1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
|
//===--- DeadObjectElimination.cpp - Remove unused objects ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates store only alloc_ref objects that have destructors
// without side effects.
//
// The high level overview of the algorithm is that first it visits the
// destructor and attempts to prove that the destructor is well behaved, i.e. it
// does not have any side effects outside of the destructor itself. If the
// destructor can be proven to be well behaved, it then goes through the use
// list of the alloc_ref and attempts to prove that the alloc_ref does not
// escape or is used in a way that could cause side effects. If both of those
// conditions apply, the alloc_ref and its entire use graph is eliminated.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "dead-object-elim"
#include "swift/Basic/IndexTrie.h"
#include "swift/AST/ResilienceExpansion.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
STATISTIC(DeadAllocRefEliminated,
"number of AllocRef instructions removed");
STATISTIC(DeadAllocStackEliminated,
"number of AllocStack instructions removed");
STATISTIC(DeadKeyPathEliminated,
"number of keypath instructions removed");
STATISTIC(DeadAllocApplyEliminated,
"number of allocating Apply instructions removed");
using UserList = llvm::SmallSetVector<SILInstruction *, 16>;
namespace {
/// Side effects of a destructor.
enum class DestructorEffects {
None,
/// The destructor contains a "destroyArray" builtin which destroys the tail
/// elements of the object - like in Array.
DestroysTailElems,
Unknown
};
// Analyzing the body of this class destructor is valid because the object is
// dead. This means that the object is never passed to objc_setAssociatedObject,
// so its destructor cannot be extended at runtime.
static SILFunction *getDestructor(AllocRefInstBase *ARI) {
// We can't know the destructor for an alloc_ref_dynamic instruction in
// general.
auto *dynamicAllocRef = dyn_cast<AllocRefDynamicInst>(ARI);
if (dynamicAllocRef &&
!dynamicAllocRef->isDynamicTypeDeinitAndSizeKnownEquivalentToBaseType())
return nullptr;
// We only support classes.
ClassDecl *ClsDecl = ARI->getType().getClassOrBoundGenericClass();
if (!ClsDecl)
return nullptr;
// Look up the destructor of ClsDecl.
DestructorDecl *Destructor = ClsDecl->getDestructor();
assert(Destructor && "getDestructor() should never return a nullptr.");
// Find the destructor name via SILDeclRef.
// FIXME: When destructors get moved into vtables, update this to use the
// vtable for the class.
SILDeclRef Ref(Destructor);
SILFunction *Fn = ARI->getModule().lookUpFunction(Ref);
if (!Fn || Fn->empty()) {
LLVM_DEBUG(llvm::dbgs() << " Could not find destructor.\n");
return nullptr;
}
LLVM_DEBUG(llvm::dbgs() << " Found destructor!\n");
// If the destructor has an objc_method calling convention, we cannot
// analyze it since it could be swapped out from under us at runtime.
if (Fn->getRepresentation() == SILFunctionTypeRepresentation::ObjCMethod) {
LLVM_DEBUG(llvm::dbgs() << " Found Objective-C destructor. Can't "
"analyze!\n");
return nullptr;
}
return Fn;
}
static bool isDestroyArray(SILInstruction *inst) {
BuiltinInst *bi = dyn_cast<BuiltinInst>(inst);
return bi && bi->getBuiltinInfo().ID == BuiltinValueKind::DestroyArray;
}
/// Analyze the destructor for the class of ARI to see if any instructions in it
/// could have side effects on the program outside the destructor. If it does
/// not, then we can eliminate the destructor.
/// TODO: Most default destructors with non-trivial elements will have a
/// destroy_addr of the non-trivial element in the destructor, this analysis
/// will return as having side-effects in such cases, leading to conservative
/// results. Check if we can do better here.
static DestructorEffects doesDestructorHaveSideEffects(AllocRefInstBase *ARI) {
SILFunction *Fn = getDestructor(ARI);
// If we can't find a constructor then assume it has side effects.
if (!Fn)
return DestructorEffects::Unknown;
DestructorEffects effects = DestructorEffects::None;
// A destructor only has one argument, self.
assert(Fn->begin()->getNumArguments() == 1 &&
"Destructor should have only one argument, self.");
SILArgument *Self = Fn->begin()->getArgument(0);
LLVM_DEBUG(llvm::dbgs() << " Analyzing destructor.\n");
// For each BB in the destructor...
for (auto &BB : *Fn) {
// For each instruction I in BB...
for (auto &I : BB) {
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << I);
// If I has no side effects, we can ignore it.
if (!I.mayHaveSideEffects()) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction has no side "
"effects.\n");
continue;
}
if (auto *fl = dyn_cast<FixLifetimeInst>(&I)) {
// A fix_lifetime of self does cannot have a side effect, because in the
// destructor, Self is deleted.
if (stripCasts(fl->getOperand()) == Self)
continue;
return DestructorEffects::Unknown;
}
// RefCounting operations on Self are ok since we are already in the
// destructor. RefCountingOperations on other instructions could have side
// effects though.
if (auto *RefInst = dyn_cast<RefCountingInst>(&I)) {
if (stripCasts(RefInst->getOperand(0)) == Self) {
// For now all ref counting insts have 1 operand. Put in an assert
// just in case.
assert(RefInst->getNumOperands() == 1 &&
"Make sure RefInst only has one argument.");
LLVM_DEBUG(llvm::dbgs() << " SAFE! Ref count operation on "
"Self.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation "
"not on self.\n");
return DestructorEffects::Unknown;
}
if (auto *destroy = dyn_cast<DestroyValueInst>(&I)) {
if (stripCasts(destroy->getOperand()) == Self) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Ref count operation on "
"Self.\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Ref count operation "
"not on self.\n");
return DestructorEffects::Unknown;
}
// dealloc_stack can be ignored.
if (isa<DeallocStackInst>(I)) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! dealloc_stack can be "
"ignored.\n");
continue;
}
// dealloc_ref on self can be ignored, but dealloc_ref on anything else
// cannot be eliminated.
if (auto *DeallocRef = dyn_cast<DeallocRefInst>(&I)) {
if (stripCasts(DeallocRef->getOperand()) == Self) {
LLVM_DEBUG(llvm::dbgs() <<" SAFE! dealloc_ref on self.\n");
continue;
} else {
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! dealloc_ref on value "
"besides self.\n");
return DestructorEffects::Unknown;
}
}
// Storing into the object can be ignored.
if (auto *SI = dyn_cast<StoreInst>(&I))
if (stripAddressProjections(SI->getDest()) == Self) {
LLVM_DEBUG(llvm::dbgs() << " SAFE! Instruction is a store "
"into self.\n");
continue;
}
if (isDestroyArray(&I)) {
// Check if the "destroyArray" destroys the tail elements of the object,
// like in Array.
SILValue addr = I.getOperand(1);
auto *atp = dyn_cast<AddressToPointerInst>(addr);
if (!atp)
return DestructorEffects::Unknown;
auto *rta = dyn_cast<RefTailAddrInst>(atp->getOperand());
if (!rta)
return DestructorEffects::Unknown;
effects = DestructorEffects::DestroysTailElems;
if (rta->getOperand() == Self)
continue;
}
LLVM_DEBUG(llvm::dbgs() << " UNSAFE! Unknown instruction.\n");
// Otherwise, we can't remove the deallocation completely.
return DestructorEffects::Unknown;
}
}
// We didn't find any side effects.
return effects;
}
//===----------------------------------------------------------------------===//
// Use Graph Analysis
//===----------------------------------------------------------------------===//
/// Returns false if Inst is an instruction that would require us to keep the
/// alloc_ref alive.
static bool canZapInstruction(SILInstruction *Inst, bool acceptRefCountInsts,
bool onlyAcceptTrivialStores) {
if (isa<DestroyValueInst>(Inst)) {
return acceptRefCountInsts;
}
if (isa<CopyValueInst>(Inst) || isa<BeginBorrowInst>(Inst) ||
isa<MoveValueInst>(Inst)) {
return true;
}
if (isa<EndInitLetRefInst>(Inst) || isa<BeginDeallocRefInst>(Inst) ||
isa<FixLifetimeInst>(Inst) || isa<EndBorrowInst>(Inst) ||
isa<UpcastInst>(Inst) || isa<UncheckedRefCastInst>(Inst))
return true;
// It is ok to eliminate various retains/releases. We are either removing
// everything or nothing.
if (isa<RefCountingInst>(Inst) ||
// dealloc_partial_ref invokes releases implicitly
isa<DeallocPartialRefInst>(Inst))
return acceptRefCountInsts;
if (isa<InjectEnumAddrInst>(Inst))
return true;
if (isa<KeyPathInst>(Inst))
return true;
// We know that the destructor has no side effects so we can remove the
// deallocation instruction too.
if (isa<DeallocationInst>(Inst) || isa<AllocationInst>(Inst))
return true;
// Much like deallocation, destroy addr is safe.
if (isa<DestroyAddrInst>(Inst))
return true;
// We have already checked that we are storing into the pointer before we
// added it to the worklist. Here, in the case we are allowing non-trivial
// stores, check if the store's source is lexical, if so return false.
// Deleting a dead object with non-trivial stores, will need compensating
// destroys at the store for it's source, which will shorten the lifetime of
// the store's source.
if (auto *store = dyn_cast<StoreInst>(Inst)) {
auto storeSrc = store->getSrc();
return storeSrc->getType().isTrivial(*store->getFunction()) ||
(!onlyAcceptTrivialStores &&
(!store->getFunction()->hasOwnership() || !storeSrc->isLexical()));
}
// Conceptually this instruction has no side-effects.
if (isa<InitExistentialAddrInst>(Inst))
return true;
if (isa<BeginAccessInst>(Inst) || isa<EndAccessInst>(Inst))
return true;
// The value form of zero init is not a user of any operand. The address
// form however is easily zappable because it's always a trivial store.
if (auto bi = dyn_cast<BuiltinInst>(Inst)) {
if (bi->getBuiltinKind() == BuiltinValueKind::ZeroInitializer) {
return true;
}
}
// If Inst does not read or write to memory, have side effects, and is not a
// terminator, we can zap it.
if (!Inst->mayHaveSideEffects() && !Inst->mayReadFromMemory() &&
!isa<TermInst>(Inst))
return true;
// Otherwise we do not know how to handle this instruction. Be conservative
// and don't zap it.
return false;
}
/// Returns true if all stores in \p users store to the tail elements of
/// \p allocRef, which are destroyed by the \p destroyArray builtin.
static bool onlyStoresToTailObjects(BuiltinInst *destroyArray,
const UserList &users,
AllocRefInstBase *allocRef) {
// Get the number of destroyed elements.
auto *literal = dyn_cast<IntegerLiteralInst>(destroyArray->getArguments()[2]);
if (!literal || literal->getValue().getSignificantBits() > 32)
return false;
int numDestroyed = literal->getValue().getSExtValue();
SILFunction *func = destroyArray->getFunction();
SILBasicBlock *storesBlock = nullptr;
// Check if the destroyArray destroys the tail elements of allocRef.
auto destroyPath = AccessPath::compute(destroyArray->getArguments()[1]);
AccessStorage storage = destroyPath.getStorage();
if (auto *beginDealloc = dyn_cast<BeginDeallocRefInst>(storage.getRoot())) {
destroyPath = AccessPath(
storage.transformReference(beginDealloc->getAllocation()),
destroyPath.getPathNode(),
destroyPath.getOffset());
}
if (destroyPath != AccessPath::forTailStorage(allocRef))
return false;
SmallVector<AccessPath, 32> pathsToCheck;
// Check all stores to the tail elements.
for (SILInstruction *user : users) {
auto *store = dyn_cast<StoreInst>(user);
if (!store)
continue;
assert(users.count(store->getSrc()->getDefiningInstruction()) == 0 &&
"Storing a use of an array (that would mean the array escapes)?");
// All stores must be in the same block. This ensure that the stores
// dominate the destroyArray (which may be in a different block).
if (storesBlock && store->getParent() != storesBlock)
return false;
storesBlock = store->getParent();
AccessPath storePath = AccessPath::compute(store->getDest());
if (!storePath.isValid())
return false;
// We don't care about trivial stores.
if (store->getSrc()->getType().isTrivial(*func))
continue;
// Check if it's a store to the tail elements.
if (!destroyPath.contains(storePath.withOffset(0)))
return false;
// Check if the store is within the range of the destroyed array. In OSSA
// we would not need this check. Otherwise it would be a memory lifetime
// failure.
if (storePath.getOffset() < 0 || storePath.getOffset() >= numDestroyed)
return false;
pathsToCheck.push_back(storePath);
}
// In non-OSSA we have to check if two paths overlap, because we could end up
// over-releasing the stored objects.
// Group the paths by tail-element index, so that we only have to check within
// a tail-element group.
std::sort(pathsToCheck.begin(), pathsToCheck.end(), [](AccessPath p1, AccessPath p2) {
return p1.getOffset() < p2.getOffset();
});
for (unsigned i = 0, n = pathsToCheck.size(); i < n; ++i) {
for (unsigned j = i + 1;
j < n && pathsToCheck[i].getOffset() == pathsToCheck[j].getOffset(); ++j) {
if (pathsToCheck[i].mayOverlap(pathsToCheck[j]))
return false;
// Limit the number of checks to avoid quadratic complexity.
if (j > i + 8)
return false;
}
}
return true;
}
/// Analyze the use graph of AllocRef for any uses that would prevent us from
/// zapping it completely.
static bool
hasUnremovableUsers(SILInstruction *allocation, UserList *Users,
bool acceptRefCountInsts, bool onlyAcceptTrivialStores) {
SmallVector<SILInstruction *, 16> Worklist;
Worklist.push_back(allocation);
LLVM_DEBUG(llvm::dbgs() << " Analyzing Use Graph.");
SmallVector<RefElementAddrInst *, 8> refElementAddrs;
BuiltinInst *destroyArray = nullptr;
auto *allocRef = dyn_cast<AllocRefInstBase>(allocation);
while (!Worklist.empty()) {
SILInstruction *I = Worklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << " Visiting: " << *I);
// Insert the instruction into our InvolvedInstructions set. If we have
// already seen it, then don't reprocess all of the uses.
if (Users && !Users->insert(I)) {
LLVM_DEBUG(llvm::dbgs() << " Already seen skipping...\n");
continue;
} else if (auto *rea = dyn_cast<RefElementAddrInst>(I)) {
if (rea != allocation && !rea->getType().isTrivial(*rea->getFunction()))
refElementAddrs.push_back(rea);
} else if (allocRef && isDestroyArray(I)) {
if (destroyArray)
return true;
destroyArray = cast<BuiltinInst>(I);
} else if (!canZapInstruction(I, acceptRefCountInsts,
onlyAcceptTrivialStores)) {
LLVM_DEBUG(llvm::dbgs() << " Found instruction we can't zap...\n");
return true;
}
// At this point, we can remove the instruction as long as all of its users
// can be removed as well. Scan its users and add them to the worklist for
// recursive processing.
for (auto result : I->getResults()) {
for (auto *Op : result->getUses()) {
auto *User = Op->getUser();
// Make sure that we are only storing into our users, not storing our
// users which would be an escape.
if (auto *SI = dyn_cast<StoreInst>(User))
if (Op->get() == SI->getSrc()) {
LLVM_DEBUG(llvm::dbgs() << " Found store of pointer. "
"Failure: "
<< *SI);
return true;
}
// Otherwise, add normal instructions to the worklist for processing.
Worklist.push_back(User);
}
}
}
if (!allocation->getFunction()->hasOwnership()) {
// In non-ossa, if we found a destroy array builtin that destroys the tail
// elements, ensure all stores are to the taile elems.
if (destroyArray) {
return !onlyStoresToTailObjects(destroyArray, *Users, allocRef);
}
// In non-OSSA we cannot reliably track the lifetime of non-trivial stored
// properties. Removing the dead alloc_ref might leak a property value.
for (RefElementAddrInst *rea : refElementAddrs) {
// Re-run the check with not accepting non-trivial stores.
if (hasUnremovableUsers(rea, nullptr, acceptRefCountInsts,
/*onlyAcceptTrivialStores*/ true))
return true;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// NonTrivial DeadObject Elimination
//===----------------------------------------------------------------------===//
/// Determine if an object is dead. Compute its original lifetime. Find the
/// lifetime endpoints reached by each store of a refcounted object into the
/// object.
///
/// TODO: Use this to remove nontrivial dead alloc_ref/alloc_stack, not just
/// dead arrays. We just need a slightly better destructor analysis to prove
/// that it only releases elements.
class DeadObjectAnalysis {
// Map each address projection of this object to a list of stores.
// Do not iterate over this map's entries.
using AddressToStoreMap =
llvm::DenseMap<IndexTrieNode*, llvm::SmallVector<StoreInst*, 4> >;
// The value of the object's address at the point of allocation.
SILValue NewAddrValue;
// Track all users that extend the lifetime of the object.
UserList AllUsers;
// Trie of stored locations.
std::unique_ptr<IndexTrieNode> AddressProjectionTrie;
// Track all stores of refcounted elements per address projection.
AddressToStoreMap StoredLocations;
// Are any uses behind a PointerToAddressInst?
bool SeenPtrToAddr;
public:
explicit DeadObjectAnalysis(SILValue V):
NewAddrValue(V), AddressProjectionTrie(nullptr), SeenPtrToAddr(false) {}
bool analyze();
ArrayRef<SILInstruction*> getAllUsers() const {
return ArrayRef<SILInstruction*>(AllUsers.begin(), AllUsers.end());
}
template<typename Visitor>
void visitStoreLocations(Visitor visitor) {
visitStoreLocations(visitor, AddressProjectionTrie.get());
}
private:
void addStore(StoreInst *Store, IndexTrieNode *AddressNode);
bool recursivelyCollectInteriorUses(ValueBase *DefInst,
IndexTrieNode *AddressNode,
bool IsInteriorAddress);
template<typename Visitor>
void visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode);
};
} // end anonymous namespace
// Record a store into this object.
void DeadObjectAnalysis::
addStore(StoreInst *Store, IndexTrieNode *AddressNode) {
if (Store->getSrc()->getType().isTrivial(*Store->getFunction()))
return;
// SSAUpdater cannot handle multiple defs in the same blocks. Therefore, we
// ensure that only one store per block is present in the StoredLocations.
auto &StoredLocs = StoredLocations[AddressNode];
for (auto &OtherSt : StoredLocs) {
// In case the object's address is stored in itself.
if (OtherSt == Store)
return;
if (OtherSt->getParent() == Store->getParent()) {
for (auto II = std::next(Store->getIterator()),
IE = Store->getParent()->end();
II != IE; ++II) {
if (&*II == OtherSt)
return; // Keep the other store.
}
// Replace OtherSt with this store.
OtherSt = Store;
return;
}
}
StoredLocations[AddressNode].push_back(Store);
}
// Collect instructions that either initialize or release any values at the
// object defined by defInst.
//
// Populates AllUsers, AddressProjectionTrie, and StoredLocations.
//
// If a use is visited that potentially causes defInst's address to
// escape, then return false without fully populating the data structures.
//
// `InteriorAddress` is true if the current address projection already includes
// a struct/ref/tuple element address. index_addr is only expected at the top
// level. The first non-index element address encountered pushes an "zero index"
// address node to represent the implicit index_addr #0. We do not support
// nested indexed data types in native SIL.
bool DeadObjectAnalysis::
recursivelyCollectInteriorUses(ValueBase *DefInst,
IndexTrieNode* AddressNode,
bool IsInteriorAddress) {
for (auto Op : DefInst->getUses()) {
auto User = Op->getUser();
// Lifetime endpoints that don't allow the address to escape.
if (isa<RefCountingInst>(User) || isa<DebugValueInst>(User) ||
isa<FixLifetimeInst>(User) || isa<DestroyValueInst>(User)) {
AllUsers.insert(User);
continue;
}
// Initialization points.
if (auto *Store = dyn_cast<StoreInst>(User)) {
// Bail if this address is stored to another object.
if (Store->getDest() != DefInst) {
LLVM_DEBUG(llvm::dbgs() <<" Found an escaping store: " << *User);
return false;
}
IndexTrieNode *StoreAddrNode = AddressNode;
// Push an extra zero index node for a store to noninterior address.
if (!IsInteriorAddress)
StoreAddrNode = AddressNode->getChild(0);
addStore(Store, StoreAddrNode);
AllUsers.insert(User);
continue;
}
if (auto *MDI = dyn_cast<MarkDependenceInst>(User)) {
if (!recursivelyCollectInteriorUses(MDI, AddressNode,
IsInteriorAddress)) {
return false;
}
continue;
}
if (auto PTAI = dyn_cast<PointerToAddressInst>(User)) {
// Only one pointer-to-address is allowed for safety.
if (SeenPtrToAddr)
return false;
SeenPtrToAddr = true;
if (!recursivelyCollectInteriorUses(PTAI, AddressNode, IsInteriorAddress))
return false;
continue;
}
// Recursively follow projections.
if (auto *svi = dyn_cast<SingleValueInstruction>(User)) {
ProjectionIndex PI(svi);
if (PI.isValid()) {
IndexTrieNode *ProjAddrNode = AddressNode;
bool ProjInteriorAddr = IsInteriorAddress;
if (Projection::isAddressProjection(svi)) {
if (isa<IndexAddrInst>(svi)) {
// Don't support indexing within an interior address.
if (IsInteriorAddress)
return false;
}
else if (!IsInteriorAddress) {
// Push an extra zero index node for the first interior address.
ProjAddrNode = AddressNode->getChild(0);
ProjInteriorAddr = true;
}
}
else if (IsInteriorAddress) {
// Don't expect to extract values once we've taken an address.
return false;
}
if (!recursivelyCollectInteriorUses(svi,
ProjAddrNode->getChild(PI.Index),
ProjInteriorAddr)) {
return false;
}
continue;
}
ArraySemanticsCall AS(svi);
if (AS.getKind() == swift::ArrayCallKind::kArrayFinalizeIntrinsic) {
if (!recursivelyCollectInteriorUses(svi, AddressNode, IsInteriorAddress))
return false;
continue;
}
}
// Otherwise bail.
LLVM_DEBUG(llvm::dbgs() << " Found an escaping use: " << *User);
return false;
}
return true;
}
// Track the lifetime, release points, and released values referenced by a
// newly allocated object.
bool DeadObjectAnalysis::analyze() {
LLVM_DEBUG(llvm::dbgs() << " Analyzing nontrivial dead object: "
<< NewAddrValue);
// Populate AllValues, AddressProjectionTrie, and StoredLocations.
AddressProjectionTrie.reset(new IndexTrieNode());
if (!recursivelyCollectInteriorUses(NewAddrValue,
AddressProjectionTrie.get(), false)) {
return false;
}
// If all stores are leaves in the AddressProjectionTrie, then we can analyze
// the stores that reach the end of the object lifetime. Otherwise bail.
// This iteration order is nondeterministic but has no impact.
for (auto &AddressToStoresPair : StoredLocations) {
IndexTrieNode *Location = AddressToStoresPair.first;
if (!Location->isLeaf())
return false;
}
return true;
}
template<typename Visitor>
void DeadObjectAnalysis::
visitStoreLocations(Visitor visitor, IndexTrieNode *AddressNode) {
if (AddressNode->isLeaf()) {
auto LocI = StoredLocations.find(AddressNode);
if (LocI != StoredLocations.end())
visitor(LocI->second);
return;
}
for (auto *SubAddressNode : AddressNode->getChildren())
visitStoreLocations(visitor, SubAddressNode);
}
// At each release point, release the reaching values that have been stored to
// this address.
//
// The caller has already determined that all Stores are to the same element
// within an otherwise dead object.
static void insertReleases(ArrayRef<StoreInst*> Stores,
ArrayRef<SILInstruction*> ReleasePoints,
SILSSAUpdater &SSAUp) {
assert(!Stores.empty());
SILValue StVal = Stores.front()->getSrc();
SSAUp.initialize(StVal->getFunction(), StVal->getType(),
StVal->getOwnershipKind());
for (auto *Store : Stores)
SSAUp.addAvailableValue(Store->getParent(), Store->getSrc());
SILLocation Loc = Stores[0]->getLoc();
for (auto *RelPoint : ReleasePoints) {
SILBuilder B(RelPoint);
// This does not use the SSAUpdater::RewriteUse API because it does not do
// the right thing for local uses. We have already ensured a single store
// per block, and all release points occur after all stores. Therefore we
// can simply ask SSAUpdater for the reaching store.
SILValue RelVal = SSAUp.getValueAtEndOfBlock(RelPoint->getParent());
B.emitDestroyValueOperation(Loc, RelVal);
}
}
//===----------------------------------------------------------------------===//
// Function Processing
//===----------------------------------------------------------------------===//
/// Does this instruction perform object allocation with no other observable
/// side effect?
static bool isAllocatingApply(SILInstruction *Inst) {
ArraySemanticsCall ArrayAlloc(Inst);
return ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitialized ||
ArrayAlloc.getKind() == ArrayCallKind::kArrayUninitializedIntrinsic;
}
namespace {
class DeadObjectElimination : public SILFunctionTransform {
llvm::DenseMap<SILType, DestructorEffects> DestructorAnalysisCache;
InstructionDeleter deleter;
DominanceInfo *domInfo = nullptr;
void removeInstructions(ArrayRef<SILInstruction*> toRemove);
/// Try to salvage the debug info for a dead instruction removed by
/// DeadObjectElimination.
///
/// Dead stores will be replaced by a debug value for the object variable,
/// using a fragment expression. By walking from the store to the allocation,
/// we can know which member of the object is being assigned, and create
/// fragments for each member. Other instructions are not salvaged.
/// Currently only supports dead stack-allocated objects.
void salvageDebugInfo(SILInstruction *toBeRemoved);
std::optional<SILDebugVariable> buildDIExpression(SILInstruction *current);
bool processAllocRef(AllocRefInstBase *ARI);
bool processAllocStack(AllocStackInst *ASI);
bool processKeyPath(KeyPathInst *KPI);
bool processAllocBox(AllocBoxInst *ABI){ return false;}
bool processAllocApply(ApplyInst *AI, DeadEndBlocks &DEBlocks);
bool insertCompensatingReleases(SILInstruction *before,
const UserList &users);
bool getDeadInstsAfterInitializerRemoved(
ApplyInst *AI, llvm::SmallVectorImpl<SILInstruction *> &ToDestroy);
bool removeAndReleaseArray(
SingleValueInstruction *NewArrayValue, DeadEndBlocks &DEBlocks);
bool processFunction(SILFunction &Fn) {
DeadEndBlocks DEBlocks(&Fn);
DestructorAnalysisCache.clear();
LLVM_DEBUG(llvm::dbgs() << "Processing " << Fn.getName() << "\n");
bool Changed = false;
for (auto &BB : Fn) {
for (SILInstruction &inst : BB.deletableInstructions()) {
if (auto *A = dyn_cast<AllocRefInstBase>(&inst))
Changed |= processAllocRef(A);
else if (auto *A = dyn_cast<AllocStackInst>(&inst))
Changed |= processAllocStack(A);
else if (auto *KPI = dyn_cast<KeyPathInst>(&inst))
Changed |= processKeyPath(KPI);
else if (auto *A = dyn_cast<AllocBoxInst>(&inst))
Changed |= processAllocBox(A);
else if (auto *A = dyn_cast<ApplyInst>(&inst))
Changed |= processAllocApply(A, DEBlocks);
}
deleter.cleanupDeadInstructions();
}
return Changed;
}
void run() override {
assert(!domInfo);
if (processFunction(*getFunction())) {
invalidateAnalysis(SILAnalysis::InvalidationKind::CallsAndInstructions);
}
domInfo = nullptr;
}
};
} // end anonymous namespace
void
DeadObjectElimination::removeInstructions(ArrayRef<SILInstruction*> toRemove) {
for (auto *I : toRemove) {
I->replaceAllUsesOfAllResultsWithUndef();
// Now we know that I should not have any uses... erase it from its parent.
deleter.forceDelete(I);
}
}
void DeadObjectElimination::salvageDebugInfo(SILInstruction *toBeRemoved) {
auto *SI = dyn_cast<StoreInst>(toBeRemoved);
if (!SI)
return;
auto *parent = SI->getDest()->getDefiningInstruction();
auto varInfo = buildDIExpression(parent);
if (!varInfo)
return;
// Note: The instruction should logically be in SI's scope.
// However, LLVM does not support variables and stores in different scopes,
// so we use the variable's scope.
SILBuilder Builder(SI, varInfo->Scope);
Builder.createDebugValue(SI->getLoc(), SI->getSrc(), *varInfo);
}
std::optional<SILDebugVariable>
DeadObjectElimination::buildDIExpression(SILInstruction *current) {
if (!current)
return {};
if (auto dvci = dyn_cast<AllocStackInst>(current)) {
auto var = dvci->getVarInfo();
if (!var)
return {};
if (!var->Type)
var->Type = dvci->getElementType();
return var;
}
if (auto *tupleAddr = dyn_cast<TupleElementAddrInst>(current)) {
auto *definer = tupleAddr->getOperand().getDefiningInstruction();
auto path = buildDIExpression(definer);
if (!path)
return {};
path->DIExpr.append(SILDebugInfoExpression::createTupleFragment(
tupleAddr->getTupleType(), tupleAddr->getFieldIndex()));
return path;
}
if (auto *structAddr = dyn_cast<StructElementAddrInst>(current)) {
auto *definer = structAddr->getOperand().getDefiningInstruction();
auto path = buildDIExpression(definer);
if (!path)
return {};
path->DIExpr.append(SILDebugInfoExpression::createFragment(
structAddr->getField()));
return path;
}
return {};
}
bool DeadObjectElimination::processAllocRef(AllocRefInstBase *ARI) {
// Ok, we have an alloc_ref. Check the cache to see if we have already
// computed the destructor behavior for its SILType.
DestructorEffects destructorEffects;
SILType Type = ARI->getType();
auto CacheSearchResult = DestructorAnalysisCache.find(Type);
if (CacheSearchResult != DestructorAnalysisCache.end()) {
// Ok we found a value in the cache.
destructorEffects = CacheSearchResult->second;
} else {
// We did not find a value in the cache for our destructor. Analyze the
// destructor to make sure it has no side effects. For now this only
// supports alloc_ref of classes so any alloc_ref with a reference type
// that is not a class this will return false for. Once we have analyzed
// it, set Behavior to that value and insert the value into the Cache.
//
// TODO: We should be able to handle destructors that do nothing but release
// members of the object.
destructorEffects = doesDestructorHaveSideEffects(ARI);
DestructorAnalysisCache[Type] = destructorEffects;
}
// Our destructor has no side effects, so if we can prove that no loads
// escape, then we can completely remove the use graph of this alloc_ref.
UserList UsersToRemove;
if (hasUnremovableUsers(ARI, &UsersToRemove,
/*acceptRefCountInsts=*/ destructorEffects != DestructorEffects::Unknown,
/*onlyAcceptTrivialStores*/false)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
if (!ARI->getFunction()->hasOwnership()) {
// Find the instruction which releases the object's tail elements.
SILInstruction *releaseOfTailElems = nullptr;
for (SILInstruction *user : UsersToRemove) {
if (isDestroyArray(user) ||
(destructorEffects == DestructorEffects::DestroysTailElems &&
isa<RefCountingInst>(user) && user->mayRelease())) {
// Bail if we find multiple such instructions.
if (releaseOfTailElems)
return false;
releaseOfTailElems = user;
}
}
if (releaseOfTailElems) {
if (!insertCompensatingReleases(releaseOfTailElems, UsersToRemove)) {
return false;
}
}
}
if (ARI->getFunction()->hasOwnership()) {
// In ossa, we are going to delete the dead element store and insert a
// destroy_value of the store's source. This is shortening the store's
// source lifetime. Check if there was a pointer escape of the store's
// source, if so bail out.
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial)
continue;
if (findPointerEscape(store->getSrc())) {
return false;
}
}
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial) {
continue;
}
SILBuilderWithScope(store).createDestroyValue(store->getLoc(),
store->getSrc());
}
}
// Remove the AllocRef and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_ref.\n");
++DeadAllocRefEliminated;
return true;
}
bool DeadObjectElimination::processAllocStack(AllocStackInst *ASI) {
// Trivial types don't have destructors.
bool isTrivialType = ASI->getElementType().isTrivial(*ASI->getFunction());
// In non-ossa, only accept trivial stores if we have a non-trivial
// alloc_stack
bool onlyAcceptTrivialStores =
ASI->getFunction()->hasOwnership() ? false : !isTrivialType;
UserList UsersToRemove;
if (hasUnremovableUsers(ASI, &UsersToRemove, /*acceptRefCountInsts=*/true,
onlyAcceptTrivialStores)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
if (ASI->getFunction()->hasOwnership()) {
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial)
continue;
// In ossa, we are going to delete the dead store and insert a
// destroy_value of the store's source. This is shortening the store's
// source lifetime. Check if there was a pointer escape of the store's
// source, if so bail out.
if (findPointerEscape(store->getSrc())) {
return false;
}
}
for (auto *user : UsersToRemove) {
auto *store = dyn_cast<StoreInst>(user);
if (!store ||
store->getOwnershipQualifier() == StoreOwnershipQualifier::Trivial)
continue;
SILBuilderWithScope(store).createDestroyValue(store->getLoc(),
store->getSrc());
}
}
for (auto *I : UsersToRemove)
salvageDebugInfo(I);
// Remove the AllocRef and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating alloc_stack.\n");
++DeadAllocStackEliminated;
return true;
}
bool DeadObjectElimination::processKeyPath(KeyPathInst *KPI) {
UserList UsersToRemove;
if (hasUnremovableUsers(KPI, &UsersToRemove, /*acceptRefCountInsts=*/ true,
/*onlyAcceptTrivialStores*/ false)) {
LLVM_DEBUG(llvm::dbgs() << " Found a use that cannot be zapped...\n");
return false;
}
bool hasOwnership = KPI->getFunction()->hasOwnership();
for (const Operand &Op : KPI->getPatternOperands()) {
// In non-ossa, bail out if we have non-trivial pattern operands.
if (!hasOwnership) {
if (Op.get()->getType().isTrivial(*KPI->getFunction()))
return false;
continue;
}
// In ossa, bail out if we have non-trivial pattern operand values that are
// lexical.
if (Op.get()->isLexical()) {
return false;
}
}
if (KPI->getFunction()->hasOwnership()) {
for (const Operand &Op : KPI->getPatternOperands()) {
if (Op.get()->getType().isTrivial(*KPI->getFunction()))
continue;
// In ossa, we are going to delete the dead keypath which was consuming
// the pattern operand and insert a destroy_value of the pattern operand
// value. This is shortening the pattern operand value's lifetime. Check
// if there was a pointer escape, if so bail out.
if (findPointerEscape(Op.get())) {
return false;
}
}
for (const Operand &Op : KPI->getPatternOperands()) {
if (Op.get()->getType().isTrivial(*KPI->getFunction()))
continue;
SILBuilderWithScope(KPI).createDestroyValue(KPI->getLoc(), Op.get());
}
}
// Remove the keypath and all of its users.
removeInstructions(
ArrayRef<SILInstruction*>(UsersToRemove.begin(), UsersToRemove.end()));
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating keypath.\n");
++DeadKeyPathEliminated;
return true;
}
/// If AI is the version of an initializer where we pass in either an apply or
/// an alloc_ref to initialize in place, validate that we are able to continue
/// optimizing and return To
bool DeadObjectElimination::getDeadInstsAfterInitializerRemoved(
ApplyInst *AI, llvm::SmallVectorImpl<SILInstruction *> &ToDestroy) {
assert(ToDestroy.empty() && "We assume that ToDestroy is empty, so on "
"failure we can clear without worrying about the "
"caller accumulating and thus our eliminating "
"passed in state.");
SILValue Arg0 = AI->getArgument(0);
if (Arg0->getType().isExistentialType()) {
// This is a version of the initializer which receives a pre-allocated
// buffer as first argument. To completely eliminate the allocation, we must
// destroy the extra allocations as well as the initializer,
if (auto *Result = dyn_cast<ApplyInst>(Arg0)) {
ToDestroy.emplace_back(Result);
return true;
}
return false;
}
if (auto *ARI = dyn_cast<AllocRefInstBase>(Arg0)) {
if (all_of(ARI->getUses(), [&](Operand *Op) -> bool {
auto *user = Op->getUser();
if (user == AI)
return true;
if (isa<StrongReleaseInst>(user) || isa<DestroyValueInst>(user)) {
ToDestroy.emplace_back(user);
return true;
}
return false;
})) {
return true;
}
}
// We may have added elements to the array before we failed. To avoid such a
// problem, we clear the out array here. We assert at the beginning that the
// out array is empty, so this is safe.
ToDestroy.clear();
return true;
}
// Attempt to remove the array allocated at NewAddrValue and release its
// refcounted elements.
//
// This is tightly coupled with the implementation of array.uninitialized.
// The call to allocate an uninitialized array returns two values:
// (Array<E> ArrayBase, UnsafeMutable<E> ArrayElementStorage)
//
// TODO: This relies on the lowest level array.uninitialized not being
// inlined. To do better we could either run this pass before semantic inlining,
// or we could also handle calls to array.init.
bool DeadObjectElimination::removeAndReleaseArray(
SingleValueInstruction *NewArrayValue, DeadEndBlocks &DEBlocks) {
SILValue ArrayDef = nullptr;
SILValue StorageAddress = nullptr;
if (NewArrayValue->getFunction()->hasOwnership()) {
auto *destructureTuple =
NewArrayValue->getSingleConsumingUserOfType<DestructureTupleInst>();
if (!destructureTuple) {
return false;
}
if (destructureTuple->getNumResults() != 2) {
return false;
}
ArrayDef = destructureTuple->getResult(0);
StorageAddress = destructureTuple->getResult(1);
} else {
for (auto *Op : NewArrayValue->getUses()) {
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
if (!TupleElt)
return false;
if (TupleElt->getFieldIndex() == 0 && !ArrayDef) {
ArrayDef = TupleElt;
} else if (TupleElt->getFieldIndex() == 1 && !StorageAddress) {
StorageAddress = TupleElt;
} else {
return false;
}
}
}
if (!ArrayDef)
return false; // No Array object to delete.
assert(!ArrayDef->getType().isTrivial(*ArrayDef->getFunction()) &&
"Array initialization should produce the proper tuple type.");
// Analyze the array object uses.
DeadObjectAnalysis DeadArray(ArrayDef);
if (!DeadArray.analyze())
return false;
// Require all stores to be into the array storage not the array object,
// otherwise bail.
bool HasStores = false;
DeadArray.visitStoreLocations([&](ArrayRef<StoreInst*>){ HasStores = true; });
if (HasStores)
return false;
// Remove references to empty arrays.
if (!StorageAddress) {
removeInstructions(DeadArray.getAllUsers());
return true;
}
assert(StorageAddress->getType().isTrivial(*ArrayDef->getFunction()) &&
"Array initialization should produce the proper tuple type.");
// Analyze the array storage uses.
DeadObjectAnalysis DeadStorage(StorageAddress);
if (!DeadStorage.analyze())
return false;
// Find array object lifetime.
ValueLifetimeAnalysis VLA(NewArrayValue, DeadArray.getAllUsers());
// Check that all storage users are in the Array's live blocks.
for (auto *User : DeadStorage.getAllUsers()) {
if (!VLA.isWithinLifetime(User))
return false;
}
// For each store location, insert releases.
SILSSAUpdater SSAUp;
ValueLifetimeAnalysis::Frontier ArrayFrontier;
if (!VLA.computeFrontier(ArrayFrontier,
ValueLifetimeAnalysis::UsersMustPostDomDef,
&DEBlocks)) {
// In theory the allocated object must be released on all paths in which
// some object initialization occurs. If not (for some reason) we bail.
return false;
}
DeadStorage.visitStoreLocations([&] (ArrayRef<StoreInst*> Stores) {
insertReleases(Stores, ArrayFrontier, SSAUp);
});
// Delete all uses of the dead array and its storage address.
removeInstructions(DeadArray.getAllUsers());
removeInstructions(DeadStorage.getAllUsers());
return true;
}
bool DeadObjectElimination::processAllocApply(ApplyInst *AI,
DeadEndBlocks &DEBlocks) {
// Currently only handle array.uninitialized
if (!isAllocatingApply(AI))
return false;
llvm::SmallVector<SILInstruction *, 8> instsDeadAfterInitializerRemoved;
if (!getDeadInstsAfterInitializerRemoved(AI,
instsDeadAfterInitializerRemoved))
return false;
if (!removeAndReleaseArray(AI, DEBlocks))
return false;
LLVM_DEBUG(llvm::dbgs() << " Success! Eliminating apply allocate(...).\n");
auto *ARI = dyn_cast<AllocRefInst>(AI->getArgument(0));
deleter.forceDeleteWithUsers(AI);
for (auto *toDelete : instsDeadAfterInitializerRemoved) {
deleter.trackIfDead(toDelete);
}
if (ARI) {
deleter.forceDeleteWithUsers(ARI);
}
++DeadAllocApplyEliminated;
return true;
}
/// Inserts releases of all stores in \p users.
/// Returns false, if this is not possible.
bool DeadObjectElimination::insertCompensatingReleases(SILInstruction *before,
const UserList &users) {
// First check if all stored values dominate the release-point.
for (SILInstruction *user : users) {
if (auto *store = dyn_cast<StoreInst>(user)) {
if (!domInfo) {
domInfo = getAnalysis<DominanceAnalysis>()->get(before->getFunction());
}
SILBasicBlock *srcBlock = store->getSrc()->getParentBlock();
if (!domInfo->dominates(srcBlock, before->getParent()))
return false;
}
}
// Second, create the releases.
for (SILInstruction *user : users) {
if (auto *store = dyn_cast<StoreInst>(user)) {
createDecrementBefore(store->getSrc(), before);
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
SILTransform *swift::createDeadObjectElimination() {
return new DeadObjectElimination();
}
|