File: OwnershipLiveRange.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (372 lines) | stat: -rw-r--r-- 14,788 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
//===--- OwnershipLiveRange.cpp -------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//

#include "OwnershipLiveRange.h"
#include "OwnershipPhiOperand.h"

#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/OwnershipUtils.h"

using namespace swift;
using namespace swift::semanticarc;

OwnershipLiveRange::OwnershipLiveRange(SILValue value)
    : introducer(OwnedValueIntroducer::get(value)), destroyingUses(),
      ownershipForwardingUses(), unknownConsumingUses() {
  assert(introducer);
  assert(introducer.value->getOwnershipKind() == OwnershipKind::Owned);

  SmallVector<Operand *, 32> tmpDestroyingUses;
  SmallVector<Operand *, 32> tmpForwardingConsumingUses;
  SmallVector<Operand *, 32> tmpUnknownConsumingUses;

  // We know that our silvalue produces an @owned value. Look through all of our
  // uses and classify them as either consuming or not.
  SmallVector<Operand *, 32> worklist(introducer.value->getUses());
  while (!worklist.empty()) {
    auto *op = worklist.pop_back_val();

    // Skip type dependent operands.
    if (op->isTypeDependent())
      continue;

    // Do a quick check that we did not add ValueOwnershipKind that are not
    // owned to the worklist.
    assert(op->get()->getOwnershipKind() == OwnershipKind::Owned &&
           "Added non-owned value to worklist?!");

    auto *user = op->getUser();

    // Ok, this constraint can take something owned as live. Assert that it
    // can also accept something that is guaranteed. Any non-consuming use of
    // an owned value should be able to take a guaranteed parameter as well
    // (modulo bugs). We assert to catch these.
    if (!op->isLifetimeEnding()) {
      continue;
    }

    // Ok, we know now that we have a consuming use. See if we have a destroy
    // value, quickly up front. If we do have one, stash it and continue.
    if (isa<DestroyValueInst>(user)) {
      tmpDestroyingUses.push_back(op);
      continue;
    }

    // Otherwise, see if we have a forwarding value that has a single
    // non-trivial operand that can accept a guaranteed value. If not, we can
    // not recursively process it, so be conservative and assume that we /may
    // consume/ the value, so the live range must not be eliminated.
    //
    // DISCUSSION: For now we do not support forwarding instructions with
    // multiple non-trivial arguments since we would need to optimize all of
    // the non-trivial arguments at the same time.
    //
    // NOTE: Today we do not support TermInsts for simplicity... we /could/
    // support it though if we need to.
    auto *ti = dyn_cast<TermInst>(user);
    if ((ti && !ti->mayHaveTerminatorResult()) ||
        !canOpcodeForwardInnerGuaranteedValues(op) ||
        1 !=
            count_if(user->getNonTypeDependentOperandValues(), [&](SILValue v) {
              return v->getOwnershipKind() == OwnershipKind::Owned;
            })) {
      tmpUnknownConsumingUses.push_back(op);
      continue;
    }

    // If we have a subclass of ForwardingInstruction that doesnt directly
    // forward its operand to the result, treat the use as an unknown consuming
    // use.
    //
    // If we do not directly forward and we have an owned value (which we do
    // here), we could get back a different value. Thus we can not transform
    // such a thing from owned to guaranteed.
    if (auto *i = ForwardingInstruction::get(op->getUser())) {
      if (!i->preservesOwnership()) {
        tmpUnknownConsumingUses.push_back(op);
        continue;
      }
    }

    // Ok, this is a forwarding instruction whose ownership we can flip from
    // owned -> guaranteed.
    tmpForwardingConsumingUses.push_back(op);

    // If we have a non-terminator, just visit its users recursively to see if
    // the users force the live range to be alive.
    if (!ti) {
      for (SILValue v : user->getResults()) {
        if (v->getOwnershipKind() != OwnershipKind::Owned)
          continue;
        llvm::copy(v->getUses(), std::back_inserter(worklist));
      }
      continue;
    }

    // Otherwise, we know that we have no only a terminator, but a
    // transformation terminator, so we should add the users of its results to
    // the worklist.
    for (auto &succ : ti->getSuccessors()) {
      auto *succBlock = succ.getBB();

      // If we do not have any arguments, then continue.
      if (succBlock->args_empty())
        continue;

      for (auto *succArg : succBlock->getSILPhiArguments()) {
        // Owned values can get transformed to None values, currently we bail
        // out computing OwnershipLiveRange in this case, because it can lead to
        // incorrect results in the presence of dead edges on the non-trivial
        // paths of switch_enum.
        if (succArg->getOwnershipKind() == OwnershipKind::None) {
          tmpUnknownConsumingUses.push_back(op);
          continue;
        }

        // Otherwise add all users of this BBArg to the worklist to visit
        // recursively.
        llvm::copy(succArg->getUses(), std::back_inserter(worklist));
      }
    }
  }

  // The order in which we append these to consumingUses matters since we assume
  // their order as an invariant. This is done to ensure that we can pass off
  // all of our uses or individual sub-arrays of our users without needing to
  // move around memory.
  llvm::copy(tmpDestroyingUses, std::back_inserter(consumingUses));
  llvm::copy(tmpForwardingConsumingUses, std::back_inserter(consumingUses));
  llvm::copy(tmpUnknownConsumingUses, std::back_inserter(consumingUses));

  auto cUseArrayRef = llvm::ArrayRef(consumingUses);
  destroyingUses = cUseArrayRef.take_front(tmpDestroyingUses.size());
  ownershipForwardingUses = cUseArrayRef.slice(
      tmpDestroyingUses.size(), tmpForwardingConsumingUses.size());
  unknownConsumingUses = cUseArrayRef.take_back(tmpUnknownConsumingUses.size());
}

void OwnershipLiveRange::insertEndBorrowsAtDestroys(
    SILValue newGuaranteedValue, DeadEndBlocks &deadEndBlocks,
    ValueLifetimeAnalysis::Frontier &scratch) {
  assert(scratch.empty() && "Expected scratch to be initially empty?!");

  // Since we are looking through forwarding uses that can accept guaranteed
  // parameters, we can have multiple destroy_value along the same path. We need
  // to find the post-dominating block set of these destroy value to ensure that
  // we do not insert multiple end_borrow.
  //
  // TODO: Hoist this out?
  SILInstruction *inst = introducer.value->getDefiningInstruction();
  std::optional<ValueLifetimeAnalysis> analysis;
  if (!inst) {
    analysis.emplace(cast<SILArgument>(introducer.value),
                     getAllConsumingInsts());
  } else {
    analysis.emplace(inst, getAllConsumingInsts());
  }

  // Use all consuming uses in our value lifetime analysis to ensure correctness
  // in the face of unreachable code.
  bool foundCriticalEdges = !analysis->computeFrontier(
      scratch, ValueLifetimeAnalysis::DontModifyCFG, &deadEndBlocks);
  (void)foundCriticalEdges;
  assert(!foundCriticalEdges);
  auto loc = RegularLocation::getAutoGeneratedLocation();
  while (!scratch.empty()) {
    auto *insertPoint = scratch.pop_back_val();

    // Do not insert end_borrow if the block insert point is a dead end block.
    //
    // DISCUSSION: This is important to do since otherwise, we may be implicitly
    // reducing the lifetime of a value which we can not do yet since we do not
    // require all interior pointer instructions to be guarded by borrows
    // (yet). Once that constraint is in place, we will not have this problem.
    //
    // Consider a situation where one has a @owned switch_enum on an
    // indirect box case which is post-dominated by an unreachable that we want
    // to convert to @guaranteed:
    //
    //   enum MyEnum {
    //     indirect case FirstCase(Int)
    //     ...
    //   }
    //
    //   bb0(%in_guaranteed_addr : $*MyEnum):
    //     ...
    //     %0 = load [copy] %in_guaranteed_addr : $*MyEnum
    //     switch_enum %0 : $MyEnum, case #MyEnum.FirstCase: bb1, ...
    //
    //   bb1(%1 : @owned ${ var Int }):
    //     %2 = project_box %1 : ${ var Int }, 0
    //     %3 = load [trivial] %2 : $*Int
    //     apply %log(%3) : $@convention(thin) (Int) -> ()
    //     unreachable
    //
    // In this case, we will not have a destroy_value on the box, but we may
    // have a project_box on the box. This is ok since we are going to leak the
    // value. But since we are using all consuming uses to determine the
    // lifetime, we will want to insert an end_borrow at the head of the
    // switch_enum dest block like follows:
    //
    //   bb0(%in_guaranteed_addr : $*MyEnum):
    //     ...
    //     %0 = load_borrow %in_guaranteed_addr : $*MyEnum
    //     switch_enum %0 : $MyEnum, case #MyEnum.FirstCase: bb1, ...
    //
    //   bb1(%1 : @guaranteed ${ var Int }):
    //     end_borrow %1 : ${ var Int }
    //     %2 = project_box %1 : ${ var Int }, 0
    //     %3 = load [trivial] %2 : $*Int
    //     apply %log(%3) : $@convention(thin) (Int) -> ()
    //     unreachable
    //
    // which would violate ownership invariants. Instead, we need to realize
    // that %1 is dominated by a dead end block so we may not have a
    // destroy_value upon it meaning we should just not insert the end_borrow
    // here. If we have a destroy_value upon it (since we did not get rid of a
    // destroy_value), then we will still get rid of the destroy_value if we are
    // going to optimize this, so we are still correct.
    if (deadEndBlocks.isDeadEnd(insertPoint->getParent()))
      continue;

    SILBuilderWithScope builder(insertPoint);
    builder.createEndBorrow(loc, newGuaranteedValue);
  }
}

void OwnershipLiveRange::convertOwnedGeneralForwardingUsesToGuaranteed() && {
  while (!ownershipForwardingUses.empty()) {
    auto *use = ownershipForwardingUses.back();
    ownershipForwardingUses = ownershipForwardingUses.drop_back();
    ForwardingOperand operand(use);
    operand.replaceOwnershipKind(OwnershipKind::Owned,
                                 OwnershipKind::Guaranteed);
  }
}

void OwnershipLiveRange::convertToGuaranteedAndRAUW(
    SILValue newGuaranteedValue, InstModCallbacks callbacks) && {
  auto *value = cast<SingleValueInstruction>(introducer.value);
  while (!destroyingUses.empty()) {
    auto *d = destroyingUses.back();
    destroyingUses = destroyingUses.drop_back();
    callbacks.deleteInst(d->getUser());
  }

  callbacks.eraseAndRAUWSingleValueInst(value, newGuaranteedValue);

  // Then change all of our guaranteed forwarding insts to have guaranteed
  // ownership kind instead of what ever they previously had (ignoring trivial
  // results);
  std::move(*this).convertOwnedGeneralForwardingUsesToGuaranteed();
}

// TODO: If this is useful, move onto OwnedValueIntroducer itself?
static SILValue convertIntroducerToGuaranteed(OwnedValueIntroducer introducer) {
  switch (introducer.kind) {
  case OwnedValueIntroducerKind::Invalid:
    llvm_unreachable("Using invalid case?!");
  case OwnedValueIntroducerKind::Phi: {
    auto *phiArg = cast<SILPhiArgument>(introducer.value);
    phiArg->setOwnershipKind(OwnershipKind::Guaranteed);
    phiArg->setReborrow(computeIsReborrow(phiArg));
    return phiArg;
  }
  case OwnedValueIntroducerKind::Struct: {
    auto *si = cast<StructInst>(introducer.value);
    si->setForwardingOwnershipKind(OwnershipKind::Guaranteed);
    return si;
  }
  case OwnedValueIntroducerKind::Tuple: {
    auto *ti = cast<TupleInst>(introducer.value);
    ti->setForwardingOwnershipKind(OwnershipKind::Guaranteed);
    return ti;
  }
  case OwnedValueIntroducerKind::Copy:
  case OwnedValueIntroducerKind::LoadCopy:
  case OwnedValueIntroducerKind::Apply:
  case OwnedValueIntroducerKind::BeginApply:
  case OwnedValueIntroducerKind::TryApply:
  case OwnedValueIntroducerKind::LoadTake:
  case OwnedValueIntroducerKind::Move:
  case OwnedValueIntroducerKind::FunctionArgument:
  case OwnedValueIntroducerKind::PartialApplyInit:
  case OwnedValueIntroducerKind::AllocBoxInit:
  case OwnedValueIntroducerKind::AllocRefInit:
    return SILValue();
  }
  llvm_unreachable("covered switch");
}

void OwnershipLiveRange::convertJoinedLiveRangePhiToGuaranteed(
    DeadEndBlocks &deadEndBlocks, ValueLifetimeAnalysis::Frontier &scratch,
    InstModCallbacks callbacks) && {

  // First convert the phi value itself to be guaranteed.
  convertIntroducerToGuaranteed(introducer);

  // Then eliminate all of the destroys...
  while (!destroyingUses.empty()) {
    auto *d = destroyingUses.back();
    destroyingUses = destroyingUses.drop_back();
    callbacks.deleteInst(d->getUser());
  }

  // and change all of our guaranteed forwarding insts to have guaranteed
  // ownership kind instead of what ever they previously had (ignoring trivial
  // results);
  std::move(*this).convertOwnedGeneralForwardingUsesToGuaranteed();
}

OwnershipLiveRange::HasConsumingUse_t
OwnershipLiveRange::hasUnknownConsumingUse(bool assumingAtFixPoint) const {
  // First do a quick check if we have /any/ unknown consuming
  // uses. If we do not have any, return false early.
  if (unknownConsumingUses.empty()) {
    return HasConsumingUse_t::No;
  }

  // Ok, we do have some unknown consuming uses. If we aren't assuming we are at
  // the fixed point yet, just bail.
  if (!assumingAtFixPoint) {
    return HasConsumingUse_t::Yes;
  }

  // We do not know how to handle yet cases where an owned value is used by
  // multiple phi nodes. So we bail early if unknown consuming uses is > 1.
  //
  // TODO: Build up phi node web.
  auto *op = getSingleUnknownConsumingUse();
  if (!op) {
    return HasConsumingUse_t::Yes;
  }

  // Make sure our single unknown consuming use is a branch inst. If not, bail,
  // this is a /real/ unknown consuming use.
  if (!OwnershipPhiOperand::get(op)) {
    return HasConsumingUse_t::Yes;
  }

  // Otherwise, setup the phi to incoming value map mapping the block arguments
  // to our introducer.
  return HasConsumingUse_t::YesButAllPhiArgs;
}

OwnershipLiveRange::DestroyingInstsRange
OwnershipLiveRange::getDestroyingInsts() const {
  return DestroyingInstsRange(getDestroyingUses(), OperandToUser());
}

OwnershipLiveRange::ConsumingInstsRange
OwnershipLiveRange::getAllConsumingInsts() const {
  return ConsumingInstsRange(consumingUses, OperandToUser());
}