1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
//===--- COWOpts.cpp - Optimize COW operations ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes begin_cow_mutation and end_cow_mutation patterns.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "cow-opts"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/StackList.h"
#include "llvm/Support/Debug.h"
using namespace swift;
namespace {
/// Constant folds the uniqueness result of begin_cow_mutation instructions.
///
/// If it can be proved that the buffer argument is uniquely referenced, the
/// uniqueness result is replaced with a constant boolean "true".
/// For example:
///
/// \code
/// %buffer = end_cow_mutation %mutable_buffer
/// // ...
/// // %buffer does not escape here
/// // ...
/// (%is_unique, %mutable_buffer2) = begin_cow_mutation %buffer
/// cond_br %is_unique, ...
/// \endcode
///
/// is replaced with
///
/// \code
/// %buffer = end_cow_mutation [keep_unique] %mutable_buffer
/// // ...
/// (%not_used, %mutable_buffer2) = begin_cow_mutation %buffer
/// %true = integer_literal 1
/// cond_br %true, ...
/// \endcode
///
/// Note that the keep_unique flag is set on the end_cow_mutation because the
/// code now relies on that the buffer is really uniquely referenced.
///
/// The optimization can also handle def-use chains between end_cow_mutation and
/// begin_cow_mutation which involve phi-arguments.
///
class COWOptsPass : public SILFunctionTransform {
public:
COWOptsPass() {}
void run() override;
private:
AliasAnalysis *AA = nullptr;
bool optimizeBeginCOW(BeginCOWMutationInst *BCM);
static void collectEscapePoints(SILValue v,
InstructionSetWithSize &escapePoints,
ValueSet &handled);
};
void COWOptsPass::run() {
SILFunction *F = getFunction();
if (!F->shouldOptimize())
return;
LLVM_DEBUG(llvm::dbgs() << "*** COW optimization on function: "
<< F->getName() << " ***\n");
AA = PM->getAnalysis<AliasAnalysis>(F);
bool changed = false;
for (SILBasicBlock &block : *F) {
for (SILInstruction &inst : block) {
if (auto *beginCOW = dyn_cast<BeginCOWMutationInst>(&inst)) {
if (optimizeBeginCOW(beginCOW))
changed = true;
}
}
}
if (changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
static SILValue skipStructAndExtract(SILValue value) {
while (true) {
if (auto *si = dyn_cast<StructInst>(value)) {
if (si->getNumOperands() != 1)
return value;
value = si->getOperand(0);
continue;
}
if (auto *sei = dyn_cast<StructExtractInst>(value)) {
value = sei->getOperand();
continue;
}
return value;
}
}
bool COWOptsPass::optimizeBeginCOW(BeginCOWMutationInst *BCM) {
LLVM_DEBUG(llvm::dbgs() << "Looking at: ");
LLVM_DEBUG(BCM->dump());
SILFunction *function = BCM->getFunction();
StackList<EndCOWMutationInst *> endCOWMutationInsts(function);
InstructionSet endCOWMutationsFound(function);
{
// Collect all end_cow_mutation instructions, used by the begin_cow_mutation,
// looking through block phi-arguments.
StackList<SILValue> workList(function);
ValueSet handled(function);
workList.push_back(BCM->getOperand());
while (!workList.empty()) {
SILValue v = skipStructAndExtract(workList.pop_back_val());
if (SILPhiArgument *arg = dyn_cast<SILPhiArgument>(v)) {
if (handled.insert(arg)) {
SmallVector<SILValue, 4> incomingVals;
if (!arg->getIncomingPhiValues(incomingVals))
return false;
for (SILValue incomingVal : incomingVals) {
workList.push_back(incomingVal);
}
}
} else if (auto *ECM = dyn_cast<EndCOWMutationInst>(v)) {
if (endCOWMutationsFound.insert(ECM))
endCOWMutationInsts.push_back(ECM);
} else {
return false;
}
}
}
// Collect all uses of the end_cow_instructions, where the buffer can
// potentially escape.
InstructionSetWithSize potentialEscapePoints(function);
{
ValueSet handled(function);
for (EndCOWMutationInst *ECM : endCOWMutationInsts) {
collectEscapePoints(ECM, potentialEscapePoints, handled);
}
}
if (!potentialEscapePoints.empty()) {
// Now, this is the complicated part: check if there is an escape point
// within the liverange between the end_cow_mutation(s) and
// begin_cow_mutation.
//
// For store instructions we do a little bit more: only count a store as an
// escape if there is a (potential) load from the same address within the
// liverange.
StackList<SILInstruction *> instWorkList(function);
StackList<SILInstruction *> potentialLoadInsts(function);
StackList<SILValue> storeAddrs(function);
ValueSet storeAddrsFound(function);
BasicBlockSet handled(function);
int numStoresFound = 0;
int numLoadsFound = 0;
// This is a simple worklist-based backward dataflow analysis.
// Start at the initial begin_cow_mutation and go backward.
instWorkList.push_back(BCM);
while (!instWorkList.empty()) {
SILInstruction *inst = instWorkList.pop_back_val();
for (;;) {
if (potentialEscapePoints.contains(inst)) {
if (auto *store = dyn_cast<StoreInst>(inst)) {
// Don't immediately bail on a store instruction. Instead, remember
// it and check if it interferes with any (potential) load.
if (storeAddrsFound.insert(store->getDest())) {
LLVM_DEBUG(llvm::dbgs() << "Found store escape, record: ");
LLVM_DEBUG(inst->dump());
storeAddrs.push_back(store->getDest());
numStoresFound += 1;
}
} else {
LLVM_DEBUG(llvm::dbgs() << "Found non-store escape, bailing out: ");
LLVM_DEBUG(inst->dump());
return false;
}
}
if (inst->mayReadFromMemory()) {
LLVM_DEBUG(llvm::dbgs() << "Found a may read inst, record: ");
LLVM_DEBUG(inst->dump());
potentialLoadInsts.push_back(inst);
numLoadsFound += 1;
}
// An end_cow_mutation marks the begin of the liverange. It's the end
// point of the dataflow analysis.
auto *ECM = dyn_cast<EndCOWMutationInst>(inst);
if (ECM && endCOWMutationsFound.contains(ECM))
break;
if (inst == &inst->getParent()->front()) {
for (SILBasicBlock *pred : inst->getParent()->getPredecessorBlocks()) {
if (handled.insert(pred))
instWorkList.push_back(pred->getTerminator());
}
break;
}
inst = &*std::prev(inst->getIterator());
}
}
// Check if there is any (potential) load from a memory location where the
// buffer is stored to.
if (numStoresFound != 0) {
// Avoid quadratic behavior. Usually this limit is not exceeded.
if (numStoresFound * numLoadsFound > 128)
return false;
for (SILInstruction *load : potentialLoadInsts) {
for (SILValue storeAddr : storeAddrs) {
if (!AA || AA->mayReadFromMemory(load, storeAddr)) {
LLVM_DEBUG(llvm::dbgs() << "Found a store address aliasing with a load:");
LLVM_DEBUG(load->dump());
LLVM_DEBUG(storeAddr->dump());
return false;
}
}
}
}
}
// Replace the uniqueness result of the begin_cow_mutation with an integer
// literal of "true".
SILBuilderWithScope B(BCM);
auto *IL = B.createIntegerLiteral(BCM->getLoc(),
BCM->getUniquenessResult()->getType(), 1);
BCM->getUniquenessResult()->replaceAllUsesWith(IL);
for (EndCOWMutationInst *ECM : endCOWMutationInsts) {
// This is important for other optimizations: The code is now relying on
// the buffer to be unique.
ECM->setKeepUnique();
}
return true;
}
void COWOptsPass::collectEscapePoints(SILValue v,
InstructionSetWithSize &escapePoints,
ValueSet &handled) {
if (!handled.insert(v))
return;
for (Operand *use : v->getUses()) {
SILInstruction *user = use->getUser();
switch (user->getKind()) {
case SILInstructionKind::BeginCOWMutationInst:
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::RefTailAddrInst:
case SILInstructionKind::DebugValueInst:
break;
case SILInstructionKind::BranchInst:
collectEscapePoints(cast<BranchInst>(user)->getArgForOperand(use),
escapePoints, handled);
break;
case SILInstructionKind::CondBranchInst:
if (use->getOperandNumber() != CondBranchInst::ConditionIdx) {
collectEscapePoints(cast<CondBranchInst>(user)->getArgForOperand(use),
escapePoints, handled);
}
break;
case SILInstructionKind::StructInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::UncheckedRefCastInst:
collectEscapePoints(cast<SingleValueInstruction>(user),
escapePoints, handled);
break;
default:
// Everything else is considered to be a potential escape of the buffer.
escapePoints.insert(user);
}
}
}
} // end anonymous namespace
SILTransform *swift::createCOWOpts() {
return new COWOptsPass();
}
|