1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
|
//===--- DeadCodeElimination.cpp - Delete dead code ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-dce"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
STATISTIC(NumBranchesPromoted, "Number of dead branches promoted to jumps");
STATISTIC(NumDeletedInsts, "Number of instructions deleted");
namespace {
// Without any complex analysis, does this instruction seem like
// something that we need to keep?
//
// FIXME: Reconcile the similarities between this and
// isInstructionTriviallyDead.
static bool seemsUseful(SILInstruction *I) {
// Even though begin_access/destroy_value/copy_value/end_lifetime have
// side-effects, they can be DCE'ed if they do not have useful
// dependencies/reverse dependencies
if (isa<BeginAccessInst>(I) || isa<CopyValueInst>(I) ||
isa<DestroyValueInst>(I) || isa<EndLifetimeInst>(I) ||
isa<EndBorrowInst>(I))
return false;
// A load [copy] is okay to be DCE'ed if there are no useful dependencies
if (auto *load = dyn_cast<LoadInst>(I)) {
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy)
return false;
}
if (I->mayHaveSideEffects())
return true;
if (llvm::any_of(I->getResults(),
[](auto result) { return result->isLexical(); })) {
return true;
}
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
// Although the onFastPath builtin has no side-effects we don't want to
// remove it.
return BI->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath;
}
if (isa<UnreachableInst>(I))
return true;
if (auto TI = dyn_cast<TermInst>(I)) {
if (TI->isFunctionExiting())
return true;
}
// Is useful if it's associating with a function argument
// If undef, it is useful and it doesn't cost anything.
if (isa<DebugValueInst>(I))
return isa<SILFunctionArgument>(I->getOperand(0))
|| isa<SILUndef>(I->getOperand(0));
// Don't delete allocation instructions in DCE.
if (isa<AllocRefInst>(I) || isa<AllocRefDynamicInst>(I)) {
return true;
}
return false;
}
// We map from post-dominator tree node to a ControllingInfo struct
// which contains the post-dominator tree level of this node, along
// with the direct predecessors that this node is control-dependent
// on, and the minimum level number of any predecessor in the subtree
// below this node in the post-dominator tree.
struct ControllingInfo {
typedef std::pair<SILBasicBlock *, unsigned> PredInfo;
SILBasicBlock *Block;
// The post-dominator tree level for this node.
unsigned Level;
llvm::SmallVector<PredInfo, 2> ControllingPreds;
unsigned MinTreePredLevel;
};
class DCE {
typedef llvm::DomTreeNodeBase<SILBasicBlock> PostDomTreeNode;
SILFunction *F;
ValueSet LiveArguments;
InstructionSet LiveInstructions;
BasicBlockSet LiveBlocks;
llvm::SmallVector<SILInstruction *, 64> Worklist;
PostDominanceInfo *PDT;
llvm::DenseMap<SILBasicBlock *, ControllingInfo> ControllingInfoMap;
// Maps instructions which produce a failing condition (like overflow
// builtins) to the actual cond_fail instructions which handle the failure.
// Dependencies which go in the reverse direction. Usually for a pair
// %1 = inst_a
// inst_b(%1)
// the dependency goes from inst_b to inst_a: if inst_b is alive then
// inst_a is also alive.
// For some instructions the dependency is exactly the other way round, e.g.
// %1 = inst_which_can_fail
// cond_fail(%1)
// In this case cond_fail is alive only if inst_which_can_fail is alive.
// The key of this map is the source of the dependency (inst_a), the
// value is the set of instructions dependent on it (inst_b).
llvm::DenseMap<SILValue, SmallPtrSet<SILInstruction *, 4>>
ReverseDependencies;
// guaranteedPhiDependencies tracks the dependency of reborrows and
// @guaranteed forwarding phis with its base value.
// If the base value is also passed along as a phi operand with the reborrow
// operand/GuaranteedForwardingPhi operand, we will have a new base value
// for the reborrow phi/@guaranteed forwarding phi.
using BaseValueSet = SmallPtrSet<SILValue, 8>;
llvm::DenseMap<SILPhiArgument *, BaseValueSet> guaranteedPhiDependencies;
/// Tracks if the pass changed branches.
bool BranchesChanged = false;
/// Tracks if the pass changed ApplyInsts.
bool CallsChanged = false;
bool precomputeControlInfo();
void markLive();
/// Record a reverse dependency from \p from to \p to meaning \p to is live
/// if \p from is also live.
void addReverseDependency(SILValue from, SILInstruction *to);
/// Starting from \p borrow find all reborrow and guaranteed phi dependencies
/// along with their base values.
void findGuaranteedPhiDependencies(BorrowedValue borrow);
bool removeDead();
void computeLevelNumbers(PostDomTreeNode *root);
bool hasInfiniteLoops();
void computePredecessorDependence();
void computeMinPredecessorLevels(PostDomTreeNode *root);
void insertControllingInfo(SILBasicBlock *Block, unsigned Level);
void markValueLive(SILValue V);
void markInstructionLive(SILInstruction *Inst);
void markTerminatorArgsLive(SILBasicBlock *Pred, SILBasicBlock *Succ,
size_t ArgIndex);
void markControllingTerminatorsLive(SILBasicBlock *Block);
void propagateLiveBlockArgument(SILArgument *Arg);
void propagateLiveness(SILInstruction *I);
void collectControllingBlocksInTree(ControllingInfo &QueryInfo,
PostDomTreeNode *root,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling);
void collectControllingBlocks(SILBasicBlock *Block,
llvm::SmallPtrSetImpl<SILBasicBlock *> &);
SILBasicBlock *nearestUsefulPostDominator(SILBasicBlock *Block);
void replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block);
/// If \p value is live, insert a lifetime ending operation in ossa.
/// destroy_value for @owned value and end_borrow for a @guaranteed value.
void endLifetimeOfLiveValue(SILValue value, SILInstruction *insertPt);
public:
DCE(SILFunction *F, PostDominanceInfo *PDT)
: F(F), LiveArguments(F), LiveInstructions(F), LiveBlocks(F), PDT(PDT) {}
/// The entry point to the transformation.
bool run() {
if (!precomputeControlInfo())
return false;
markLive();
return removeDead();
}
bool mustInvalidateCalls() const { return CallsChanged; }
bool mustInvalidateBranches() const { return BranchesChanged; }
};
// Keep track of the fact that V is live and add it to our worklist
// so that we can process the values it depends on.
void DCE::markValueLive(SILValue V) {
if (SILInstruction *inst = V->getDefiningInstruction())
return markInstructionLive(inst);
if (isa<SILUndef>(V))
return;
LLVM_DEBUG(llvm::dbgs() << "Marking as live: " << *V);
auto *Arg = cast<SILArgument>(V);
if (!LiveArguments.insert(Arg))
return;
markControllingTerminatorsLive(Arg->getParent());
propagateLiveBlockArgument(Arg);
}
void DCE::markInstructionLive(SILInstruction *Inst) {
if (!LiveInstructions.insert(Inst))
return;
LLVM_DEBUG(llvm::dbgs() << "Marking as live: " << *Inst);
Worklist.push_back(Inst);
}
/// Gets the producing instruction of a cond_fail condition. Currently these
/// are overflow builtins but may be extended to other instructions in the
/// future.
static BuiltinInst *getProducer(CondFailInst *CFI) {
// Check for the pattern:
// %1 = builtin "some_operation_with_overflow"
// %2 = tuple_extract %1
// %3 = cond_fail %2
SILValue FailCond = CFI->getOperand();
if (auto *TEI = dyn_cast<TupleExtractInst>(FailCond)) {
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand())) {
return BI;
}
}
return nullptr;
}
// Determine which instructions from this function we need to keep.
void DCE::markLive() {
// Find the initial set of instructions in this function that appear
// to be live in the sense that they are not trivially something we
// can delete by examining only that instruction.
for (auto &BB : *F) {
for (auto &I : BB) {
switch (I.getKind()) {
case SILInstructionKind::CondFailInst: {
if (auto *Prod = getProducer(cast<CondFailInst>(&I))) {
addReverseDependency(Prod, &I);
} else {
markInstructionLive(&I);
}
break;
}
// The side-effects of fix_lifetime effect all references to the same
// object. It must be preserved to keep alive any potentially aliasing
// references. fix_lifetime can only be removed by proving that its
// operand is both a unique and a dead reference, but this makes more
// sense in DeadObjectElimination.
case SILInstructionKind::FixLifetimeInst: {
// If the operand is a trivial scalar value, then it has no aliases or
// side-effects. Consider handling this as an instruction
// canonicalization instead.
SILValue Op = I.getOperand(0);
if (!Op->getType().isAddress() && Op->getType().isTrivial(*F)) {
addReverseDependency(Op, &I);
} else {
markInstructionLive(&I);
}
break;
}
case SILInstructionKind::EndAccessInst: {
// An end_access is live only if it's begin_access is also live.
auto *beginAccess = cast<EndAccessInst>(&I)->getBeginAccess();
addReverseDependency(beginAccess, &I);
break;
}
case SILInstructionKind::DestroyValueInst: {
auto phi = PhiValue(I.getOperand(0));
// Disable DCE of phis which are lexical or may have a pointer escape.
if (phi && (phi->isLexical() || findPointerEscape(phi))) {
markInstructionLive(&I);
}
// The instruction is live only if it's operand value is also live
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::EndBorrowInst: {
auto phi = PhiValue(I.getOperand(0));
// If there is a pointer escape or phi is lexical, disable DCE.
if (phi && (findPointerEscape(phi) || phi->isLexical())) {
markInstructionLive(&I);
}
// The instruction is live only if it's operand value is also live
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::EndLifetimeInst: {
// The instruction is live only if it's operand value is also live
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::BeginBorrowInst: {
auto *borrowInst = cast<BeginBorrowInst>(&I);
// Populate guaranteedPhiDependencies for this borrowInst
findGuaranteedPhiDependencies(BorrowedValue(borrowInst));
auto disableBorrowDCE = [&](SILValue borrow) {
visitTransitiveEndBorrows(borrow, [&](EndBorrowInst *endBorrow) {
markInstructionLive(endBorrow);
});
};
// If we have a begin_borrow of a @guaranteed operand, disable DCE'ing
// of parent borrow scopes. Dead reborrows needs complex handling, which
// is why it is disabled for now.
if (borrowInst->getOperand()->getOwnershipKind() ==
OwnershipKind::Guaranteed) {
SmallVector<SILValue, 4> roots;
findGuaranteedReferenceRoots(borrowInst->getOperand(),
/*lookThroughNestedBorrows=*/false,
roots);
// Visit the end_borrows of all the borrow scopes that this
// begin_borrow could be borrowing, and mark them live.
for (auto root : roots) {
disableBorrowDCE(root);
}
}
break;
}
case SILInstructionKind::LoadBorrowInst: {
findGuaranteedPhiDependencies(BorrowedValue(cast<LoadBorrowInst>(&I)));
break;
}
default:
if (seemsUseful(&I))
markInstructionLive(&I);
}
}
}
// Now propagate liveness backwards from each instruction in our
// worklist, adding new instructions to the worklist as we discover
// more that we need to keep.
while (!Worklist.empty()) {
auto *I = Worklist.pop_back_val();
propagateLiveness(I);
}
}
// Records a reverse dependency if needed. See DCE::ReverseDependencies.
void DCE::addReverseDependency(SILValue from, SILInstruction *to) {
LLVM_DEBUG(llvm::dbgs() << "Adding reverse dependency from " << from << " to "
<< to);
ReverseDependencies[from].insert(to);
}
void DCE::findGuaranteedPhiDependencies(BorrowedValue borrow) {
assert(borrow.kind == BorrowedValueKind::BeginBorrow ||
borrow.kind == BorrowedValueKind::LoadBorrow);
LLVM_DEBUG(llvm::dbgs() << "Finding @guaranteed phi dependencies of "
<< borrow << "\n");
auto visitDependentPhiBaseValuePair = [&](SILPhiArgument *phiArg,
SILValue baseValue) {
guaranteedPhiDependencies[phiArg].insert(baseValue);
};
// Find all dependencies starting from \p borrowInst and populate
// them in guaranteedPhiDependencies
if (borrow.kind == BorrowedValueKind::BeginBorrow) {
visitExtendedReborrowPhiBaseValuePairs(cast<BeginBorrowInst>(borrow.value),
visitDependentPhiBaseValuePair);
}
visitExtendedGuaranteedForwardingPhiBaseValuePairs(
borrow, visitDependentPhiBaseValuePair);
}
// Mark as live the terminator argument at index ArgIndex in Pred that
// targets Succ.
void DCE::markTerminatorArgsLive(SILBasicBlock *Pred,
SILBasicBlock *Succ,
size_t ArgIndex) {
auto *Term = Pred->getTerminator();
// If the arguments are live, we need to keep the terminator that
// delivers those arguments.
markInstructionLive(Term);
switch (Term->getTermKind()) {
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::UnwindInst:
case TermKind::YieldInst:
case TermKind::UnreachableInst:
case TermKind::SwitchValueInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::CheckedCastAddrBranchInst:
llvm_unreachable("Unexpected argument for terminator kind!");
break;
case TermKind::DynamicMethodBranchInst:
case TermKind::SwitchEnumInst:
case TermKind::CheckedCastBranchInst:
assert(ArgIndex == 0 && "Expected a single argument!");
// We do not need to do anything with these. If the resulting
// argument is used at the destination these terminators will end
// up live, and then our normal liveness propagation will mark the
// single operand of these instructions as live.
break;
case TermKind::BranchInst:
markValueLive(cast<BranchInst>(Term)->getArg(ArgIndex));
break;
case TermKind::CondBranchInst: {
auto *CondBr = cast<CondBranchInst>(Term);
if (CondBr->getTrueBB() == Succ) {
auto TrueArgs = CondBr->getTrueArgs();
markValueLive(TrueArgs[ArgIndex]);
}
if (CondBr->getFalseBB() == Succ) {
auto FalseArgs = CondBr->getFalseArgs();
markValueLive(FalseArgs[ArgIndex]);
}
break;
}
case TermKind::AwaitAsyncContinuationInst:
case TermKind::TryApplyInst: {
assert(ArgIndex == 0 && "Expect a single argument!");
break;
}
}
}
// Propagate liveness back from Arg to the terminator arguments that
// supply its value.
void DCE::propagateLiveBlockArgument(SILArgument *Arg) {
// Conceptually, the dependency from a debug instruction to its definition
// is in reverse direction: Only if its definition (the Arg) is alive, also
// the debug_value instruction is alive.
for (Operand *DU : getDebugUses(Arg))
markInstructionLive(DU->getUser());
// Mark all reverse dependencies on the Arg live
for (auto *depInst : ReverseDependencies.lookup(Arg)) {
markInstructionLive(depInst);
}
if (auto *phi = dyn_cast<SILPhiArgument>(Arg)) {
for (auto depVal : guaranteedPhiDependencies.lookup(phi)) {
markValueLive(depVal);
}
}
auto *Block = Arg->getParent();
auto ArgIndex = Arg->getIndex();
for (auto Pred : Block->getPredecessorBlocks())
markTerminatorArgsLive(Pred, Block, ArgIndex);
}
// Given an instruction which is considered live, propagate that liveness
// back to the instructions that produce values it consumes.
void DCE::propagateLiveness(SILInstruction *I) {
markControllingTerminatorsLive(I->getParent());
if (!isa<TermInst>(I)) {
for (auto &O : I->getAllOperands())
markValueLive(O.get());
// Conceptually, the dependency from a debug instruction to its definition
// is in reverse direction: Only if its definition is alive, also the
// debug_value instruction is alive.
for (auto result : I->getResults())
for (Operand *DU : getDebugUses(result))
markInstructionLive(DU->getUser());
// Handle all other reverse-dependency instructions, like cond_fail,
// fix_lifetime, destroy_value, etc. Only if the definition is alive, the
// user itself is alive.
for (auto res : I->getResults()) {
for (auto *depInst : ReverseDependencies.lookup(res)) {
markInstructionLive(depInst);
}
}
return;
}
switch (cast<TermInst>(I)->getTermKind()) {
case TermKind::BranchInst:
case TermKind::UnreachableInst:
case TermKind::UnwindInst:
case TermKind::ThrowAddrInst:
return;
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::CondBranchInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::DynamicMethodBranchInst:
markValueLive(I->getOperand(0));
return;
case TermKind::AwaitAsyncContinuationInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastAddrBranchInst:
case TermKind::TryApplyInst:
case TermKind::SwitchValueInst:
case TermKind::YieldInst:
for (auto &O : I->getAllOperands())
markValueLive(O.get());
return;
}
llvm_unreachable("corrupt instruction!");
}
SILBasicBlock *DCE::nearestUsefulPostDominator(SILBasicBlock *Block) {
// Find the nearest post-dominator that has useful instructions.
auto *PostDomNode = PDT->getNode(Block)->getIDom();
while (PostDomNode &&
// In case the PostDomNode's block is null, it means it's not contained
// in LiveBlocks.
(!PostDomNode->getBlock() ||
!LiveBlocks.contains(PostDomNode->getBlock())))
PostDomNode = PostDomNode->getIDom();
if (PostDomNode)
return PostDomNode->getBlock();
return nullptr;
}
// Replace the given conditional branching instruction with a plain
// jump (aka unconditional branch) to the destination block.
void DCE::replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block) {
++NumBranchesPromoted;
assert(Block && "Expected a destination block!");
assert((isa<CondBranchInst>(Inst) ||
isa<SwitchValueInst>(Inst) ||
isa<SwitchEnumInst>(Inst) ||
isa<SwitchEnumAddrInst>(Inst) ||
isa<DynamicMethodBranchInst>(Inst) ||
isa<CheckedCastBranchInst>(Inst)) &&
"Unexpected dead terminator kind!");
SILInstruction *Branch;
if (!Block->args_empty()) {
std::vector<SILValue> Args;
auto E = Block->args_end();
for (auto A = Block->args_begin(); A != E; ++A) {
assert(!LiveArguments.contains(*A) && "Unexpected live block argument!");
Args.push_back(SILUndef::get(*A));
}
Branch =
SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block, Args);
} else {
Branch = SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block);
}
LLVM_DEBUG(llvm::dbgs() << "Inserted unconditional branch:\n");
LLVM_DEBUG(Branch->dump());
(void)Branch;
}
void DCE::endLifetimeOfLiveValue(SILValue value, SILInstruction *insertPt) {
if (SILInstruction *inst = value->getDefiningInstruction()) {
if (!LiveInstructions.contains(inst))
return;
} else if (auto *arg = dyn_cast<SILArgument>(value)) {
if (!LiveArguments.contains(arg))
return;
}
SILBuilderWithScope builder(insertPt);
if (value->getOwnershipKind() == OwnershipKind::Owned) {
builder.emitDestroyOperation(RegularLocation::getAutoGeneratedLocation(),
value);
}
BorrowedValue borrow(value);
if (borrow && borrow.isLocalScope()) {
builder.emitEndBorrowOperation(RegularLocation::getAutoGeneratedLocation(),
value);
}
}
// Remove the instructions that are not potentially useful.
bool DCE::removeDead() {
bool Changed = false;
for (auto &BB : *F) {
for (unsigned i = 0; i < BB.getArguments().size();) {
auto *arg = BB.getArgument(i);
if (LiveArguments.contains(arg)) {
i++;
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Removing dead argument:\n");
LLVM_DEBUG(arg->dump());
arg->replaceAllUsesWithUndef();
if (!F->hasOwnership() || arg->getOwnershipKind() == OwnershipKind::None) {
i++;
Changed = true;
BranchesChanged = true;
continue;
}
if (!arg->isPhi()) {
// We cannot delete a non phi. If it was @owned, insert a
// destroy_value, because its consuming user has already been marked
// dead and will be deleted.
// We do not have to end lifetime of a @guaranteed non phi arg.
if (arg->getOwnershipKind() == OwnershipKind::Owned) {
auto loc = RegularLocation::getAutoGeneratedLocation();
// insertPt is non-null because Undef is non-owned.
auto insertPt = getInsertAfterPoint(arg).value();
SILBuilderWithScope builder(insertPt);
auto *destroy = builder.createDestroyValue(loc, arg);
LiveInstructions.insert(destroy);
}
i++;
Changed = true;
BranchesChanged = true;
continue;
}
auto *phiArg = cast<SILPhiArgument>(arg);
// In OSSA, we have to delete a dead phi argument and insert destroy or
// end_borrow at its predecessors if the incoming values are live.
// This is not necessary in non-OSSA, and will infact be incorrect.
// Because, passing a value as a phi argument does not imply end of
// lifetime in non-OSSA.
for (auto *pred : BB.getPredecessorBlocks()) {
auto *predTerm = pred->getTerminator();
SILInstruction *insertPt = predTerm;
if (phiArg->getOwnershipKind() == OwnershipKind::Guaranteed) {
// If the phiArg is dead and had reborrow dependencies, its baseValue
// may also have been dead and a destroy_value of its baseValue may
// have been inserted before the pred's terminator. Make sure to
// adjust the insertPt before any destroy_value.
//
// FIXME: This code currently can reorder destroys, e.g., when the
// block already contains a destroy_value just before the
// terminator. Fix this by making note of the added
// destroy_value insts and only moving the insertion point
// before those that are newly added.
for (SILInstruction &predInst : llvm::reverse(*pred)) {
if (&predInst == predTerm)
continue;
if (!isa<DestroyValueInst>(&predInst)) {
break;
}
insertPt = &predInst;
}
}
endLifetimeOfLiveValue(phiArg->getIncomingPhiValue(pred), insertPt);
}
erasePhiArgument(&BB, i, /*cleanupDeadPhiOps=*/true,
InstModCallbacks().onCreateNewInst(
[&](auto *inst) { markInstructionLive(inst); }));
Changed = true;
BranchesChanged = true;
}
for (auto I = BB.begin(), E = BB.end(); I != E; ) {
auto *Inst = &*I;
++I;
if (LiveInstructions.contains(Inst) || isa<BranchInst>(Inst))
continue;
// We want to replace dead terminators with unconditional branches to
// the nearest post-dominator that has useful instructions.
if (auto *termInst = dyn_cast<TermInst>(Inst)) {
SILBasicBlock *postDom = nearestUsefulPostDominator(Inst->getParent());
if (!postDom)
continue;
for (auto &op : termInst->getAllOperands()) {
if (op.isLifetimeEnding()) {
endLifetimeOfLiveValue(op.get(), termInst);
}
}
LLVM_DEBUG(llvm::dbgs() << "Replacing branch: ");
LLVM_DEBUG(Inst->dump());
LLVM_DEBUG(llvm::dbgs()
<< "with jump to: BB" << postDom->getDebugID() << "\n");
replaceBranchWithJump(Inst, postDom);
Inst->eraseFromParent();
BranchesChanged = true;
Changed = true;
continue;
}
++NumDeletedInsts;
LLVM_DEBUG(llvm::dbgs() << "Removing dead instruction:\n");
LLVM_DEBUG(Inst->dump());
if (F->hasOwnership()) {
for (auto &Op : Inst->getAllOperands()) {
if (Op.isLifetimeEnding()) {
endLifetimeOfLiveValue(Op.get(), Inst);
}
}
}
Inst->replaceAllUsesOfAllResultsWithUndef();
if (isa<ApplyInst>(Inst))
CallsChanged = true;
Inst->eraseFromParent();
Changed = true;
}
}
return Changed;
}
// Precompute some information from the post-dominator tree to aid us
// in determining control dependence without generating a complete
// control dependence graph. Inspired by:
// Optimal control dependence and the Roman chariots problem
// TOPLAS, v19, issue 3, 1997
// http://dx.doi.org/10.1145/256167.256217
//
// For each node in the post-dominator tree we will compute:
// -- A level number.
//
// -- The list of immediate predecessors that this block is
// control-dependent on along with the level number in the
// post-dominator tree of each of those predecessors.
//
// -- The lowest level number of any predecessor below the given node
// in the post-dominator tree. This will be used to exit early in
// later control-dependence queries.
//
// Returns true upon success, false if nodes that are not present in the
// post-dominator tree are detected.
bool DCE::precomputeControlInfo() {
computeLevelNumbers(PDT->getRootNode());
if (hasInfiniteLoops())
return false;
computePredecessorDependence();
computeMinPredecessorLevels(PDT->getRootNode());
return true;
}
void DCE::insertControllingInfo(SILBasicBlock *Block, unsigned Level) {
assert(ControllingInfoMap.find(Block) == ControllingInfoMap.end() &&
"Unexpected map entry for node!");
ControllingInfo Info;
Info.Block = Block;
Info.Level = Level;
Info.MinTreePredLevel = -1;
ControllingInfoMap[Block] = Info;
}
// Assign a level number to each node in the post-dominator tree.
void DCE::computeLevelNumbers(PostDomTreeNode *root) {
llvm::SmallVector<std::pair<PostDomTreeNode *, unsigned>, 32> workList;
workList.push_back({root, 0});
while (!workList.empty()) {
auto entry = workList.pop_back_val();
PostDomTreeNode *node = entry.first;
unsigned level = entry.second;
insertControllingInfo(node->getBlock(), level);
for (PostDomTreeNode *child : *node) {
workList.push_back({child, level + 1});
}
}
}
// Structurally infinite loops like:
// bb1:
// br bb1
// are not present in the post-dominator tree. Their presence
// requires significant modifications to the way the rest of the
// algorithm works. They should be rare, so for now we'll do the most
// conservative thing and completely bail out, doing no dead code
// elimination. Note this will also hit for unreachable code, but
// presumably we'll run DCE at some point after removing unreachable
// code.
bool DCE::hasInfiniteLoops() {
for (auto &BB : *F)
if (ControllingInfoMap.find(&BB) == ControllingInfoMap.end())
return true;
return false;
}
// For each block, create a list of the direct predecessors that the
// block is control-dependent on. With each predecessor, also keep the
// level number of the predecessor in the post-dominator tree.
void DCE::computePredecessorDependence() {
for (auto &BB : *F) {
assert(ControllingInfoMap.find(&BB) != ControllingInfoMap.end()
&& "Expected to already have a map entry for block!");
for (auto Pred : BB.getPredecessorBlocks())
if (!PDT->properlyDominates(&BB, Pred)) {
assert(ControllingInfoMap.find(Pred) != ControllingInfoMap.end() &&
"Expected to already have a map entry for block!");
auto PredLevel = ControllingInfoMap[Pred].Level;
auto PredInfo = std::make_pair(Pred, PredLevel);
auto &MapElement = ControllingInfoMap[&BB];
MapElement.ControllingPreds.push_back(PredInfo);
}
}
}
// Assign the minimum post-dominator tree level to each node in the tree.
void DCE::computeMinPredecessorLevels(PostDomTreeNode *root) {
llvm::SmallVector<PostDomTreeNode *, 32> postDomOrder;
postDomOrder.reserve(ControllingInfoMap.size());
postDomOrder.push_back(root);
for (unsigned idx = 0; idx < postDomOrder.size(); ++idx) {
PostDomTreeNode *node = postDomOrder[idx];
for (PostDomTreeNode *child : *node) {
postDomOrder.push_back(child);
}
}
for (PostDomTreeNode *node : llvm::reverse(postDomOrder)) {
SILBasicBlock *block = node->getBlock();
assert(ControllingInfoMap.find(block) != ControllingInfoMap.end() &&
"Expected to have map entry for node!");
ControllingInfo &nodeInfo = ControllingInfoMap[block];
for (auto &pred : nodeInfo.ControllingPreds) {
nodeInfo.MinTreePredLevel = std::min(nodeInfo.MinTreePredLevel, pred.second);
}
if (PostDomTreeNode *parentNode = node->getIDom()) {
ControllingInfo &parentInfo = ControllingInfoMap[parentNode->getBlock()];
parentInfo.MinTreePredLevel = std::min(parentInfo.MinTreePredLevel, nodeInfo.MinTreePredLevel);
}
}
}
void DCE::collectControllingBlocksInTree(ControllingInfo &QueryInfo,
PostDomTreeNode *root,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
llvm::SmallVector<PostDomTreeNode *, 32> workList;
workList.push_back(root);
while (!workList.empty()) {
PostDomTreeNode *node = workList.pop_back_val();
SILBasicBlock *block = node->getBlock();
assert(ControllingInfoMap.find(block) != ControllingInfoMap.end() &&
"Expected to have map entry for node!");
auto &nodeInfo = ControllingInfoMap[block];
if (nodeInfo.MinTreePredLevel > QueryInfo.Level)
continue;
for (auto &PredInfo : nodeInfo.ControllingPreds) {
if (PredInfo.second <= QueryInfo.Level) {
assert(PDT->properlyDominates(
PDT->getNode(PredInfo.first)->getIDom()->getBlock(),
QueryInfo.Block) &&
"Expected predecessor's post-dominator to post-dominate node.");
Controlling.insert(PredInfo.first);
}
}
for (PostDomTreeNode *child : *node) {
workList.push_back(child);
}
}
}
// Walk the post-dominator tree from the query block down, building
// the set of blocks that the given block is control-dependent on. To
// determine control dependence we use some precomputed information
// about the direct predecessors that control each block, along with
// the level numbers in the post-dominator tree of those controlling
// predecessors. We can use the latter to terminate the walk down the
// dominator tree early.
void DCE::collectControllingBlocks(SILBasicBlock *Block,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
// First add the blocks that QueryNode is directly control-dependent on.
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
"Expected map entry for node!");
auto &MapEntry = ControllingInfoMap[Block];
// Now walk the children looking for nodes that have controlling
// predecessors that have the same or lower level number in the
// post-dominator tree.
collectControllingBlocksInTree(MapEntry, PDT->getNode(Block), Controlling);
}
void DCE::markControllingTerminatorsLive(SILBasicBlock *Block) {
if (LiveBlocks.contains(Block))
return;
LiveBlocks.insert(Block);
llvm::SmallPtrSet<SILBasicBlock *, 4> ControllingBlocks;
collectControllingBlocks(Block, ControllingBlocks);
for (auto BB : ControllingBlocks)
markInstructionLive(BB->getTerminator());
}
class DCEPass : public SILFunctionTransform {
public:
/// The entry point to the transformation.
void run() override {
SILFunction *F = getFunction();
LLVM_DEBUG(llvm::dbgs() << "*** DCE on function: " << F->getName()
<< " ***\n");
auto *DA = PM->getAnalysis<PostDominanceAnalysis>();
PostDominanceInfo *PDT = DA->get(F);
// If we have a function that consists of nothing but a
// structurally infinite loop like:
// while true {}
// we'll have an empty post dominator tree.
if (!PDT->getRootNode())
return;
DCE dce(F, PDT);
if (dce.run()) {
using InvalidationKind = SILAnalysis::InvalidationKind;
unsigned Inv = InvalidationKind::Instructions;
if (dce.mustInvalidateCalls())
Inv |= (unsigned)InvalidationKind::Calls;
if (dce.mustInvalidateBranches()) {
removeUnreachableBlocks(*F);
Inv |= (unsigned)InvalidationKind::Branches;
}
invalidateAnalysis(SILAnalysis::InvalidationKind(Inv));
}
}
};
} // end anonymous namespace
SILTransform *swift::createDCE() {
return new DCEPass();
}
|