1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
|
//===--- ARCCodeMotion.cpp - SIL ARC Code Motion --------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This pass moves retains down and releases up. This, hopefully, will help
/// ARC sequence opt to remove retain and release pairs without worrying too
/// much about control flows.
///
/// It uses an optimistic iterative data flow to compute where to insert the
/// retains and releases for every reference-counted root. It then removes all
/// the old retain and release instructions and create the new ones.
///
/// This pass is more sophisticated than SILCodeMotion, as arc optimizations
/// can be very beneficial, use an optimistic global data flow to achieve
/// optimality.
///
/// Proof of Correctness:
/// -------------------
///
/// 1. Retains are blocked by MayDecrements. Its straightforward to prove that
/// retain sinking is correct.
///
/// If a retain is sunk from Region A to Region B, that means there is no
/// blocking operation between where the retain was in Region A to where it is
/// sunk to in Region B. Since we only sink retains (we do not move any other
/// instructions) which themselves are NOT MayDecrement operations, and moving
/// retains can't turn non-decrement instruction MayDecrement.
///
/// 2. Releases are blocked by MayInterfere. If a release is hoisted from
/// Region B to Region A, that means there is no blocking operation from where
/// the release was in Region B and where the release is hoisted to in Region A.
///
/// The question is whether we can introduce such operation while we hoist
/// other releases. The answer is NO. because if such releases exist, they
/// would be blocked by the old release (we remove old release and recreate new
/// ones at the end of the pass) and will not be able to be hoisted beyond the
/// old release.
///
/// This proof also hinges on the fact that if release A interferes with
/// releases B then release B must interfere with release A. i.e. the 2
/// releases must have the symmetric property. Consider the 2 releases as 2
/// function calls, i.e. CallA (release A) and CallB (release B), if CallA
/// interferes with CallB, that means CallA must share some program states
/// (through read or write) with CallB. Then it is not possible for CallB
/// to not share any states with CallA. And if they do share states, then
/// its not possible for CallB to block CallA and CallA not to block CallB.
///
/// TODO: Sinking retains can block releases to be hoisted, and hoisting
/// releases can block retains to be sunk. Investigate when to sink retains and
/// when to hoist releases and their ordering in the pass pipeline.
///
/// TODO: Consider doing retain hoisting and release sinking. This can help
/// to discover disjoint lifetimes and we can try to stitch them together.
///
/// TODO: There are a lot of code duplications between retain and release code
/// motion in the data flow part. Consider whether we can share them.
/// Essentially, we can implement the release code motion by inverting the
/// retain code motion, but this can also make the code less readable.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-rr-code-motion"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/BasicBlockData.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/Analysis/ProgramTerminationAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/Strings.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(NumRetainsSunk, "Number of retains sunk");
STATISTIC(NumReleasesHoisted, "Number of releases hoisted");
llvm::cl::opt<bool> DisableARCCodeMotion("disable-arc-cm", llvm::cl::init(false));
//===----------------------------------------------------------------------===//
// Block State
//===----------------------------------------------------------------------===//
struct BlockState {
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault.
///
/// NOTE: we could do the data flow with BBSetIn or BBSetOut, but that would
/// require us to create a temporary copy to check whether the BBSet has
/// changed after the genset and killset has been applied.
SmallBitVector BBSetIn;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault.
SmallBitVector BBSetOut;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault. If the bit is set, that means this basic block creates a
/// retain which can be sunk or a release which can be hoisted.
SmallBitVector BBGenSet;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault. If this bit is set, that means this basic block stops retain
/// or release of the refcounted root to be moved across.
SmallBitVector BBKillSet;
/// A bit vector for which the ith bit represents the ith refcounted root in
/// RCRootVault. If this bit is set, that means this is potentially a retain
/// or release that can be sunk or hoisted to this point. This is used to
/// optimize the time for computing genset and killset.
///
/// NOTE: this vector contains an approximation of whether there will be a
/// retain or release to a certain point of a basic block.
SmallBitVector BBMaxSet;
};
/// CodeMotionContext - This is the base class which retain code motion and
/// release code motion inherits from. It defines an interface as to how the
/// code motion procedure should be.
class CodeMotionContext {
protected:
SILFunctionTransform *parentTransform;
/// Dataflow needs multiple iteration to converge. If this is false, then we
/// do not need to generate the genset or killset, i.e. we can simply do 1
/// pessimistic data flow iteration.
bool MultiIteration;
/// The allocator we are currently using.
llvm::SpecificBumpPtrAllocator<BlockState> &BPA;
/// Current function we are analyzing.
SILFunction *F;
/// Current post-order we are using.
PostOrderFunctionInfo *PO;
/// Current alias analysis we are using.
AliasAnalysis *AA;
/// Current rc-identity we are using.
RCIdentityFunctionInfo *RCFI;
/// All the unique refcount roots retained or released in the function.
llvm::SmallVector<SILValue, 16> RCRootVault;
/// Contains a map between RC roots to their index in the RCRootVault.
/// used to facilitate fast RC roots to index lookup.
llvm::DenseMap<SILValue, unsigned> RCRootIndex;
/// All the retains or releases originally in the function. Eventually
/// they will all be removed after all the new ones are generated.
llvm::SmallPtrSet<SILInstruction *, 8> RCInstructions;
/// All the places to place the new retains or releases after code motion.
using InsertPointList = llvm::SmallVector<SILInstruction *, 2>;
llvm::SmallDenseMap<SILValue, InsertPointList> InsertPoints;
/// These are the blocks that have an RC instruction to process or it blocks
/// some RC instructions. If the basic block has neither, we do not need to
/// process the block again in the last iteration. We populate this set when
/// we compute the genset and killset.
BasicBlockSet InterestBlocks;
#ifndef NDEBUG
// SILPrintContext is used to print block IDs in RPO order.
// It is optional so only the final insertion point interference is printed.
std::optional<SILPrintContext> printCtx;
#endif
/// Return the rc-identity root of the SILValue.
SILValue getRCRoot(SILValue R) {
return RCFI->getRCIdentityRoot(R);
}
/// Return the rc-identity root of the RC instruction, i.e.
/// retain or release.
SILValue getRCRoot(SILInstruction *I) {
assert(isRetainInstruction(I) || isReleaseInstruction(I) &&
"Extracting RC root from invalid instruction");
return getRCRoot(I->getOperand(0));
}
public:
/// Constructor.
CodeMotionContext(SILFunctionTransform *parentTransform,
llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
SILFunction *F,
PostOrderFunctionInfo *PO, AliasAnalysis *AA,
RCIdentityFunctionInfo *RCFI)
: parentTransform(parentTransform),
MultiIteration(true), BPA(BPA), F(F), PO(PO), AA(AA), RCFI(RCFI),
InterestBlocks(F) {}
/// virtual destructor.
virtual ~CodeMotionContext() {}
/// Run the data flow to move retains and releases.
bool run();
/// Check whether we need to run an optimistic iteration data flow.
/// or a pessimistic would suffice.
virtual bool requireIteration() = 0;
/// Initialize necessary things to run the iterative data flow.
virtual void initializeCodeMotionDataFlow() = 0;
/// Initialize the basic block maximum refcounted set.
virtual void initializeCodeMotionBBMaxSet() = 0;
/// Compute the genset and killset for every root in every basic block.
virtual void computeCodeMotionGenKillSet() = 0;
/// Run the iterative data flow to converge.
virtual void convergeCodeMotionDataFlow() = 0;
/// Use the data flow results, come up with places to insert the new inst.
virtual void computeCodeMotionInsertPoints() = 0;
/// Remove the old retains and create the new *moved* refcounted instructions
virtual bool performCodeMotion() = 0;
/// Merge the data flow states.
virtual void mergeBBDataFlowStates(SILBasicBlock *BB) = 0;
/// Compute the BBSetIn and BBSetOut for the current basic
/// block with the generated gen and kill set.
virtual bool processBBWithGenKillSet(SILBasicBlock *BB) = 0;
/// Return true if the instruction blocks the Ptr to be moved further.
virtual bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) = 0;
};
bool CodeMotionContext::run() {
MultiIteration = requireIteration();
// Initialize the data flow.
initializeCodeMotionDataFlow();
if (RCRootVault.size() > 500) {
// Emergency exit to avoid bad compile time problems in rare corner cases.
// This limit is more than enough for "real world" code.
// Even large functions have < 100 locations.
// But in some corner cases - especially in generated code - we can run
// into quadratic complexity for large functions.
// TODO: eventually the ARCCodeMotion passes will be replaced by OSSA
// optimizations which shouldn't have this problem.
return false;
}
// Converge the BBSetOut with iterative data flow.
if (MultiIteration) {
initializeCodeMotionBBMaxSet();
computeCodeMotionGenKillSet();
convergeCodeMotionDataFlow();
}
// Compute the insertion point where each RC root can be moved to.
computeCodeMotionInsertPoints();
// Finally, generate new retains and remove the old retains.
return performCodeMotion();
}
//===----------------------------------------------------------------------===//
// Retain Code Motion
//===----------------------------------------------------------------------===//
class RetainBlockState : public BlockState {
public:
/// Check whether the BBSetOut has changed. If it does, we need to rerun
/// the data flow on this block's successors to reach fixed point.
bool updateBBSetOut(SmallBitVector &X) {
if (BBSetOut == X)
return false;
BBSetOut = X;
return true;
}
void init(bool IsEntry, unsigned size, bool MultiIteration) {
// Iterative forward data flow.
BBSetIn.resize(size, false);
// Initialize to true if we are running optimistic data flow, i.e.
// MultiIteration is true.
BBSetOut.resize(size, MultiIteration);
BBMaxSet.resize(size, !IsEntry && MultiIteration);
// Genset and Killset are initially empty.
BBGenSet.resize(size, false);
BBKillSet.resize(size, false);
}
};
/// RetainCodeMotionContext - Context to perform retain code motion.
class RetainCodeMotionContext : public CodeMotionContext {
/// All the retain block state for all the basic blocks in the function.
BasicBlockData<RetainBlockState> BlockStates;
InstructionSet retainInstructions;
ProgramTerminationFunctionInfo PTFI;
bool isRetain(SILInstruction *inst) const {
return retainInstructions.contains(inst);
}
/// Return true if the instruction blocks the Ptr to be moved further.
bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) override {
// NOTE: If more checks are to be added, place the most expensive in the
// end, this function is called many times.
//
// These terminator instructions block.
if (isa<ReturnInst>(II) || isa<ThrowInst>(II) || isa<ThrowAddrInst>(II) ||
isa<UnwindInst>(II) || isa<UnreachableInst>(II))
return true;
// Identical RC root blocks code motion, we will be able to move this retain
// further once we move the blocking retain.
if (isRetain(II) && getRCRoot(II) == Ptr) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Retain " << Ptr << " at matching retain " << *II);
return true;
}
// Ref count checks do not have side effects, but are barriers for retains.
if (mayCheckRefCount(II)) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Retain " << Ptr << " at refcount check " << *II);
return true;
}
// mayDecrement reference count stops code motion.
if (mayDecrementRefCount(II, Ptr, AA)) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Retain " << Ptr << " at may decrement " << *II);
return true;
}
// This instruction does not block the retain code motion.
return false;
}
/// Return the previous instruction if it happens to be a retain with the
/// given RC root, nullptr otherwise.
SILInstruction *getPrevReusableInst(SILInstruction *I, SILValue Root) {
if (&*I->getParent()->begin() == I)
return nullptr;
auto Prev = &*std::prev(SILBasicBlock::iterator(I));
if (isRetain(Prev) && getRCRoot(Prev) == Root)
return Prev;
return nullptr;
}
public:
/// Constructor.
RetainCodeMotionContext(SILFunctionTransform *parentTransform,
llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
SILFunction *F, PostOrderFunctionInfo *PO,
AliasAnalysis *AA, RCIdentityFunctionInfo *RCFI)
: CodeMotionContext(parentTransform, BPA, F, PO, AA, RCFI),
BlockStates(F), retainInstructions(F), PTFI(F) {}
/// virtual destructor.
~RetainCodeMotionContext() override {}
/// Return true if we do not need optimistic data flow.
bool requireIteration() override;
/// Initialize necessary things to run the iterative data flow.
void initializeCodeMotionDataFlow() override;
/// Initialize the basic block maximum refcounted set.
void initializeCodeMotionBBMaxSet() override;
/// Compute the genset and killset for every root in every basic block.
void computeCodeMotionGenKillSet() override;
/// Run the iterative data flow to converge.
void convergeCodeMotionDataFlow() override;
/// Use the data flow results, come up with places to insert the new inst.
void computeCodeMotionInsertPoints() override;
/// Remove the old retains and create the new *moved* refcounted instructions
bool performCodeMotion() override;
/// Compute the BBSetIn and BBSetOut for the current basic block with the
/// generated gen and kill set.
bool processBBWithGenKillSet(SILBasicBlock *BB) override;
/// Merge the data flow states.
void mergeBBDataFlowStates(SILBasicBlock *BB) override;
};
bool RetainCodeMotionContext::requireIteration() {
// If all basic blocks will have their predecessors processed if the basic
// blocks in the functions are iterated in reverse post order. Then this
// function can be processed in one iteration, i.e. no need to generate the
// genset and killset.
BasicBlockSet PBBs(BlockStates.getFunction());
for (SILBasicBlock *B : PO->getReversePostOrder()) {
for (auto X : B->getPredecessorBlocks()) {
if (!PBBs.contains(X))
return true;
}
PBBs.insert(B);
}
return false;
}
void RetainCodeMotionContext::initializeCodeMotionDataFlow() {
// Find all the RC roots in the function.
for (auto &BB : *F) {
for (auto &II : BB) {
if (!isRetainInstruction(&II))
continue;
if (!parentTransform->continueWithNextSubpassRun(&II))
continue;
retainInstructions.insert(&II);
RCInstructions.insert(&II);
SILValue Root = getRCRoot(&II);
if (RCRootIndex.find(Root) != RCRootIndex.end())
continue;
RCRootIndex[Root] = RCRootVault.size();
RCRootVault.push_back(Root);
LLVM_DEBUG(llvm::dbgs()
<< "Retain Root #" << RCRootVault.size() << " " << Root);
}
}
// Initialize all the data flow bit vector for all basic blocks.
for (auto bd : BlockStates) {
bd.data.init(&bd.block == F->getEntryBlock(), RCRootVault.size(),
MultiIteration);
}
}
void RetainCodeMotionContext::initializeCodeMotionBBMaxSet() {
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
// If basic block has no predecessor, do nothing.
BlockState &State = BlockStates[BB];
if (BB->pred_empty()) {
State.BBMaxSet.reset();
} else {
// Intersect in all predecessors' BBSetOut.
State.BBMaxSet.set();
for (auto E = BB->pred_end(), I = BB->pred_begin(); I != E; ++I) {
State.BBMaxSet &= BlockStates[*I].BBMaxSet;
}
}
// Process the instructions in the basic block to find what refcounted
// roots are retained. If we know that an RC root can't be retained at a
// basic block, then we know we do not need to consider it for the killset.
// NOTE: this is a conservative approximation, because some retains may be
// blocked before it reaches this block.
for (auto &II : *BB) {
if (!isRetain(&II))
continue;
State.BBMaxSet.set(RCRootIndex[getRCRoot(&II)]);
}
}
}
void RetainCodeMotionContext::computeCodeMotionGenKillSet() {
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
BlockState &State = BlockStates[BB];
bool InterestBlock = false;
for (auto &I : *BB) {
// Check whether this instruction blocks any RC root code motion.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!State.BBMaxSet.test(i) || !mayBlockCodeMotion(&I, RCRootVault[i]))
continue;
// This is a blocking instruction for the rcroot.
InterestBlock = true;
State.BBKillSet.set(i);
State.BBGenSet.reset(i);
}
// If this is a retain instruction, it also generates.
if (isRetain(&I)) {
unsigned idx = RCRootIndex[getRCRoot(&I)];
State.BBGenSet.set(idx);
assert(State.BBKillSet.test(idx) && "Killset computed incorrectly");
State.BBKillSet.reset(idx);
InterestBlock = true;
}
}
// Is this a block that is interesting to the last iteration of the data
// flow.
if (!InterestBlock)
continue;
InterestBlocks.insert(BB);
}
}
bool RetainCodeMotionContext::performCodeMotion() {
bool Changed = false;
// Create the new retain instructions.
for (auto RC : RCRootVault) {
auto Iter = InsertPoints.find(RC);
if (Iter == InsertPoints.end())
continue;
for (auto IP : Iter->second) {
// Check if the insertion point is in a block that we had previously
// identified as a program termination point. In such a case, we know that
// there are no releases or anything beyond a fatalError call. In such a
// case, do not insert the retain. It is ok if we leak.
if (PTFI.isProgramTerminatingBlock(IP->getParent()))
continue;
// We are about to insert a new retain instruction before the insertion
// point. Check if the previous instruction is reusable, reuse it, do not
// insert new instruction and delete old one.
if (auto I = getPrevReusableInst(IP, Iter->first)) {
RCInstructions.erase(I);
continue;
}
createIncrementBefore(Iter->first, IP);
Changed = true;
}
}
// Remove the old retain instructions.
for (auto R : RCInstructions) {
++NumRetainsSunk;
recursivelyDeleteTriviallyDeadInstructions(R, true);
}
return Changed;
}
void RetainCodeMotionContext::mergeBBDataFlowStates(SILBasicBlock *BB) {
BlockState &State = BlockStates[BB];
State.BBSetIn.reset();
// If basic block has no predecessor, simply reset and return.
if (BB->pred_empty())
return;
// Intersect in all predecessors' BBSetOuts.
auto Iter = BB->pred_begin();
State.BBSetIn = BlockStates[*Iter].BBSetOut;
Iter = std::next(Iter);
for (auto E = BB->pred_end(); Iter != E; ++Iter) {
State.BBSetIn &= BlockStates[*Iter].BBSetOut;
}
}
bool RetainCodeMotionContext::processBBWithGenKillSet(SILBasicBlock *BB) {
RetainBlockState &State = BlockStates[BB];
// Compute the BBSetOut at the end of the basic block.
mergeBBDataFlowStates(BB);
// Compute the BBSetIn at the beginning of the basic block.
State.BBSetIn.reset(State.BBKillSet);
State.BBSetIn |= State.BBGenSet;
// If BBSetIn changes, then keep iterating until reached a fixed point.
return State.updateBBSetOut(State.BBSetIn);
}
void RetainCodeMotionContext::convergeCodeMotionDataFlow() {
// Process each basic block with the genset and killset. Every time the
// BBSetOut of a basic block changes, the optimization is rerun on its
// successors.
BasicBlockWorklist WorkList(BlockStates.getFunction());
// Push into reverse post order so that we can pop from the back and get
// post order.
for (SILBasicBlock *B : PO->getReversePostOrder()) {
WorkList.push(B);
}
while (SILBasicBlock *BB = WorkList.popAndForget()) {
if (processBBWithGenKillSet(BB)) {
for (SILBasicBlock *succ : BB->getSuccessors()) {
WorkList.pushIfNotVisited(succ);
}
}
}
}
void RetainCodeMotionContext::computeCodeMotionInsertPoints() {
#ifndef NDEBUG
printCtx.emplace(llvm::dbgs(), /*Verbose=*/false, /*Sorted=*/true);
#endif
// The BBSetOuts have converged, run last iteration and figure out
// insertion point for each refcounted root.
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
mergeBBDataFlowStates(BB);
RetainBlockState &S = BlockStates[BB];
// Compute insertion point generated by the edge value transition.
// If there is a transition from 1 to 0, that means we have a partial
// merge, which means the retain can NOT be sunk to the current block,
// so place it at the end of the predecessors.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (S.BBSetIn[i])
continue;
for (auto Pred : BB->getPredecessorBlocks()) {
BlockState &PBB = BlockStates[Pred];
if (!PBB.BBSetOut[i])
continue;
InsertPoints[RCRootVault[i]].push_back(Pred->getTerminator());
}
}
// Is this block interesting. If we are sure this block does not generate
// retains nor does it block any retains (i.e. no insertion point will be
// created), we can skip it, as the BBSetOut has been converged if this is
// a multi-iteration function.
if (MultiIteration && !InterestBlocks.contains(BB))
continue;
// Compute insertion point within the basic block. Process instructions in
// the basic block in reverse post-order fashion.
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!S.BBSetIn[i] || !mayBlockCodeMotion(&*I, RCRootVault[i]))
continue;
S.BBSetIn.reset(i);
InsertPoints[RCRootVault[i]].push_back(&*I);
}
// If this is a retain instruction, it also generates.
if (isRetain(&*I)) {
S.BBSetIn.set(RCRootIndex[getRCRoot(&*I)]);
}
}
// Lastly update the BBSetOut, only necessary when we are running a single
// iteration dataflow.
if (!MultiIteration) {
S.updateBBSetOut(S.BBSetIn);
}
}
}
//===----------------------------------------------------------------------===//
// Release Code Motion
//===----------------------------------------------------------------------===//
class ReleaseBlockState : public BlockState {
public:
/// Check whether the BBSetIn has changed. If it does, we need to rerun
/// the data flow on this block's predecessors to reach fixed point.
bool updateBBSetIn(SmallBitVector &X) {
if (BBSetIn == X)
return false;
BBSetIn = X;
return true;
}
/// If \p InitOptimistic is true, the block in-bits are initialized to 1
/// which enables optimistic data flow evaluation.
void init(bool InitOptimistic, unsigned size) {
// backward data flow.
// Initialize to true if we are running optimistic data flow, i.e.
// MultiIteration is true.
BBSetIn.resize(size, InitOptimistic);
BBSetOut.resize(size, false);
BBMaxSet.resize(size, InitOptimistic);
// Genset and Killset are initially empty.
BBGenSet.resize(size, false);
BBKillSet.resize(size, false);
}
};
/// ReleaseCodeMotionContext - Context to perform release code motion.
class ReleaseCodeMotionContext : public CodeMotionContext {
/// All the release block state for all the basic blocks in the function.
BasicBlockData<ReleaseBlockState> BlockStates;
InstructionSet releaseInstructions;
/// We are not moving epilogue releases.
bool FreezeEpilogueReleases;
/// The epilogue release matcher we are currently using.
ConsumedArgToEpilogueReleaseMatcher &ERM;
bool isRelease(SILInstruction *inst) const {
return releaseInstructions.contains(inst);
}
/// Return true if the instruction blocks the Ptr to be moved further.
bool mayBlockCodeMotion(SILInstruction *II, SILValue Ptr) override {
// NOTE: If more checks are to be added, place the most expensive in the end.
// This function is called many times.
//
// We can not move a release above the instruction that defines the
// released value.
if (II == Ptr->getDefiningInstruction())
return true;
// Identical RC root blocks code motion, we will be able to move this release
// further once we move the blocking release.
if (isRelease(II) && getRCRoot(II) == Ptr) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Release " << Ptr << " at matching release " << *II);
return true;
}
// Stop at may interfere.
if (mayHaveSymmetricInterference(II, Ptr, AA)) {
LLVM_DEBUG(if (printCtx) llvm::dbgs()
<< "Release " << Ptr << " at interference " << *II);
return true;
}
// This instruction does not block the release.
return false;
}
/// Return the successor instruction if it happens to be a release with the
/// given RC root, nullptr otherwise.
SILInstruction *getPrevReusableInst(SILInstruction *I, SILValue Root) {
if (&*I->getParent()->begin() == I)
return nullptr;
auto Prev = &*std::prev(SILBasicBlock::iterator(I));
if (isRelease(Prev) && getRCRoot(Prev) == Root)
return Prev;
return nullptr;
}
public:
/// Constructor.
ReleaseCodeMotionContext(SILFunctionTransform *parentTransform,
llvm::SpecificBumpPtrAllocator<BlockState> &BPA,
SILFunction *F, PostOrderFunctionInfo *PO,
AliasAnalysis *AA, RCIdentityFunctionInfo *RCFI,
bool FreezeEpilogueReleases,
ConsumedArgToEpilogueReleaseMatcher &ERM)
: CodeMotionContext(parentTransform, BPA, F, PO, AA, RCFI),
BlockStates(F),
releaseInstructions(F),
FreezeEpilogueReleases(FreezeEpilogueReleases), ERM(ERM) {}
/// virtual destructor.
~ReleaseCodeMotionContext() override {}
/// Return true if the data flow can converge in 1 iteration.
bool requireIteration() override;
/// Initialize necessary things to run the iterative data flow.
void initializeCodeMotionDataFlow() override;
/// Initialize the basic block maximum refcounted set.
void initializeCodeMotionBBMaxSet() override;
/// Compute the genset and killset for every root in every basic block.
void computeCodeMotionGenKillSet() override;
/// Run the iterative data flow to converge.
void convergeCodeMotionDataFlow() override;
/// Use the data flow results, come up with places to insert the new inst.
void computeCodeMotionInsertPoints() override;
/// Remove the old retains and create the new *moved* refcounted instructions
bool performCodeMotion() override;
/// Compute the BBSetIn and BBSetOut for the current basic
/// block with the generated gen and kill set.
bool processBBWithGenKillSet(SILBasicBlock *BB) override;
/// Merge the data flow states.
void mergeBBDataFlowStates(SILBasicBlock *BB) override;
};
bool ReleaseCodeMotionContext::requireIteration() {
// If all basic blocks will have their successors processed if the basic
// blocks in the functions are iterated in post order. Then this function
// can be processed in one iteration, i.e. no need to generate the genset
// and killset.
BasicBlockSet PBBs(BlockStates.getFunction());
for (SILBasicBlock *B : PO->getPostOrder()) {
for (SILBasicBlock *succ : B->getSuccessors()) {
if (!PBBs.contains(succ))
return true;
}
PBBs.insert(B);
}
return false;
}
void ReleaseCodeMotionContext::initializeCodeMotionDataFlow() {
// All blocks which are initialized with 1-bits. These are all blocks which
// eventually reach the function exit (return, throw), excluding the
// function exit blocks themselves.
// Optimistic initialization enables moving releases across loops. On the
// other hand, blocks, which never reach the function exit, e.g. infinite
// loop blocks, must be excluded. Otherwise we would end up inserting
// completely unrelated release instructions in such blocks.
BasicBlockSet BlocksInitOptimistically(BlockStates.getFunction());
llvm::SmallVector<SILBasicBlock *, 32> Worklist;
// Find all the RC roots in the function.
for (auto &BB : *F) {
for (auto &II : BB) {
if (!isReleaseInstruction(&II))
continue;
// Do not try to enumerate if we are not hoisting epilogue releases.
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&II))
continue;
if (!parentTransform->continueWithNextSubpassRun(&II))
continue;
releaseInstructions.insert(&II);
SILValue Root = getRCRoot(&II);
RCInstructions.insert(&II);
if (RCRootIndex.find(Root) != RCRootIndex.end())
continue;
RCRootIndex[Root] = RCRootVault.size();
RCRootVault.push_back(Root);
LLVM_DEBUG(llvm::dbgs()
<< "Release Root #" << RCRootVault.size() << " " << Root);
}
if (MultiIteration && BB.getTerminator()->isFunctionExiting())
Worklist.push_back(&BB);
}
// Find all blocks from which there is a path to the function exit.
// Note: the Worklist is empty if we are not in MultiIteration mode.
while (!Worklist.empty()) {
SILBasicBlock *BB = Worklist.pop_back_val();
for (SILBasicBlock *Pred : BB->getPredecessorBlocks()) {
if (BlocksInitOptimistically.insert(Pred))
Worklist.push_back(Pred);
}
}
// Initialize all the data flow bit vector for all basic blocks.
for (auto bd : BlockStates) {
bd.data.init(BlocksInitOptimistically.contains(&bd.block) != 0,
RCRootVault.size());
}
}
void ReleaseCodeMotionContext::initializeCodeMotionBBMaxSet() {
for (SILBasicBlock *BB : PO->getPostOrder()) {
// If basic block has no successor, do nothing.
BlockState &State = BlockStates[BB];
if (BB->succ_empty()) {
State.BBMaxSet.reset();
} else {
// Intersect in all successors' BBMaxOuts.
State.BBMaxSet.set();
for (auto E = BB->succ_end(), I = BB->succ_begin(); I != E; ++I) {
State.BBMaxSet &= BlockStates[*I].BBMaxSet;
}
}
// Process the instructions in the basic block to find what refcounted
// roots are released. If we know that an RC root can't be released at a
// basic block, then we know we do not need to consider it for the killset.
// NOTE: this is a conservative approximation, because some releases may be
// blocked before it reaches this block.
for (auto II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
if (!isRelease(&*II))
continue;
State.BBMaxSet.set(RCRootIndex[getRCRoot(&*II)]);
}
}
}
void ReleaseCodeMotionContext::computeCodeMotionGenKillSet() {
for (SILBasicBlock *BB : PO->getPostOrder()) {
BlockState &State = BlockStates[BB];
bool InterestBlock = false;
for (auto I = BB->rbegin(), E = BB->rend(); I != E; ++I) {
// Check whether this instruction blocks any RC root code motion.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!State.BBMaxSet.test(i) || !mayBlockCodeMotion(&*I, RCRootVault[i]))
continue;
// This instruction blocks this RC root.
InterestBlock = true;
State.BBKillSet.set(i);
State.BBGenSet.reset(i);
}
// If this is an epilogue release and we are freezing epilogue release
// simply continue.
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&*I))
continue;
// If this is a release instruction, it also generates.
if (isRelease(&*I)) {
unsigned idx = RCRootIndex[getRCRoot(&*I)];
State.BBGenSet.set(idx);
assert(State.BBKillSet.test(idx) && "Killset computed incorrectly");
State.BBKillSet.reset(idx);
InterestBlock = true;
}
}
// Handle SILArgument, SILArgument can invalidate.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
auto *A = dyn_cast<SILArgument>(RCRootVault[i]);
if (!A || A->getParent() != BB)
continue;
InterestBlock = true;
State.BBKillSet.set(i);
State.BBGenSet.reset(i);
}
// Is this interesting to the last iteration of the data flow.
if (!InterestBlock)
continue;
InterestBlocks.insert(BB);
}
}
void ReleaseCodeMotionContext::mergeBBDataFlowStates(SILBasicBlock *BB) {
BlockState &State = BlockStates[BB];
State.BBSetOut.reset();
// If basic block has no successor, simply reset and return.
if (BB->succ_empty())
return;
// Intersect in all successors' BBSetIn.
auto Iter = BB->succ_begin();
State.BBSetOut = BlockStates[*Iter].BBSetIn;
Iter = std::next(Iter);
for (auto E = BB->succ_end(); Iter != E; ++Iter) {
State.BBSetOut &= BlockStates[*Iter].BBSetIn;
}
}
bool ReleaseCodeMotionContext::performCodeMotion() {
bool Changed = false;
SmallVector<SILInstruction *, 8> NewReleases;
// Create the new releases at each anchor point.
for (auto RC : RCRootVault) {
auto Iter = InsertPoints.find(RC);
if (Iter == InsertPoints.end())
continue;
for (auto IP : Iter->second) {
// we are about to insert a new release instruction before the insertion
// point. Check if the successor instruction is reusable, reuse it, do
// not insert new instruction and delete old one.
if (auto I = getPrevReusableInst(IP, Iter->first)) {
if (RCInstructions.erase(I))
NewReleases.push_back(I);
continue;
}
if (SILInstruction *I = createDecrementBefore(Iter->first, IP).getPtrOrNull())
NewReleases.push_back(I);
Changed = true;
}
}
// Remove the old release instructions.
for (auto R : RCInstructions) {
++NumReleasesHoisted;
recursivelyDeleteTriviallyDeadInstructions(R, true);
}
// Eliminate pairs of retain-release if they are adjacent to each other and
// retain/release the same RCRoot, e.g.
// strong_retain %2
// strong_release %2
for (SILInstruction *ReleaseInst : NewReleases) {
auto InstIter = ReleaseInst->getIterator();
if (InstIter == ReleaseInst->getParent()->begin())
continue;
SILInstruction *PrevInst = &*std::prev(InstIter);
if (isRetainInstruction(PrevInst) && getRCRoot(PrevInst) == getRCRoot(ReleaseInst)) {
recursivelyDeleteTriviallyDeadInstructions(PrevInst, true);
recursivelyDeleteTriviallyDeadInstructions(ReleaseInst, true);
}
}
return Changed;
}
bool ReleaseCodeMotionContext::processBBWithGenKillSet(SILBasicBlock *BB) {
ReleaseBlockState &State = BlockStates[BB];
// Compute the BBSetOut at the end of the basic block.
mergeBBDataFlowStates(BB);
// Compute the BBSetIn at the beginning of the basic block.
State.BBSetOut.reset(State.BBKillSet);
State.BBSetOut |= State.BBGenSet;
// If BBSetIn changes, then keep iterating until reached a fixed point.
return State.updateBBSetIn(State.BBSetOut);
}
void ReleaseCodeMotionContext::convergeCodeMotionDataFlow() {
// Process each basic block with the gen and kill set. Every time the
// BBSetIn of a basic block changes, the optimization is rerun on its
// predecessors.
BasicBlockWorklist WorkList(BlockStates.getFunction());
// Push into reverse post order so that we can pop from the back and get
// post order.
for (SILBasicBlock *B : PO->getPostOrder()) {
WorkList.push(B);
}
while (SILBasicBlock *BB = WorkList.popAndForget()) {
if (processBBWithGenKillSet(BB)) {
for (auto X : BB->getPredecessorBlocks()) {
WorkList.pushIfNotVisited(X);
}
}
}
}
void ReleaseCodeMotionContext::computeCodeMotionInsertPoints() {
#ifndef NDEBUG
printCtx.emplace(llvm::dbgs(), /*Verbose=*/false, /*Sorted=*/true);
#endif
// The BBSetIns have converged, run last iteration and figure out insertion
// point for each RC root.
for (SILBasicBlock *BB : PO->getPostOrder()) {
// Intersect in the successor BBSetIns.
mergeBBDataFlowStates(BB);
ReleaseBlockState &S = BlockStates[BB];
// Compute insertion point generated by the edge value transition.
// If there is a transition from 1 to 0, that means we have a partial
// merge, which means the release can NOT be hoisted to the current block.
// place it at the successors.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (S.BBSetOut[i])
continue;
for (auto &Succ : BB->getSuccessors()) {
BlockState &SBB = BlockStates[Succ];
if (!SBB.BBSetIn[i])
continue;
InsertPoints[RCRootVault[i]].push_back(&*(*Succ).begin());
LLVM_DEBUG(llvm::dbgs()
<< "Release partial merge. Insert at successor: "
<< printCtx->getID(BB) << " " << RCRootVault[i]);
}
}
// Is this block interesting ?
if (MultiIteration && !InterestBlocks.contains(BB))
continue;
// Compute insertion point generated by MayUse terminator inst.
// If terminator instruction can block the RC root. We will have no
// choice but to anchor the release instructions in the successor blocks.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
SILInstruction *Term = BB->getTerminator();
if (!S.BBSetOut[i] || !mayBlockCodeMotion(Term, RCRootVault[i]))
continue;
for (auto &Succ : BB->getSuccessors()) {
BlockState &SBB = BlockStates[Succ];
if (!SBB.BBSetIn[i])
continue;
InsertPoints[RCRootVault[i]].push_back(&*(*Succ).begin());
LLVM_DEBUG(llvm::dbgs()
<< "Release terminator use. Insert at successor: "
<< printCtx->getID(BB) << " " << RCRootVault[i]);
}
S.BBSetOut.reset(i);
}
// Compute insertion point generated within the basic block. Process
// instructions in post-order fashion.
for (auto I = std::next(BB->rbegin()), E = BB->rend(); I != E; ++I) {
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!S.BBSetOut[i] || !mayBlockCodeMotion(&*I, RCRootVault[i]))
continue;
auto *InsertPt = &*std::next(SILBasicBlock::iterator(&*I));
InsertPoints[RCRootVault[i]].push_back(InsertPt);
S.BBSetOut.reset(i);
}
// If we are freezing this epilogue release. Simply continue.
if (FreezeEpilogueReleases && ERM.isEpilogueRelease(&*I))
continue;
// This release generates.
if (isRelease(&*I)) {
S.BBSetOut.set(RCRootIndex[getRCRoot(&*I)]);
}
}
// Compute insertion point generated by SILArgument. SILArgument blocks if
// it defines the released value.
for (unsigned i = 0; i < RCRootVault.size(); ++i) {
if (!S.BBSetOut[i])
continue;
auto *A = dyn_cast<SILArgument>(RCRootVault[i]);
if (!A || A->getParent() != BB)
continue;
InsertPoints[RCRootVault[i]].push_back(&*BB->begin());
S.BBSetOut.reset(i);
}
// Lastly update the BBSetIn, only necessary when we are running a single
// iteration dataflow.
if (!MultiIteration) {
S.updateBBSetIn(S.BBSetOut);
}
}
}
//===----------------------------------------------------------------------===//
// Eliminate Retains Before Program Termination Points
//===----------------------------------------------------------------------===//
static void eliminateRetainsPrecedingProgramTerminationPoints(SILFunction *f) {
for (auto &block : *f) {
auto *term = block.getTerminator();
// If we don't have an unreachable or an unreachable that is the only
// element in the block, bail.
if (!isa<UnreachableInst>(term) || term == &*block.begin())
continue;
auto iter = std::prev(term->getIterator());
// If we have an apply next, see if it is a program termination point. In
// such a case, we can ignore it. All other functions though imply we must
// bail. If we don't have a function here, check for side
if (auto apply = FullApplySite::isa(&*iter)) {
if (!apply.isCalleeKnownProgramTerminationPoint()) {
continue;
}
} else {
// If we didn't have an apply, move back onto the unreachable so that we
// can begin the loop in a proper state where we the current position of
// the iterator has already been tested.
++iter;
}
while (iter != block.begin()) {
// Move iter back to the prev instruction and see if iter is a retain
// instruction. If it is not, then break out of the loop. We found a
// non-retain instruction so can not optimize further since we do not want
// to shorten the lifetime of any values that may be used before the
// program termination.
--iter;
// First check if iter has side-effects. If iter doesn't have
// side-effects, then ignore it.
//
// TODO: Use SideEffectsAnalysis here.
if (!iter->mayHaveSideEffects())
continue;
if (!isa<StrongRetainInst>(&*iter) && !isa<RetainValueInst>(&*iter)) {
break;
}
// Since we are going to delete this instruction, we grab the pointer to
// the instruction, move iter to the prev instruction and erase the
// instruction.
auto *i = &*iter;
auto tmp = prev_or_default(iter, block.begin(), block.end());
i->eraseFromParent();
// If tmp is the end of the block, then we wrapped... break out of the
// loop we did all of the work that we could.
if (tmp == block.end())
break;
// Otherwise, set iter to point at the next instruction.
iter = std::next(tmp);
}
}
}
//===----------------------------------------------------------------------===//
// Top Level Entry Point
//===----------------------------------------------------------------------===//
namespace {
/// Code motion kind.
enum CodeMotionKind : unsigned { Retain = 0, Release = 1};
class ARCCodeMotion : public SILFunctionTransform {
/// Whether to hoist releases or sink retains.
CodeMotionKind Kind;
/// Freeze epilogue release or not.
bool FreezeEpilogueReleases;
public:
/// Constructor.
ARCCodeMotion(CodeMotionKind H, bool F) : Kind(H), FreezeEpilogueReleases(F) {}
/// The entry point to the transformation.
void run() override {
// Code motion disabled.
if (DisableARCCodeMotion)
return;
// Respect function no.optimize.
SILFunction *F = getFunction();
if (!F->shouldOptimize())
return;
// FIXME: Support ownership.
if (F->hasOwnership())
return;
LLVM_DEBUG(llvm::dbgs() << "*** ARCCM on function: " << F->getName()
<< " ***\n");
PostOrderAnalysis *POA = PM->getAnalysis<PostOrderAnalysis>();
// Split all critical edges.
//
// TODO: maybe we can do this lazily or maybe we should disallow SIL passes
// to create critical edges.
bool EdgeChanged = splitAllCriticalEdges(*F, nullptr, nullptr);
if (EdgeChanged)
POA->invalidateFunction(F);
auto *PO = POA->get(F);
auto *AA = PM->getAnalysis<AliasAnalysis>(F);
auto *RCFI = PM->getAnalysis<RCIdentityAnalysis>()->get(F);
llvm::SpecificBumpPtrAllocator<BlockState> BPA;
bool InstChanged = false;
if (Kind == Release) {
// TODO: we should consider Throw block as well, or better we should
// abstract the Return block or Throw block away in the matcher.
SILArgumentConvention Conv[] = {SILArgumentConvention::Direct_Owned};
ConsumedArgToEpilogueReleaseMatcher ERM(RCFI, F,
Conv,
ConsumedArgToEpilogueReleaseMatcher::ExitKind::Return);
ReleaseCodeMotionContext RelCM(this, BPA, F, PO, AA, RCFI,
FreezeEpilogueReleases, ERM);
// Run release hoisting.
InstChanged |= RelCM.run();
} else {
RetainCodeMotionContext RetCM(this, BPA, F, PO, AA, RCFI);
// Run retain sinking.
InstChanged |= RetCM.run();
// Eliminate any retains that are right before program termination
// points. We assume that any retains before semantic calls marked as
// program termination points can be eliminated since by assumption we are
// going to be leaking these objects and any releases that were afterwards
// were already eliminated. Assuming that the IR is correctly balanced
// from an ARC perspective.
eliminateRetainsPrecedingProgramTerminationPoints(F);
}
if (EdgeChanged) {
// We splitted critical edges.
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
return;
}
if (InstChanged) {
// We moved instructions.
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
};
} // end anonymous namespace
/// Sink Retains.
SILTransform *swift::createRetainSinking() {
return new ARCCodeMotion(CodeMotionKind::Retain, false);
}
/// Hoist releases, but not epilogue release. ASO relies on epilogue releases
/// to prove knownsafety on enclosed releases.
SILTransform *swift::createReleaseHoisting() {
return new ARCCodeMotion(CodeMotionKind::Release, true);
}
/// Hoist all releases.
SILTransform *swift::createLateReleaseHoisting() {
return new ARCCodeMotion(CodeMotionKind::Release, false);
}
|