
    return Counts;
  };

  // %1 = metatype $X.Type
  // %2 = alloc_ref_dynamic %1 : $X.Type, Y
  // ->
  // alloc_ref X
  Builder.setCurrentDebugScope(ARDI->getDebugScope());

  SILValue MDVal = ARDI->getMetatypeOperand();
  while (auto *UCI = dyn_cast<UpcastInst>(MDVal)) {
    // For simplicity ignore a cast of an `alloc_ref [stack]`. It would need more
    // work to keep its `dealloc_stack_ref` correct.
    if (ARDI->canAllocOnStack())
      return nullptr;
    MDVal = UCI->getOperand();
  }

  SingleValueInstruction *NewInst = nullptr;
  if (auto *MI = dyn_cast<MetatypeInst>(MDVal)) {
    auto MetaTy = MI->getType().castTo<MetatypeType>();
    auto InstanceTy = MetaTy.getInstanceType();
    if (auto SelfTy = dyn_cast<DynamicSelfType>(InstanceTy))
      InstanceTy = SelfTy.getSelfType();
    auto SILInstanceTy = SILType::getPrimitiveObjectType(InstanceTy);
    if (!SILInstanceTy.getClassOrBoundGenericClass())
      return nullptr;

    NewInst = Builder.createAllocRef(ARDI->getLoc(), SILInstanceTy,
                                     ARDI->isObjC(), ARDI->canAllocOnStack(),
                                     /*isBare=*/ false,
                                     ARDI->getTailAllocatedTypes(),
                                     getCounts(ARDI));

  } else if (isa<SILArgument>(MDVal)) {

    // checked_cast_br [exact] $Y.Type to $X.Type, bbSuccess, bbFailure
    // ...
    // bbSuccess(%T: $X.Type)
    // alloc_ref_dynamic %T : $X.Type, $X
    // ->
    // alloc_ref $X
    auto *PredBB = ARDI->getParent()->getSinglePredecessorBlock();
    if (!PredBB)
      return nullptr;
    auto *CCBI = dyn_cast<CheckedCastBranchInst>(PredBB->getTerminator());
    if (CCBI && CCBI->isExact() && ARDI->getParent() == CCBI->getSuccessBB()) {
      auto MetaTy = cast<MetatypeType>(CCBI->getTargetFormalType());
      auto InstanceTy = MetaTy.getInstanceType();
      if (auto SelfTy = dyn_cast<DynamicSelfType>(InstanceTy))
        InstanceTy = SelfTy.getSelfType();
      auto SILInstanceTy = SILType::getPrimitiveObjectType(InstanceTy);
      if (!SILInstanceTy.getClassOrBoundGenericClass())
        return nullptr;
      NewInst = Builder.createAllocRef(ARDI->getLoc(), SILInstanceTy,
                                       ARDI->isObjC(), ARDI->canAllocOnStack(),
                                       /*isBare=*/ false,
                                       ARDI->getTailAllocatedTypes(),
                                       getCounts(ARDI));
    }
  } else if (auto *AI = dyn_cast<ApplyInst>(MDVal)) {
    if (ARDI->canAllocOnStack())
      return nullptr;

    SILFunction *SF = AI->getReferencedFunctionOrNull();
    if (!SF)
      return nullptr;

    if (!SF->hasSemanticsAttr(semantics::ARRAY_GET_CONTIGUOUSARRAYSTORAGETYPE))
      return nullptr;

    auto use = AI->getSingleUse();
    if (!use || use->getUser() != ARDI)
      return nullptr;

    auto storageTy = AI->getType().getASTType();
    // getContiguousArrayStorageType<SomeClass> =>
    //   ContiguousArrayStorage<AnyObject>
    auto instanceTy = shouldReplaceCallByContiguousArrayStorageAnyObject(
        *AI->getFunction(), storageTy);
    if (!instanceTy)
      return nullptr;
    NewInst = Builder.createAllocRef(
        ARDI->getLoc(), *instanceTy, ARDI->isObjC(), false,
        /*isBare=*/ false,
        ARDI->getTailAllocatedTypes(), getCounts(ARDI));
    NewInst = Builder.createUncheckedRefCast(ARDI->getLoc(), NewInst,
                                             ARDI->getType());
    return NewInst;
  }
  if (NewInst && NewInst->getType() != ARDI->getType()) {
    // In case the argument was an upcast of the metatype, we have to upcast the
    // resulting reference.
    assert(!ARDI->canAllocOnStack() && "upcasting alloc_ref [stack] not supported");
    NewInst = Builder.createUpcast(ARDI->getLoc(), NewInst, ARDI->getType());
  }
  return NewInst;
}

/// Returns true if \p val is a literal instruction or a struct of a literal
/// instruction.
/// What we want to catch here is a UnsafePointer<Int8> of a string literal.
static bool isLiteral(SILValue val) {
  while (auto *str = dyn_cast<StructInst>(val)) {
    if (str->getNumOperands() != 1)
      return false;
    val = str->getOperand(0);
  }
  return isa<LiteralInst>(val);
}

SILInstruction *SILCombiner::visitMarkDependenceInst(MarkDependenceInst *mdi) {
  if (!mdi->getFunction()->hasOwnership()) {
    // Simplify the base operand of a MarkDependenceInst to eliminate
    // unnecessary instructions that aren't adding value.
    //
    // Conversions to Optional.Some(x) often happen here, this isn't important
    // for us, we can just depend on 'x' directly.
    if (auto *eiBase = dyn_cast<EnumInst>(mdi->getBase())) {
      if (eiBase->hasOperand()) {
        mdi->setBase(eiBase->getOperand());
        if (eiBase->use_empty()) {
          eraseInstFromFunction(*eiBase);
        }
        return mdi;
      }
    }

    // Conversions from a class to AnyObject also happen a lot, we can just
    // depend on the class reference.
    if (auto *ier = dyn_cast<InitExistentialRefInst>(mdi->getBase())) {
      mdi->setBase(ier->getOperand());
      if (ier->use_empty())
        eraseInstFromFunction(*ier);
      return mdi;
    }

    // Conversions from a class to AnyObject also happen a lot, we can just
    // depend on the class reference.
    if (auto *oeri = dyn_cast<OpenExistentialRefInst>(mdi->getBase())) {
      mdi->setBase(oeri->getOperand());
      if (oeri->use_empty())
        eraseInstFromFunction(*oeri);
      return mdi;
    }
  }

  // Sometimes due to specialization/builtins, we can get a mark_dependence
  // whose base is a trivial typed object. In such a case, the mark_dependence
  // does not have a meaning, so just eliminate it.
  {
    SILType baseType = mdi->getBase()->getType();
    if (baseType.isObject() && baseType.isTrivial(*mdi->getFunction())) {
      SILValue value = mdi->getValue();
      mdi->replaceAllUsesWith(value);
      return eraseInstFromFunction(*mdi);
    }
  }

  if (isLiteral(mdi->getValue())) {
    // A literal lives forever, so no mark_dependence is needed.
    // This pattern can occur after StringOptimization when a utf8CString of
    // a literal is replace by the string_literal itself.
    replaceInstUsesWith(*mdi, mdi->getValue());
    return eraseInstFromFunction(*mdi);
  }

  return nullptr;
}

SILInstruction *
SILCombiner::visitClassifyBridgeObjectInst(ClassifyBridgeObjectInst *cboi) {
  auto *urc = dyn_cast<UncheckedRefCastInst>(cboi->getOperand());
  if (!urc)
    return nullptr;

  auto type = urc->getOperand()->getType().getASTType();
  if (ClassDecl *cd = type->getClassOrBoundGenericClass()) {
    if (!cd->isObjC()) {
      auto int1Ty = SILType::getBuiltinIntegerType(1, Builder.getASTContext());
      SILValue zero = Builder.createIntegerLiteral(cboi->getLoc(), int1Ty, 0);
      return Builder.createTuple(cboi->getLoc(), {zero, zero});
    }
  }

  return nullptr;
}

/// Returns true if reference counting and debug_value users of a global_value
/// can be deleted.
static bool checkGlobalValueUsers(SILValue val,
                                  SmallVectorImpl<SILInstruction *> &toDelete) {
  for (Operand *use : val->getUses()) {
    SILInstruction *user = use->getUser();
    if (isa<RefCountingInst>(user) || isa<DebugValueInst>(user)) {
      toDelete.push_back(user);
      continue;
    }
    if (auto *upCast = dyn_cast<UpcastInst>(user)) {
      if (!checkGlobalValueUsers(upCast, toDelete))
        return false;
      continue;
    }
    // Projection instructions don't access the object header, so they don't
    // prevent deleting reference counting instructions.
    if (isa<RefElementAddrInst>(user) || isa<RefTailAddrInst>(user))
      continue;
    return false;
  }
  return true;
}

SILInstruction *
SILCombiner::legacyVisitGlobalValueInst(GlobalValueInst *globalValue) {
  // Delete all reference count instructions on a global_value if the only other
  // users are projections (ref_element_addr and ref_tail_addr).
  SmallVector<SILInstruction *, 8> toDelete;
  if (!checkGlobalValueUsers(globalValue, toDelete))
    return nullptr;
  for (SILInstruction *inst : toDelete) {
    eraseInstFromFunction(*inst);
  }
  return nullptr;

}

// Simplify `differentiable_function_extract` of `differentiable_function`.
//
// Before:
// %diff_func = differentiable_function(%orig, %jvp, %vjp)
// %orig' = differentiable_function_extract [original] %diff_func
// %jvp'  = differentiable_function_extract [jvp]      %diff_func
// %vjp'  = differentiable_function_extract [vjp]      %diff_func
//
// After:
// %orig' = %orig
// %jvp' = %jvp
// %vjp' = %vjp
SILInstruction *
SILCombiner::visitDifferentiableFunctionExtractInst(DifferentiableFunctionExtractInst *DFEI) {
  auto *DFI = dyn_cast<DifferentiableFunctionInst>(DFEI->getOperand());
  if (!DFI)
    return nullptr;

  if (!DFI->hasExtractee(DFEI->getExtractee()))
    return nullptr;

  SILValue newValue = DFI->getExtractee(DFEI->getExtractee());

  // If the type of the `differentiable_function` operand does not precisely
  // match the type of the original `differentiable_function_extract`,
  // create a `convert_function`.
  if (newValue->getType() != DFEI->getType()) {
    CanSILFunctionType opTI = newValue->getType().castTo<SILFunctionType>();
    CanSILFunctionType resTI = DFEI->getType().castTo<SILFunctionType>();
    if (!opTI->isABICompatibleWith(resTI, *DFEI->getFunction()).isCompatible())
      return nullptr;

    std::tie(newValue, std::ignore) =
      castValueToABICompatibleType(&Builder, DFEI->getLoc(),
                                   newValue,
                                   newValue->getType(), DFEI->getType(), {});
  }

  replaceInstUsesWith(*DFEI, newValue);
  return eraseInstFromFunction(*DFEI);
}

// Simplify `pack_length` with constant-length pack.
//
// Before:
// %len = pack_length $Pack{Int, String, Float}
//
// After:
// %len = integer_literal Builtin.Word, 3
SILInstruction *SILCombiner::visitPackLengthInst(PackLengthInst *PLI) {
  auto PackTy = PLI->getPackType();
  if (!PackTy->containsPackExpansionType()) {
    return Builder.createIntegerLiteral(PLI->getLoc(), PLI->getType(),
                                        PackTy->getNumElements());
  }

  return nullptr;
}

// Simplify `pack_element_get` where the index is a `dynamic_pack_index` with
// a constant operand.
//
// Before:
// %idx = integer_literal Builtin.Word, N
// %pack_idx = dynamic_pack_index %Pack{Int, String, Float}, %idx
// %pack_elt = pack_element_get %pack_value, %pack_idx, @element("...")
//
// After:
// %pack_idx = scalar_pack_index %Pack{Int, String, Float}, N
// %concrete_elt = pack_element_get %pack_value, %pack_idx, <<concrete type>>
// %pack_elt = unchecked_addr_cast %concrete_elt, @element("...")
SILInstruction *SILCombiner::visitPackElementGetInst(PackElementGetInst *PEGI) {
  auto *DPII = dyn_cast<DynamicPackIndexInst>(PEGI->getIndex());
  if (DPII == nullptr)
    return nullptr;

  auto PackTy = PEGI->getPackType();
  if (PackTy->containsPackExpansionType())
    return nullptr;

  auto *Op = dyn_cast<IntegerLiteralInst>(DPII->getOperand());
  if (Op == nullptr)
    return nullptr;

  if (Op->getValue().uge(PackTy->getNumElements()))
    return nullptr;

  unsigned Index = Op->getValue().getZExtValue();
  auto *SPII = Builder.createScalarPackIndex(
      DPII->getLoc(), Index, DPII->getIndexedPackType());

  auto ElementTy = SILType::getPrimitiveAddressType(
      PEGI->getPackType().getElementType(Index));
  auto *NewPEGI = Builder.createPackElementGet(
      PEGI->getLoc(), SPII, PEGI->getPack(),
      ElementTy);

  return Builder.createUncheckedAddrCast(
      PEGI->getLoc(), NewPEGI, PEGI->getElementType());
}

// Simplify `tuple_pack_element_addr` where the index is a `dynamic_pack_index`
//with a constant operand.
//
// Before:
// %idx = integer_literal Builtin.Word, N
// %pack_idx = dynamic_pack_index %Pack{Int, String, Float}, %idx
// %tuple_elt = tuple_pack_element_addr %tuple_value, %pack_idx, @element("...")
//
// After:
// %concrete_elt = tuple_element_addr %tuple_value, N
// %tuple_elt = unchecked_addr_cast %concrete_elt, @element("...")
SILInstruction *
SILCombiner::visitTuplePackElementAddrInst(TuplePackElementAddrInst *TPEAI) {
  auto *DPII = dyn_cast<DynamicPackIndexInst>(TPEAI->getIndex());
  if (DPII == nullptr)
    return nullptr;

  auto PackTy = DPII->getIndexedPackType();
  if (PackTy->containsPackExpansionType())
    return nullptr;

  auto *Op = dyn_cast<IntegerLiteralInst>(DPII->getOperand());
  if (Op == nullptr)
    return nullptr;

  if (Op->getValue().uge(PackTy->getNumElements()))
    return nullptr;

  unsigned Index = Op->getValue().getZExtValue();

  auto *TEAI = Builder.createTupleElementAddr(
      TPEAI->getLoc(), TPEAI->getTuple(), Index);
  return Builder.createUncheckedAddrCast(
      TPEAI->getLoc(), TEAI, TPEAI->getElementType());
}

// This is a hack. When optimizing a simple pack expansion expression which
// forms a tuple from a pack, like `(repeat each t)`, after the above
// peepholes we end up with:
//
// %src = unchecked_addr_cast %real_src, @element("...")
// %dst = unchecked_addr_cast %real_dst, @element("...")
// copy_addr %src, %dst
//
// Simplify this to
//
// copy_addr %real_src, %real_dst
//
// Assuming that %real_src and %real_dst have the same type.
//
// In this simple case, this eliminates the opened element archetype entirely.
// However, a more principled peephole would be to transform an
// open_pack_element with a scalar index by replacing all usages of the
// element archetype with a concrete type.
SILInstruction *
SILCombiner::visitCopyAddrInst(CopyAddrInst *CAI) {
  auto *Src = dyn_cast<UncheckedAddrCastInst>(CAI->getSrc());
  auto *Dst = dyn_cast<UncheckedAddrCastInst>(CAI->getDest());

  if (Src == nullptr || Dst == nullptr)
    return nullptr;

  if (Src->getType() != Dst->getType() ||
      !Src->getType().is<ElementArchetypeType>())
    return nullptr;

  if (Src->getOperand()->getType() != Dst->getOperand()->getType())
    return nullptr;

  return Builder.createCopyAddr(
      CAI->getLoc(), Src->getOperand(), Dst->getOperand(),
      CAI->isTakeOfSrc(), CAI->isInitializationOfDest());
}