1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
|
//===--- CopyValueOpts.cpp ------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Contains optimizations that eliminate redundant copy values.
///
/// FIXME: CanonicalizeOSSALifetime likely replaces everything this file.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-semantic-arc-opts"
#include "OwnershipPhiOperand.h"
#include "SemanticARCOptVisitor.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/LinearLifetimeChecker.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
using namespace swift;
using namespace swift::semanticarc;
//===----------------------------------------------------------------------===//
// Guaranteed Copy Value Optimization
//===----------------------------------------------------------------------===//
// Eliminate a copy of a borrowed value, if:
//
// 1. All of the copies users do not consume the copy (and thus can accept a
// borrowed value instead).
// 2. The copies's non-destroy_value users are strictly contained within the
// scope of the borrowed value.
//
// Example:
//
// %0 = @guaranteed (argument or instruction)
// %1 = copy_value %0
// apply %f(%1) : $@convention(thin) (@guaranteed ...) ...
// other_non_consuming_use %1
// destroy_value %1
// end_borrow %0 (if an instruction)
//
// =>
//
// %0 = @guaranteed (argument or instruction)
// apply %f(%0) : $@convention(thin) (@guaranteed ...) ...
// other_non_consuming_use %0
// end_borrow %0 (if an instruction)
//
// NOTE: This means that the destroy_value technically can be after the
// end_borrow. In practice, this will not be the case but we use this to avoid
// having to reason about the ordering of the end_borrow and destroy_value.
//
// NOTE: Today we only perform this for guaranteed parameters since this enables
// us to avoid doing the linear lifetime check to make sure that all destroys
// are within the borrow scope.
//
// TODO: This needs a better name.
bool SemanticARCOptVisitor::performGuaranteedCopyValueOptimization(
CopyValueInst *cvi) {
LLVM_DEBUG(llvm::dbgs() << "Looking at ");
LLVM_DEBUG(cvi->dump());
// All mandatory copy optimization is handled by CanonicalizeOSSALifetime,
// which knows how to preserve lifetimes for debugging.
if (ctx.onlyMandatoryOpts)
return false;
SmallVector<BorrowedValue, 4> borrowScopeIntroducers;
// Find all borrow introducers for our copy operand. If we are unable to find
// all of the introducers (due to pattern matching failure), conservatively
// return false. We can not optimize.
//
// NOTE: We can get multiple introducers if our copy_value's operand
// value runs through a phi or an aggregate forming instruction.
if (!getAllBorrowIntroducingValues(cvi->getOperand(),
borrowScopeIntroducers)) {
LLVM_DEBUG(llvm::dbgs() << "Did not find all borrow introducers\n");
return false;
}
// Then go over all of our uses and see if the value returned by our copy
// value forms a dead live range or a live range that would be dead if it was
// not consumed by phi nodes. If we do not have such a live range, there must
// be some consuming use that we either do not understand is /actually/
// forwarding or a user that truly represents a necessary consume of the value
// (e.x. storing into memory).
OwnershipLiveRange lr(cvi);
auto hasUnknownConsumingUseState =
lr.hasUnknownConsumingUse(ctx.assumingAtFixedPoint);
if (hasUnknownConsumingUseState ==
OwnershipLiveRange::HasConsumingUse_t::Yes) {
LLVM_DEBUG(llvm::dbgs() << "Found unknown consuming uses\n");
return false;
}
// Next check if we do not have any destroys of our copy_value and are
// processing a local borrow scope. In such a case, due to the way we ignore
// dead end blocks, we may eliminate the copy_value, creating a use of the
// borrowed value after the end_borrow. To avoid this, in such cases we
// bail. In contrast, a non-local borrow scope does not have any end scope
// instructions, implying we can avoid this hazard and still optimize in such
// a case.
//
// DISCUSSION: Consider the following SIL:
//
// ```
// %1 = begin_borrow %0 : $KlassPair (1)
// %2 = struct_extract %1 : $KlassPair, #KlassPair.firstKlass
// %3 = copy_value %2 : $Klass
// ...
// end_borrow %1 : $LintCommand (2)
// cond_br ..., bb1, bb2
//
// ...
//
// bbN:
// // Never return type implies dead end block.
// apply %f(%3) : $@convention(thin) (@guaranteed Klass) -> Never (3)
// unreachable
// ```
//
// For simplicity, note that if bbN post-dominates %3, given that when we
// compute linear lifetime errors we ignore dead end blocks, we would not
// register that the copy_values only use is outside of the begin_borrow
// region defined by (1), (2) and thus would eliminate the copy. This would
// result in %2 being used by %f, causing the linear lifetime checker to
// error.
//
// Naively one may assume that the solution to this is to just check if %3 has
// /any/ destroy_values at all and if it doesn't have any reachable
// destroy_values, then we are in this case. But is this correct in
// general. We prove this below:
//
// The only paths along which the copy_value can not be destroyed or consumed
// is along paths to dead end blocks. Trivially, we know that such a dead end
// block, can not be reachable from the end_borrow since by their nature dead
// end blocks end in unreachables.
//
// So we know that we can only run into this bug if we have a dead end block
// reachable from the end_borrow, meaning that the bug can not occur if we
// branch before the end_borrow since in that case, the borrow scope would
// last over the dead end block's no return meaning that we will not use the
// borrowed value after its lifetime is ended by the end_borrow.
//
// With that in hand, we note again that if we have exactly one consumed,
// destroy_value /after/ the end_borrow we will not optimize here. This means
// that this bug can only occur if the copy_value is only post-dominated by
// dead end blocks that use the value in a non-consuming way.
//
// TODO: There may be some way of sinking this into the loop below.
//
// FIXME: The haveAnyLocalScopes and destroy.empty() checks are relics of
// attempts to handle dead end blocks during areUsesWithinExtendedScope. If
// we don't use dead end blocks at all, they should not be relevant.
bool haveAnyLocalScopes =
llvm::any_of(borrowScopeIntroducers, [](BorrowedValue borrowScope) {
return borrowScope.isLocalScope();
});
auto destroys = lr.getDestroyingUses();
if (destroys.empty() && haveAnyLocalScopes) {
return false;
}
// If we reached this point, then we know that all of our users can accept a
// guaranteed value and our owned value is destroyed only by a set of
// destroy_values. Check if:
//
// 1. All of our destroys are joint post-dominated by our end borrow scope
// set. If they are not, then the copy_value is lifetime extending the
// guaranteed value, we can not eliminate it.
//
// 2. If all of our destroy_values are dead end. In such a case, the linear
// lifetime checker will not perform any checks since it assumes that dead
// end destroys can be ignored. Since we are going to end the program
// anyways, we want to be conservative here and optimize only if we do not
// need to insert an end_borrow since all of our borrow introducers are
// non-local scopes.
//
// The call to areUsesWithinExtendedScope cannot consider dead-end blocks. A
// local borrow scope requires all its inner uses to be inside the borrow
// scope, regardless of whether the end of the scope is inside a dead-end
// block.
{
if (llvm::any_of(borrowScopeIntroducers, [&](BorrowedValue borrowScope) {
return !borrowScope.areUsesWithinExtendedScope(
lr.getAllConsumingUses(), nullptr);
})) {
LLVM_DEBUG(llvm::dbgs() << "copy_value is extending borrow introducer "
"lifetime, bailing out\n");
return false;
}
}
// Otherwise, we know that our copy_value/destroy_values are all completely
// within the guaranteed value scope. So we /could/ optimize it. Now check if
// we were truly dead or if we are dead if we can eliminate phi arg uses. If
// we need to handle the phi arg uses, we bail. After we reach a fixed point,
// we will try to eliminate this value then if we can find a complete set of
// all incoming values to our phi argument.
if (hasUnknownConsumingUseState ==
OwnershipLiveRange::HasConsumingUse_t::YesButAllPhiArgs) {
auto opPhi = *OwnershipPhiOperand::get(lr.getSingleUnknownConsumingUse());
SmallVector<Operand *, 8> scratchSpace;
bool canOptimizePhi = opPhi.visitResults([&](SILValue value) {
SWIFT_DEFER {
scratchSpace.clear();
};
OwnershipLiveRange phiArgLR(value);
if (bool(phiArgLR.hasUnknownConsumingUse())) {
return false;
}
// Replacing owned phi operands with a local borrow introducer can
// introduce reborrows. Since lifetime adjustment is not implemented for
// this case, disable here.
// Returning false here will make sure so this isn't populated in
// joinedOwnedIntroducerToConsumedOperands which is used by
// semanticarc::tryConvertOwnedPhisToGuaranteedPhis for transforming owned
// phi to guaranteed.
if (haveAnyLocalScopes) {
return false;
}
if (llvm::any_of(borrowScopeIntroducers, [&](BorrowedValue borrowScope) {
return !borrowScope.areUsesWithinExtendedScope(
phiArgLR.getAllConsumingUses(), nullptr);
})) {
return false;
}
return true;
});
if (canOptimizePhi) {
Context::ConsumingOperandState state(opPhi);
opPhi.visitResults([&](SILValue value) {
ctx.joinedOwnedIntroducerToConsumedOperands.insert(value, state);
return true;
});
}
return false;
}
// Otherwise, our copy must truly not be needed, o RAUW and convert to
// guaranteed!
LLVM_DEBUG(llvm::dbgs() << "Replace copy with guaranteed source: " << *cvi);
std::move(lr).convertToGuaranteedAndRAUW(cvi->getOperand(), getCallbacks());
return true;
}
//===----------------------------------------------------------------------===//
// Trivial Live Range Elimination
//===----------------------------------------------------------------------===//
/// If cvi only has destroy value users, then cvi is a dead live range. Lets
/// eliminate all such dead live ranges.
///
/// FIXME: CanonicalizeOSSALifetime replaces this.
bool SemanticARCOptVisitor::eliminateDeadLiveRangeCopyValue(
CopyValueInst *cvi) {
// This is a cheap optimization generally.
// See if we are lucky and have a simple case.
if (auto *op = cvi->getSingleUse()) {
if (auto *dvi = dyn_cast<DestroyValueInst>(op->getUser())) {
LLVM_DEBUG(llvm::dbgs() << "Erasing single-use copy: " << *cvi);
eraseInstruction(dvi);
eraseInstructionAndAddOperandsToWorklist(cvi);
return true;
}
}
// If all of our copy_value users are destroy_value, zap all of the
// instructions. We begin by performing that check and gathering up our
// destroy_value.
SmallVector<DestroyValueInst *, 16> destroys;
if (!all_of(cvi->getUses(), [&](Operand *op) {
auto *dvi = dyn_cast<DestroyValueInst>(op->getUser());
if (!dvi)
return false;
// Stash dvi in destroys so we can easily eliminate it later.
destroys.push_back(dvi);
return true;
})) {
return false;
}
// Now that we have a truly dead live range copy value, eliminate it!
LLVM_DEBUG(llvm::dbgs() << "Eliminate dead copy: " << *cvi);
while (!destroys.empty()) {
eraseInstruction(destroys.pop_back_val());
}
eraseInstructionAndAddOperandsToWorklist(cvi);
return true;
}
//===----------------------------------------------------------------------===//
// Live Range Joining
//===----------------------------------------------------------------------===//
/// Given that our copy_value and destroy_value are in different blocks
/// determine if we can eliminate the copy/destroy.
///
/// We assume that our copy_value \p cvi has a single consuming use
/// (\p cviConsumingUse) and that the destroy_value \p cviOperandDestroy is the
/// only destroy of the copy_value's operand.
static bool canJoinIfCopyDiesInFunctionExitingBlock(
SILValue cviOperand, DestroyValueInst *cviOperandDestroy,
CopyValueInst *cvi, Operand *cviConsumingUse) {
// This is a simple optimization, so at least handle hand-offs at returns.
//
// First if our copy_value's consuming use is a return inst, then we know that
// the copy_value is live over the destroy_value \p cviOperandDestroy so we
// can eliminate the two safely.
auto cviConsumerIter = cviConsumingUse->getUser()->getIterator();
if (isa<ReturnInst>(cviConsumerIter)) {
return true;
}
// Then see if our cviConsumer is in the same block as a return inst and the
// destroy_value is not. In that case, we know that the cviConsumer must
// post-dominate the destroy_value.
auto *cviConsumingBlock = cviConsumerIter->getParent();
if (isa<ReturnInst>(cviConsumingBlock->getTerminator()) &&
cviConsumingBlock != cviOperandDestroy->getParent()) {
return true;
}
return false;
}
static Operand *lookThroughSingleForwardingUse(Operand *use) {
ForwardingOperand forwardingOperand(use);
if (!forwardingOperand)
return nullptr;
auto forwardedValue = forwardingOperand.getSingleForwardedValue();
if (!forwardedValue)
return nullptr;
auto *singleConsumingUse = forwardedValue->getSingleConsumingUse();
if (!singleConsumingUse)
return nullptr;
return singleConsumingUse;
}
/// Walk from inst to the end of the inst->getParent() looking for \p use's
/// user. Every instruction that we visit that is not said user is added to
/// foundInsts if foundInsts is not nullptr. We do not include \p inst in \p
/// foundInsts.
static bool isUseBetweenInstAndBlockEnd(
SILInstruction *inst, Operand *use,
SmallPtrSetImpl<SILInstruction *> *foundInsts = nullptr) {
auto userOfUse = use->getUser();
auto instRegion = llvm::make_range(std::next(inst->getIterator()),
inst->getParent()->end());
for (auto &i : instRegion) {
if (&i == userOfUse)
return true;
if (foundInsts)
foundInsts->insert(&i);
}
return false;
}
/// Optimize assuming that \p singleCVIConsumingUse and \p dvi are in the same
/// block.
///
/// Importantly since \p singleCVIConsumingUse and \p dvi are in the same block,
/// we know that \p cvi must be post-dominated by dvi since its only consuming
/// use is single cvi consuming use by assumption.
static bool tryJoinIfDestroyConsumingUseInSameBlock(
SemanticARCOptVisitor &ctx, CopyValueInst *cvi, DestroyValueInst *dvi,
SILValue operand, Operand *singleCVIConsumingUse) {
// First see if our destroy_value is in between singleCVIConsumingUse and the
// end of block. If this is not true, then we know the destroy_value must be
// /before/ our singleCVIConsumingUse meaning that by joining the lifetimes,
// we are not going to shrink the overall composite lifetime.
SmallPtrSet<SILInstruction *, 8> visitedInsts;
if (!isUseBetweenInstAndBlockEnd(singleCVIConsumingUse->getUser(),
&dvi->getAllOperands()[0], &visitedInsts)) {
LLVM_DEBUG(llvm::dbgs()
<< "Eliminate copy with useless lifetime: " << *cvi);
ctx.eraseInstruction(dvi);
ctx.eraseAndRAUWSingleValueInstruction(cvi, operand);
return true;
}
// The lifetime of the original ends after the lifetime of the copy. If the
// original is lexical, its lifetime must not be shortened through deinit
// barriers.
if (cvi->getOperand()->isLexical()) {
// At this point, visitedInsts contains all the instructions between the
// consuming use of the copy and the destroy. If any of those instructions
// is a deinit barrier, it would be illegal to shorten the original lexical
// value's lifetime to end at that consuming use. Bail if any are.
if (llvm::any_of(visitedInsts, [](auto *inst) {
return mayBeDeinitBarrierNotConsideringSideEffects(inst);
}))
return false;
}
// If we reached this point, isUseBetweenInstAndBlockEnd succeeded implying
// that we found destroy_value to be after our consuming use. Noting that
// additionally, the routine places all instructions in between consuming use
// and destroy_value into visitedInsts for our use, we may still be able to
// optimize if:
//
// 1. singleCVIConsumingUse is actually a forwarding user and forms the head
// of a chain of same-block forwarding uses the last of which is /after/
// the destroy_value.
//
// 2. Our copy_value's operand does not have any direct uses or live dependent
// borrow scopes in between the first forwarding use and the
// destroy_value. This ensures that we do not need to deal with splitting
// borrow scopes or having to deal with "shape"-mismatches in between uses
// of the copy_value's operand and the current running forwarded value.
//
// This choice of optimization was just an attempt to be pragmatic given we
// want to be able to run this optimization at -Onone.
//
// With that in mind, lets first check 1.
Operand *currentForwardingUse = singleCVIConsumingUse;
while (auto *op = lookThroughSingleForwardingUse(currentForwardingUse)) {
// Visited insts contain all instructions in between singleCVIConsumingUse
// and the destroy_value, so if our forwarding inst is not in VisitedInsts,
// it must not be in the region and currentForwardingUse must be the last
// use.
if (!visitedInsts.count(op->getUser()))
break;
currentForwardingUse = op;
}
// Ok now see if we were able to find a forwarding inst that was later than
// destroy_value...
if (currentForwardingUse == singleCVIConsumingUse ||
visitedInsts.count(currentForwardingUse->getUser())) {
// If not, see if this use did have a forwardedValue but that forwardedValue
// has multiple end lifetime uses. In that case, we can optimize if there
// aren't any uses/etc
ForwardingOperand forwardingOperand(currentForwardingUse);
if (!forwardingOperand)
return false;
auto forwardedValue = forwardingOperand.getSingleForwardedValue();
if (!forwardedValue)
return false;
// If our forwarding value has a single consuming use and that use is in the
// same block as our destroy_value, bail if the single consuming use is
// before our destroy_value.
if (auto *singleConsumingUse = forwardedValue->getSingleConsumingUse()) {
if (singleConsumingUse->getParentBlock() == dvi->getParentBlock() &&
!isUseBetweenInstAndBlockEnd(dvi, singleConsumingUse)) {
return false;
}
}
// If our forwarded value has multiple lifetime ending uses or a single
// consuming use that is after the destroy_value, we still need to perform
// our safety check below to know if we can optimized.
}
// Otherwise, we looked through at least one forwarded use and our final use
// was past dvi in the current block! So we can optimize!
//
// As one last safety check, make sure that our copy_value operand does not
// have any uses in our code region. If it does, we would need to rewrite
// forwarded values so that the types match up, which is more than this humble
// optimization is trying to do here given we want to run this at -Onone.
//
// TODO: Can we make this more aggressive and by how much? E.x.: Can we allow
// debug_value users but move them to before our singleCVIConsumingUse?
for (auto *use : operand->getUses()) {
auto *user = use->getUser();
// First if our user is dvi, just continue.
if (user == dvi)
continue;
// Then see if the user itself is a visitedInst. If so, we have a use that
// may require us to do some sort of transform, we can't optimize.
if (visitedInsts.count(use->getUser()))
return false;
// Ok, we have a use that isn't in our visitedInsts region. That being said,
// we may still have a use that introduces a new BorrowScope onto our
// copy_value's operand that overlaps with our forwarding value region. In
// such a case, we can not optimize.
//
// To prove this since we know that any such scope must end at our
// destroy_value (since that is when the copy_value's operand is destroyed),
// we need to only find scopes that end within the region in between the
// singleConsumingUse (the original forwarded use) and the destroy_value. In
// such a case, we must bail!
if (auto operand = BorrowingOperand(use))
if (!operand.visitScopeEndingUses([&](Operand *endScopeUse) {
// Return false if we did see the relevant end scope instruction
// in the block. That means that we are going to exit early and
// return false.
return !visitedInsts.count(endScopeUse->getUser());
}))
return false;
}
// Check whether the uses considered immediately above are all effectively
// instantaneous uses. Pointer escapes propagate values ways that may not be
// discoverable.
if (findPointerEscape(operand)) {
return false;
}
// Ok, we now know that we can eliminate this value.
LLVM_DEBUG(llvm::dbgs()
<< "Eliminate borrowed copy with useless lifetime: " << *cvi);
ctx.eraseInstruction(dvi);
ctx.eraseAndRAUWSingleValueInstruction(cvi, operand);
return true;
}
/// Given that:
///
/// 1. Our copy_value's operand has a single consuming use (and that use is a
/// destroy_value).
/// 2. Our copy_value has a single consuming use.
///
/// try and perform various optimizations to eliminate our copy_value,
/// destroy_value. Example:
///
/// ```
/// %1 = copy_value %0 // in some block
/// ...
///
/// bbN:
/// destroy_value %0
/// br bbFunctionExistingBlock
///
/// bbFunctionExistingBlock:
/// consumingUse %1
/// return
/// ```
///
/// will be optimized to:
///
/// ```
/// ...
///
/// bbN:
/// br bbFunctionExistingBlock
///
/// bbFunctionExistingBlock:
/// consumingUse %0
/// return
/// ```
static bool tryJoiningIfCopyOperandHasSingleDestroyValue(
SemanticARCOptVisitor &ctx, CopyValueInst *cvi, SILValue operand) {
// First perform our quick checks to see if our operand has a single
// destroy_value and our copy_value has a single consuming use. If either are
// false, we can not optimize so bail early.
auto *dvi = operand->getSingleConsumingUserOfType<DestroyValueInst>();
if (!dvi)
return false;
auto *singleCVIConsumingUse = cvi->getSingleConsumingUse();
if (!singleCVIConsumingUse)
return false;
// Otherwise, first check to see if our operand's consuming use is a return
// inst or is in a function exiting block and dvi is not. With this
// information, we can conclude in both cases that singleCviConsumingUse must
// post-dominate destroy_value and can eliminate the hand off traffic.
if (canJoinIfCopyDiesInFunctionExitingBlock(operand, dvi, cvi,
singleCVIConsumingUse)) {
LLVM_DEBUG(llvm::dbgs() << "Eliminate returned copy: " << *cvi);
ctx.eraseInstruction(dvi);
ctx.eraseAndRAUWSingleValueInstruction(cvi, operand);
return true;
}
// Otherwise, try to prove that dvi and singleCVIConsumingUse are not in the same block.
// block with dvi being strictly before singleCVIConsumingUse, that is:
//
// %operand = ...
// ...
// %copiedOperand = cvi %operand
// ...
// dvi %operand
// cviConsumer %copiedOperand
//
// In such a case, all we know is that dvi and cviConsumer are in the same
// block. Since dvi is the only destroy of %operand, we know that dvi must
// post-dominate %copiedOperand and %operand.
if (dvi->getParent() != singleCVIConsumingUse->getParentBlock())
return false;
// First see if our initial use is after dvi. Then we do not need to do any
// more complex work. We actually check here if we find our destroy_value in
// between our consuming use and the end block. The reason why we do this is
// so that if we fail, visitedInsts will contain all instructions in between
// the consuming use and the destroy_value.
return tryJoinIfDestroyConsumingUseInSameBlock(ctx, cvi, dvi, operand,
singleCVIConsumingUse);
}
// # The Problem We Are Solving
//
// The main idea here is that we are trying to eliminate the simplest, easiest
// form of live range joining. Consider the following SIL:
//
// ```
// %cviOperand = ... // @owned value
// %cvi = copy_value %cviOperand // copy of @owned value
// ...
// destroy_value %cviOperandDestroy // destruction of @owned value
// ...
// apply %consumingUser(%cvi) // destruction of copy of @owned value
// ```
//
// We want to reduce reference count traffic by eliminating the middle
// copy/destroy yielding:
//
// ```
// %cviOperand = ... // @owned value
// // *eliminated copy_value*
// ...
// // *eliminated destroy_value*
// ...
// apply %consumingUser(%cviOperand) // destruction of copy of @owned
// value
// ```
//
// # Safety
//
// In order to do this safely, we need to take the union of the two objects
// lifetimes since we are only joining lifetimes. This ensures that we can rely
// on SILGen's correctness on inserting safe lifetimes. To keep this simple
// today we only optimize if the destroy_value and consuming user are in the
// same block and the consuming user is later in the block than the
// destroy_value.
//
// DISCUSSION: The reason why we do not shrink lifetimes today is that all
// interior pointers (e.x. project_box) are properly guarded by
// begin_borrow. Because of that we can not shrink lifetimes and instead rely on
// SILGen's correctness.
//
// FIXME: CanonicalizeOSSALifetime replaces this.
bool SemanticARCOptVisitor::tryJoiningCopyValueLiveRangeWithOperand(
CopyValueInst *cvi) {
// First do a quick check if our operand is owned. If it is not owned, we can
// not join live ranges.
SILValue operand = cvi->getOperand();
if (operand->getOwnershipKind() != OwnershipKind::Owned) {
return false;
}
// Then we handle two different use cases:
//
// 1. First we optimize a special case where our copy_value has a single
// consuming use and our copy_value's operand has a single consuming use
// and that single use is a destroy_value.
//
// 2. The second is a more general optimization where our copy_value has
// multiple destroy_value, but we know that our copy_value is in the same
// block as one of those destroy_value.
if (tryJoiningIfCopyOperandHasSingleDestroyValue(*this, cvi, operand))
return true;
// Otherwise, use a more conservative analysis that requires our copy_value
// and destroy_value, but is looser about how we handle the consuming use:
//
// 1. Since our copy_value and destroy_value are in the same block, if our
// copy_value has multiple consuming uses, we know those consuming uses
// must be outside of our current block and must be dominated by the
// copy_value, destroy_value. So we can immediately optimize.
//
// 2. Otherwise, if we have a single consuming use and it is in the same block
// as our copy_value, destroy_value, we attempt to prove that the consuming
// use (after looking through a forwarding use chain) is later in the
// current block than the destroy_value. We use the last forwarding
// instruction in a chain of SIL instructions that end in the current
// block. Since we are looking through forwarding uses, we need to create
// new-borrow scopes at each forwarding instruction as we clone if we have
// any guaranteed elements in between our destroy_value and final
// forwarding use.
auto *singleCVIConsumingUse = cvi->getSingleConsumingUse();
for (auto *use : operand->getConsumingUses()) {
auto *dvi = dyn_cast<DestroyValueInst>(use->getUser());
if (!dvi)
continue;
// First setup our condition... We only optimize if our copy_value and
// destroy_value are in the same block. Additionally since our destroy_value
// is destroying the operand of the copy_value, we must have that cvi is
// strictly before dvi in the block.
if (dvi->getParent() != cvi->getParent()) {
continue;
}
// If we had multiple consuming uses of our copy_value, then we know that
// the copy_value must be live out of the current block implying that we
// can optimize without any further analysis since we know we will not be
// shrinking lifetimes of owned values.
if (singleCVIConsumingUse == nullptr) {
LLVM_DEBUG(llvm::dbgs()
<< "Eliminate multiply consumed live-out copy: " << *cvi);
eraseInstruction(dvi);
eraseAndRAUWSingleValueInstruction(cvi, operand);
return true;
}
// Then note that if our copy_value has a single consuming use, if that use
// is not in the same block as our copy_value/destroy_value, it must be live
// out of the block and thus we are not shrinking any lifetimes.
if (singleCVIConsumingUse->getParentBlock() != cvi->getParent()) {
LLVM_DEBUG(llvm::dbgs() << "Eliminate non-local live-out copy: " << *cvi);
eraseInstruction(dvi);
eraseAndRAUWSingleValueInstruction(cvi, operand);
return true;
}
// Ok, we know that all of the following instructions are in the same block
// together:
//
// 1. our copy_value (cvi).
// 2. The consumer of our copy_value (singleCVIConsumingUse).
// 3. A destroy_value of the copy_value's operand (dvi).
//
// So call our subroutine that optimizes given the destroy_value, consume
// are in the same block and that the copy_value is post-dominated by the
// destroy_value.
if (tryJoinIfDestroyConsumingUseInSameBlock(*this, cvi, dvi, operand,
singleCVIConsumingUse))
return true;
}
// Otherwise, we couldn't handle this case, so return false.
//
// NOTE: We would generally do a more complex analysis here to handle the more
// general case. That would most likely /not/ be a guaranteed optimization
// until we investigate/measure.
return false;
}
//===----------------------------------------------------------------------===//
// Owned Copy Value Optimizations
//===----------------------------------------------------------------------===//
/// Given an owned value that is completely enclosed within its parent owned
/// value and is not consumed, eliminate the copy.
bool SemanticARCOptVisitor::tryPerformOwnedCopyValueOptimization(
CopyValueInst *cvi) {
// All mandatory copy optimization is handled by CanonicalizeOSSALifetime,
// which knows how to preserve lifetimes for debugging.
if (ctx.onlyMandatoryOpts)
return false;
auto originalValue = cvi->getOperand();
if (originalValue->getOwnershipKind() != OwnershipKind::Owned)
return false;
// TODO: Add support for forwarding insts here.
SmallVector<DestroyValueInst *, 8> destroyingUses;
SmallVector<Operand *, 32> allCopyUses;
for (auto *use : cvi->getUses()) {
// First just stash our use so we have /all uses/.
allCopyUses.push_back(use);
// Then if we are not a lifetime ending use, just continue.
if (!use->isLifetimeEnding()) {
continue;
}
// Otherwise, if we have a destroy value lifetime ending use, stash that.
if (auto *dvi = dyn_cast<DestroyValueInst>(use->getUser())) {
destroyingUses.push_back(dvi);
continue;
}
// Otherwise, just bail for now.
return false;
}
// NOTE: We do not actually care if the parent's lifetime ends with
// destroy_values. All we care is that it is lifetime ending and the use isn't
// a forwarding instruction.
SmallVector<Operand *, 8> parentLifetimeEndingUses;
for (auto *origValueUse : originalValue->getUses())
if (origValueUse->isLifetimeEnding() &&
!ForwardingInstruction::isa(origValueUse->getUser()))
parentLifetimeEndingUses.push_back(origValueUse);
// Ok, we have an owned value. If we do not have any non-destroying consuming
// uses, see if all of our uses (ignoring destroying uses) are within our
// parent owned value's lifetime.
LinearLifetimeChecker checker(&ctx.getDeadEndBlocks());
if (!checker.validateLifetime(originalValue, parentLifetimeEndingUses,
allCopyUses))
return false;
// Ok, we can perform our transform. Eliminate all of our destroy value insts,
// and then RAUW our copy value with our parent value.
while (!destroyingUses.empty())
eraseInstruction(destroyingUses.pop_back_val());
eraseAndRAUWSingleValueInstruction(cvi, cvi->getOperand());
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
bool SemanticARCOptVisitor::visitCopyValueInst(CopyValueInst *cvi) {
// If our copy value inst has only destroy_value users, it is a dead live
// range. Try to eliminate them.
if (ctx.shouldPerform(ARCTransformKind::RedundantCopyValueElimPeephole) &&
eliminateDeadLiveRangeCopyValue(cvi)) {
return true;
}
// Then see if copy_value operand's lifetime ends after our copy_value via a
// destroy_value. If so, we can join their lifetimes.
if (ctx.shouldPerform(ARCTransformKind::LifetimeJoiningPeephole) &&
tryJoiningCopyValueLiveRangeWithOperand(cvi)) {
return true;
}
// Then try to perform the guaranteed copy value optimization.
if (ctx.shouldPerform(ARCTransformKind::RedundantCopyValueElimPeephole) &&
performGuaranteedCopyValueOptimization(cvi)) {
return true;
}
if (ctx.shouldPerform(ARCTransformKind::RedundantCopyValueElimPeephole) &&
tryPerformOwnedCopyValueOptimization(cvi)) {
return true;
}
return false;
}
|