1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
|
//===--- DestroyAddrHoisting.cpp - SSA-based destroy_addr hoisting --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This is a light-weight utility for hoisting destroy instructions for unique
/// storage--typically alloc_stack or owned incoming arguments. Shrinking an
/// object's memory lifetime can allow removal of copy_addr and other
/// optimization.
///
/// This algorithm is:
/// - Incremental
/// - SSA-based
/// - Canonical
/// - Free from alias analysis
///
/// Incremental: Handle a single in-memory value at a time. The value's address
/// typically originates from an alloc_stack or owned function argument
/// (@in). It does not depend on any analysis result, which would need to be
/// preserved by a pass.
///
/// SSA-based: Starting with uniquely identified (exclusive) storage,
/// discovers all known uses based on recognizable SIL patterns. Bails-out on
/// unknown uses. Derivation of a raw pointer is considered a "known use".
///
/// Canonical: Assumes that aggregate values, which are allocated in a single
/// operation, are also destroyed in a single operation. This canonical form is
/// not fully enforced, so violations result in a bail-out.
///
/// Free from alias analysis: this only handles exclusively identified
/// addresses to owned values, which cannot be derived from object references.
///
/// ----------------------------------------------------------------------------
///
/// DestroyAddr hoisting stops at either a direct use, or a deinitialization
/// barrier. Direct uses are checked by guaranteeing that all storage uses are
/// known.
///
/// Deinitialization barriers:
///
/// Case #1. Weak reference loads: Any load of a weak or unowned referenceto an
/// object that may be deallocated when this variable is destroyed. Any use of
/// the weak reference is considered a barrier, even if the referenced object is
/// not accessed. This only applies to loads within the current lexical
/// scope. Programmers must properly check escaping weak references for null.
///
/// Case #2. Derived pointers: Any memory access based on a raw pointer to
/// memory that may be deallocated when this variable is destroyed. This only
/// applies to pointer access within this variable's lexical scope. Programmers
/// must manage escaping pointers explicitly via Builtin.fixLifetime.
///
/// Case #3. Synchronization points: If the object potentially has a custom
/// deinitializer with side effects, then any external function call, which may
/// contain a memory barrier or system call, prevents hoisting. If the external
/// function call is annotated as "read-only", then it is safe. Since Swift does
/// not directly support atomics, no SIL instructions are currently considered
/// synchronization points.
///
/// ----------------------------------------------------------------------------
///
/// TODO: replace the destroy hoisting in CopyForwarding::forwardCopiesOf and
/// ensure related tests still pass. This requires hoisting over certain
/// calls. We can do this as long as the call takes a copy of the storage value
/// as an argument. The copy will be guarded by the callee's lexical scope, so
/// the deinits cannot be invoked by the hoisted destroy (in fact it should be
/// possible to eliminate the destroy).
///
/// TODO: As a utility, hoistDestroys should be repeatable. Subsequent runs
/// without changing input should have no effect, including putting new
/// instructions on a worklist. MergeDestroys currently breaks this because the
/// destroys are inserted first before they are merged. This will trigger the
/// createdNewInst callback and cause hadCallbackInvocation() to return true
/// even when the merged result is identical to the input. Fix this by keeping
/// track of the newly created destroys, defer calling createdNewInst, and defer
/// deleting dead instructions. When merging, check if the merged destroy is
/// inserted at the old destroy to reuse it and bypass triggering callbacks.
///
/// TODO: enforce an invariant that destroy_addrs jointly post-dominate any
/// exclusive owned address, that would simplify the algorithm.
///
/// ===--------------------------------------------------------------------===//
#define DEBUG_TYPE "destroy-addr-hoisting"
#include "swift/AST/Type.h"
#include "swift/Basic/GraphNodeWorklist.h"
#include "swift/Basic/SmallPtrSetVector.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/Reachability.h"
#include "swift/SILOptimizer/Analysis/VisitBarrierAccessScopes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
using namespace swift;
namespace {
/// Step #1: Find all known uses of the unique storage object.
struct KnownStorageUses : UniqueStorageUseVisitor {
bool preserveDebugInfo;
SmallPtrSet<SILInstruction *, 16> storageUsers;
llvm::SmallSetVector<SILInstruction *, 4> originalDestroys;
SmallPtrSet<SILInstruction *, 4> debugInsts;
KnownStorageUses(AccessStorage storage, SILFunction *function)
: UniqueStorageUseVisitor(storage, function),
preserveDebugInfo(function->preserveDebugInfo()) {}
bool empty() const {
return storageUsers.empty() && originalDestroys.empty() &&
debugInsts.empty();
}
SILFunction *getFunction() const { return function; }
AccessStorage getStorage() const { return storage; }
// Return true if all leaf users of the root address are recognized.
//
// Populate addressUsers, originalDestroys, and debugInsts.
bool findUses() {
assert(empty() && "already initialized");
return UniqueStorageUseVisitor::findUses(*this);
}
protected:
KnownStorageUses(KnownStorageUses const &) = delete;
KnownStorageUses &operator=(KnownStorageUses const &) = delete;
bool recordUser(SILInstruction *user) {
storageUsers.insert(user);
return true;
}
bool visitBeginAccess(Operand *use) override {
auto *bai = cast<BeginAccessInst>(use->getUser());
for (auto *eai : bai->getEndAccesses()) {
storageUsers.insert(eai);
}
return true;
}
bool visitLoad(Operand *use) override { return recordUser(use->getUser()); }
bool visitStore(Operand *use) override { return recordUser(use->getUser()); }
bool visitDestroy(Operand *use) override {
originalDestroys.insert(use->getUser());
return true;
}
bool visitDealloc(Operand *use) override { return true; }
bool visitDebugUse(Operand *use) override {
if (preserveDebugInfo) {
storageUsers.insert(use->getUser());
} else {
debugInsts.insert(use->getUser());
}
return true;
}
bool visitUnknownUse(Operand *use) override {
auto *user = use->getUser();
if (isa<BuiltinRawPointerType>(use->get()->getType().getASTType())) {
// Destroy hoisting considers address_to_pointer to be a leaf use because
// any potential pointer access is already considered to be a
// deinitialization barrier. Consequently, any instruction that uses a
// value produced by address_to_pointer isn't regarded as a storage use.
return true;
}
LLVM_DEBUG(llvm::dbgs() << "Unknown user " << *user);
return false;
}
};
class DestroyReachability;
/// Step #2: Perform backward dataflow from KnownStorageUses.originalDestroys to
/// KnownStorageUses.storageUsers to find deinitialization barriers.
class DeinitBarriers final {
BasicCalleeAnalysis *calleeAnalysis;
public:
// Instructions beyond which a destroy_addr cannot be hoisted, reachable from
// a destroy_addr. Deinit barriers or storage uses.
llvm::SmallSetVector<SILInstruction *, 4> barrierInstructions;
// Phis beyond which a destroy_addr cannot be hoisted, reachable from a
// destroy_addr.
llvm::SmallSetVector<SILBasicBlock *, 4> barrierPhis;
// Blocks beyond the end of which a destroy_addr cannot be hoisted.
llvm::SmallSetVector<SILBasicBlock *, 4> barrierBlocks;
// Debug instructions that are no longer within this lifetime after shrinking.
llvm::SmallSetVector<SILInstruction *, 4> deadUsers;
// The access scopes which are hoisting barriers.
//
// They are hoisting barriers if they include any barriers. We need to be
// sure not to hoist a destroy_addr into an access scope and by doing so cause
// a deinit which had previously executed outside an access scope to start
// executing within it--that could violate exclusivity.
SmallPtrSet<BeginAccessInst *, 8> barrierAccessScopes;
explicit DeinitBarriers(bool ignoreDeinitBarriers,
const KnownStorageUses &knownUses,
SILFunction *function,
BasicCalleeAnalysis *calleeAnalysis)
: calleeAnalysis(calleeAnalysis),
ignoreDeinitBarriers(ignoreDeinitBarriers), knownUses(knownUses) {
auto rootValue = knownUses.getStorage().getRoot();
assert(rootValue && "HoistDestroys requires a single storage root");
// null for function args
storageDefInst = rootValue->getDefiningInstruction();
}
void compute() { DestroyReachability(*this).solve(); }
bool isBarrier(SILInstruction *instruction) const {
return classificationIsBarrier(classifyInstruction(instruction));
};
friend class DestroyReachability;
private:
DeinitBarriers(DeinitBarriers const &) = delete;
DeinitBarriers &operator=(DeinitBarriers const &) = delete;
bool ignoreDeinitBarriers;
const KnownStorageUses &knownUses;
SILInstruction *storageDefInst = nullptr;
enum class Classification { DeadUser, Barrier, Other };
Classification classifyInstruction(SILInstruction *inst) const;
static bool classificationIsBarrier(Classification classification);
/// Operates backward reachability and access scope visitor. Implements the
/// interfaces involved.
///
/// Implements IterativeBackwardReachability::findBarriers::Visitor
/// Implements VisitBarrierAccessScopes::Visitor
/// Implements IterativeBackwardReachability::Effects
/// Implements VisitBarrierAccessScopes::Effects
class DestroyReachability final {
using Dataflow = IterativeBackwardReachability<DestroyReachability>;
using Effect = Dataflow::Effect;
using ScopeVisitor =
VisitBarrierAccessScopes<DestroyReachability, DestroyReachability>;
DeinitBarriers &result;
Dataflow::Result reachability;
Dataflow dataflow;
std::optional<SmallVector<SILBasicBlock *, 16>> cachedRoots;
bool recordDeadUsers = false;
public:
DestroyReachability(DeinitBarriers &result)
: result(result), reachability(result.knownUses.getFunction()),
dataflow(Dataflow::untilInitialBlock(
result.knownUses.getFunction(),
result.storageDefInst ? result.storageDefInst->getParent()
: nullptr,
*this, reachability)) {}
void solve();
private:
friend Dataflow;
friend ScopeVisitor;
/// IterativeBackwardReachability::Effects
/// VisitBarrierAccessScopes::Effects
auto gens() { return result.knownUses.originalDestroys; }
Effect effectForInstruction(SILInstruction *instruction);
Effect effectForPhi(SILBasicBlock *block);
/// VisitBarrierAccessScopes::Effects
bool isLocalGen(SILInstruction *instruction) {
return reachability.localGens.contains(instruction);
}
auto localGens() { return reachability.localGens; }
/// IterativeBackwardReachability::findBarriers::Visitor:
void visitBarrierInstruction(SILInstruction *instruction) {
result.barrierInstructions.insert(instruction);
}
void visitBarrierPhi(SILBasicBlock *block) {
result.barrierPhis.insert(block);
}
void visitBarrierBlock(SILBasicBlock *block) {
result.barrierBlocks.insert(block);
}
void visitInitialBlock(SILBasicBlock *block) {
result.barrierBlocks.insert(block);
}
/// VisitBarrierAccessScopes::Visitor
ArrayRef<SILBasicBlock *> roots();
bool isInRegion(SILBasicBlock *block) {
return reachability.discoveredBlocks.contains(block);
}
void visitBarrierAccessScope(BeginAccessInst *bai) {
result.barrierAccessScopes.insert(bai);
for (auto *eai : bai->getEndAccesses()) {
dataflow.addKill(eai);
}
}
};
};
DeinitBarriers::Classification
DeinitBarriers::classifyInstruction(SILInstruction *inst) const {
if (knownUses.debugInsts.contains(inst)) {
return Classification::DeadUser;
}
if (inst == storageDefInst) {
return Classification::Barrier;
}
if (knownUses.storageUsers.contains(inst)) {
return Classification::Barrier;
}
if (!ignoreDeinitBarriers && isDeinitBarrier(inst, calleeAnalysis)) {
return Classification::Barrier;
}
if (auto *eai = dyn_cast<EndAccessInst>(inst)) {
if (barrierAccessScopes.contains(eai->getBeginAccess())) {
return Classification::Barrier;
}
}
return Classification::Other;
}
bool DeinitBarriers::classificationIsBarrier(Classification classification) {
switch (classification) {
case Classification::DeadUser:
case Classification::Other:
return false;
case Classification::Barrier:
return true;
}
llvm_unreachable("exhaustive switch is not exhaustive?!");
}
DeinitBarriers::DestroyReachability::Effect
DeinitBarriers::DestroyReachability::effectForInstruction(
SILInstruction *instruction) {
if (result.knownUses.originalDestroys.contains(instruction))
return Effect::Gen();
auto classification = result.classifyInstruction(instruction);
if (recordDeadUsers && classification == Classification::DeadUser)
result.deadUsers.insert(instruction);
return result.classificationIsBarrier(classification) ? Effect::Kill()
: Effect::NoEffect();
}
DeinitBarriers::DestroyReachability::Effect
DeinitBarriers::DestroyReachability::effectForPhi(SILBasicBlock *block) {
bool isBarrier =
llvm::any_of(block->getPredecessorBlocks(), [&](auto *predecessor) {
return result.isBarrier(predecessor->getTerminator());
});
return isBarrier ? Effect::Kill() : Effect::NoEffect();
}
void DeinitBarriers::DestroyReachability::solve() {
dataflow.initialize();
ScopeVisitor visitor(result.knownUses.getFunction(), *this, *this);
visitor.visit();
dataflow.solve();
recordDeadUsers = true;
dataflow.findBarriers(*this);
}
/// Algorithm for hoisting the destroys of a single uniquely identified storage
/// object.
class HoistDestroys {
SILValue storageRoot;
SILFunction *function;
SILModule &module;
TypeExpansionContext typeExpansionContext;
bool ignoreDeinitBarriers;
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs;
InstructionDeleter &deleter;
BasicCalleeAnalysis *calleeAnalysis;
// Book-keeping for the rewriting stage.
SmallPtrSet<SILInstruction *, 4> reusedDestroys;
BasicBlockSetVector destroyMergeBlocks;
public:
HoistDestroys(SILValue storageRoot, bool ignoreDeinitBarriers,
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs,
InstructionDeleter &deleter,
BasicCalleeAnalysis *calleeAnalysis)
: storageRoot(storageRoot), function(storageRoot->getFunction()),
module(function->getModule()), typeExpansionContext(*function),
ignoreDeinitBarriers(ignoreDeinitBarriers),
remainingDestroyAddrs(remainingDestroyAddrs), deleter(deleter),
calleeAnalysis(calleeAnalysis), destroyMergeBlocks(getFunction()) {}
bool perform();
protected:
SILFunction *getFunction() const { return storageRoot->getFunction(); }
bool foldBarrier(SILInstruction *barrier, const AccessStorage &storage,
const DeinitBarriers &deinitBarriers);
bool foldBarrier(SILInstruction *barrier, const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers);
bool checkFoldingBarrier(SILInstruction *instruction,
SmallVectorImpl<LoadInst *> &loads,
SmallVectorImpl<CopyAddrInst *> &copies,
SmallPtrSetImpl<AccessPath::PathNode> &leaves,
SmallPtrSetImpl<AccessPath::PathNode> &trivialLeaves,
const AccessStorage &storage,
const DeinitBarriers &deinitBarriers);
void insertDestroy(SILInstruction *barrier, SILInstruction *insertBefore,
const KnownStorageUses &knownUses);
void createDestroy(SILInstruction *insertBefore, const SILDebugScope *scope);
void createSuccessorDestroys(SILBasicBlock *barrierBlock);
bool rewriteDestroys(const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers);
void mergeDestroys(SILBasicBlock *mergeBlock);
};
} // namespace
bool HoistDestroys::perform() {
auto storage = AccessStorage::computeInScope(storageRoot);
if (!storage.isUniquelyIdentified() &&
storage.getKind() != AccessStorage::Kind::Nested)
return false;
KnownStorageUses knownUses(storage, getFunction());
if (!knownUses.findUses())
return false;
DeinitBarriers deinitBarriers(ignoreDeinitBarriers, knownUses, getFunction(),
calleeAnalysis);
deinitBarriers.compute();
// No SIL changes happen before rewriting.
return rewriteDestroys(storage, knownUses, deinitBarriers);
}
bool HoistDestroys::rewriteDestroys(const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers) {
// Place a new destroy after each barrier instruction.
for (SILInstruction *barrier : deinitBarriers.barrierInstructions) {
auto *barrierBlock = barrier->getParent();
if (barrier != barrierBlock->getTerminator()) {
if (!foldBarrier(barrier, storage, knownUses, deinitBarriers))
insertDestroy(barrier, barrier->getNextInstruction(), knownUses);
continue;
}
for (auto *successor : barrierBlock->getSuccessorBlocks()) {
insertDestroy(barrier, &successor->front(), knownUses);
}
}
// Place a new destroy at each CFG edge in which the successor's beginning is
// reached but the predecessors end is not reached.
for (auto *block : deinitBarriers.barrierPhis) {
// The destroy does not reach above the block's phi.
insertDestroy(nullptr, &block->front(), knownUses);
}
for (auto *block : deinitBarriers.barrierBlocks) {
// The destroy does not reach the end of any predecessors.
insertDestroy(nullptr, &block->front(), knownUses);
}
// Delete dead users before merging destroys.
for (auto *deadInst : deinitBarriers.deadUsers) {
deleter.forceDelete(deadInst);
}
for (auto *destroyInst : knownUses.originalDestroys) {
if (reusedDestroys.contains(destroyInst))
continue;
remainingDestroyAddrs.erase(destroyInst);
deleter.forceDelete(destroyInst);
}
deleter.cleanupDeadInstructions();
for (auto *mergeBlock : destroyMergeBlocks) {
mergeDestroys(mergeBlock);
}
return deleter.hadCallbackInvocation();
}
/// Try to fold the destroy_addr with the specified barrier, or a backwards
/// sequence of instructions that it begins.
///
/// Do the following kinds of folds:
///
/// - loads:
/// given: load [copy] %addr
/// destroy_addr %addr
/// yield: load [take]
/// - copy_addrs:
/// given: copy_addr %addr to ...
/// destroy_addr %addr
/// yield: copy_addr [take] %addr
///
/// Additionally, generalize this to subobjects. If there is a sequence of
/// copy_addrs and loads that covers all the subobjects of %addr. Given
/// projections %subobject_1 and %subobject_2 out of %addr which fully cover all
/// the non-trivial fields of the recursive type-tree of %addr, fold
///
/// load [copy] %subobject_1
/// copy_addr %subobject_2 to ...
/// destroy_addr %addr
///
/// into
///
/// load [take] %subobject_1
/// copy_addr [take] %subobject_2 to ...
///
/// so long as all the loads and copy_addrs occur within the same block.
bool HoistDestroys::foldBarrier(SILInstruction *barrier,
const AccessStorage &storage,
const DeinitBarriers &deinitBarriers) {
// The load [copy]s which will be folded into load [take]s if folding is
// possible.
llvm::SmallVector<LoadInst *, 4> loads;
// The copy_addrs which will be folded into copy_addr [take]s if folding is
// possible.
llvm::SmallVector<CopyAddrInst *, 4> copies;
// The non-trivial storage leaves of the root storage all of which must be
// destroyed exactly once in the sequence of instructions prior to the
// destroy_addr in order for folding to occur.
llvm::SmallPtrSet<AccessPath::PathNode, 16> leaves;
// The trivial storage leaves of the root storage. They needn't be destroyed
// in the sequence prior to the destroy_addr, but their uses may obstruct
// folding. For example, given an %object and %triv a trivial subobject
//
// load [copy] %object
// load [trivial] %triv
// destroy_addr %object
//
// it isn't legal to fold the destroy_addr into the load of %object like
//
// load [take] %object
// load [trivial] %triv
//
// because the memory location %triv is no longer valid. In general, it would
// be fine to support folding over accesses of trivial subobjects so long as
// they occur prior to the access to some nontrivial subobject that contains
// it.
SmallPtrSet<AccessPath::PathNode, 16> trivialLeaves;
bool succeeded = visitProductLeafAccessPathNodes(
storageRoot, typeExpansionContext, module,
[&](AccessPath::PathNode node, SILType ty) {
if (ty.isTrivial(*function))
return;
leaves.insert(node);
});
if (!succeeded) {
// [invalid_access_path] The access path to storageRoot isn't understood.
// It can't be determined whether all of its leaves have been visited, so
// foldability can't be determined. Bail.
return false;
}
for (auto *instruction = barrier; instruction != nullptr;
instruction = instruction->getPreviousInstruction()) {
if (checkFoldingBarrier(instruction, loads, copies, leaves, trivialLeaves,
storage, deinitBarriers))
return false;
// If we have load [copy]s or copy_addrs of projections out of the root
// storage that cover all non-trivial product leaves, then we can fold!
//
// Stop looking for instructions to fold.
if (leaves.empty())
break;
}
if (!leaves.empty())
return false;
for (auto *load : loads) {
assert(load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy);
load->setOwnershipQualifier(LoadOwnershipQualifier::Take);
}
for (auto *copy : copies) {
assert(!copy->isTakeOfSrc());
copy->setIsTakeOfSrc(IsTake);
}
return true;
}
/// Whether the specified instruction is a barrier to folding.
///
/// TODO: This is a bit more conservative that it needs to be in a couple of
/// ways:
///
/// (1) even if we've already seen a leaf, we could still fold, in certain
/// cases, we should be able to fold anyway. For example, given projections
/// %p1 and %p2 of some root storage %a, in the following scenario:
///
/// %p1 = <PROJECT> %a
/// %p2 = <PROJECT> %a
/// %v1 = load [copy] %p1
/// %v2_1 = load [copy] %p2
/// %v2_1 = load [copy] %p2
/// destroy_addr %a
///
/// we could fold destroy_addr %a into the first load [copy] %p2 and the
/// load [copy] %p1:
///
/// %v1 = load [take] %p1
/// %v2_1 = load [copy] %p2
/// %v2_2 = load [take] %p1
///
/// And indeed we can do that for loads from a subprojection %p2_sub of
/// %p2; the following
///
/// %v1 = load [copy] %p1
/// %v2_sub = load [copy] %p2_sub
/// %v2 = load [copy] %p2
///
/// could be folded to
///
/// %v1 = load [take] %p1
/// %v2_sub = load [copy] %p2_sub
/// %v2 = load [take] %p2
///
/// (2) We should be able to continue folding over a load [trivial] so long as
/// the instructions that we're folding with don't destroy an aggregate that
/// contains the projection which is the target of the load [trivial]. For
/// example, given
///
/// %addr = alloc_stack %(X, I)
/// %x_addr = tuple_element_addr %addr : $*(X, I), 0
/// %i_addr = tuple_element_addr %addr : $*(X, I), 1
/// %x = load [copy] %x_addr : $*X
/// %i = load [trivial] %i_addr : $*I
/// destroy_addr %addr
///
/// we should be able to fold the destroy_addr of the tuple with the load [copy]
/// and ignore the load [trivial].
///
/// Doing this is complicated by the fact that we can't ignore the load
/// [trivial] if the load [copy] is of the whole tuple. If we have instead
///
/// %addr = alloc_stack %(X, I)
/// %x_addr = tuple_element_addr %addr : $*(X, I), 0
/// %i_addr = tuple_element_addr %addr : $*(X, I), 1
/// %x = load [copy] %addr : $*(X, I)
/// %i = load [trivial] %i_addr : $*I
/// destroy_addr %addr
///
/// then we cannot fold. If we did, we would end up with invalid SIL:
///
/// %x = load [take] %addr
/// %i = load [trivial] %i_addr
bool HoistDestroys::checkFoldingBarrier(
SILInstruction *instruction, SmallVectorImpl<LoadInst *> &loads,
SmallVectorImpl<CopyAddrInst *> &copies,
SmallPtrSetImpl<AccessPath::PathNode> &leaves,
SmallPtrSetImpl<AccessPath::PathNode> &trivialLeaves,
const AccessStorage &storage, const DeinitBarriers &deinitBarriers) {
// The address of a projection out of the root storage which would be
// folded if folding is possible.
//
// If no such address is found, we need to check whether the instruction
// is a barrier.
SILValue address;
if (auto *load = dyn_cast<LoadInst>(instruction)) {
auto loadee = load->getOperand();
auto relativeAccessStorage = RelativeAccessStorageWithBase::compute(loadee);
if (relativeAccessStorage.getStorage().hasIdenticalStorage(storage)) {
// If the access path from the loaded address to its root storage involves
// a (layout non-equivalent) typecast--a load [take] of the casted address
// would not be equivalent to a load [copy] followed by a destroy_addr of
// the corresponding uncast projection--the truncated portion might have
// refcounted components.
if (relativeAccessStorage.cast == AccessStorageCast::Type)
return true;
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
address = loadee;
loads.push_back(load);
} else {
assert(loadee->getType().isTrivial(*load->getFunction()));
return true;
}
}
} else if (auto *copy = dyn_cast<CopyAddrInst>(instruction)) {
auto source = copy->getSrc();
auto relativeAccessStorage = RelativeAccessStorageWithBase::compute(source);
if (relativeAccessStorage.getStorage().hasIdenticalStorage(storage)) {
// If the access path from the copy_addr'd address to its root storage
// involves a (layout non-equivalent) typecast--a copy_addr [take] of the
// casted address would not be equivalent to a copy_addr followed by a
// destroy_addr of the corresponding uncast projection--the truncated
// portion might have refcounted components.
if (relativeAccessStorage.cast == AccessStorageCast::Type)
return true;
address = source;
copies.push_back(copy);
}
}
if (address) {
// We found a relevant instruction that is operating on a projection out
// of the root storage which would be folded if folding were possible.
// Find its nontrivial product leaves and remove them from the set of
// leaves of the root storage which we're wating to see.
bool alreadySawLeaf = false;
bool alreadySawTrivialSubleaf = false;
auto succeeded = visitProductLeafAccessPathNodes(
address, typeExpansionContext, module,
[&](AccessPath::PathNode node, SILType ty) {
if (ty.isTrivial(*function)) {
bool inserted = !trivialLeaves.insert(node).second;
alreadySawTrivialSubleaf = alreadySawTrivialSubleaf || inserted;
return;
}
bool erased = leaves.erase(node);
alreadySawLeaf = alreadySawLeaf || !erased;
});
(void)succeeded;
// [invalid_access_path] The access path to storageRoot was understood, and
// address has identical storage to its storage. The access path to address
// must be valid.
assert(succeeded);
if (alreadySawLeaf) {
// We saw this non-trivial product leaf already. That means there are
// multiple load [copy]s or copy_addrs of at least one product leaf
// before (walking backwards from the hoisting point) there are
// instructions that load or copy from all the non-trivial leaves.
// Give up on folding.
return true;
}
if (alreadySawTrivialSubleaf) {
// We saw this trivial leaf already. That means there was some later
// load [copy] or copy_addr of it. Give up on folding.
return true;
}
} else if (deinitBarriers.isBarrier(instruction)) {
// We didn't find an instruction that was both
// - relevant (i.e. a copy_addr or a load [take])
// - operating on a projection of the root storage
// Additionally:
// - we can't ignore whether it's a barrier
// - and it IS a barrier.
// We can't fold.
return true;
}
return false;
}
bool HoistDestroys::foldBarrier(SILInstruction *barrier,
const AccessStorage &storage,
const KnownStorageUses &knownUses,
const DeinitBarriers &deinitBarriers) {
if (auto *eai = dyn_cast<EndAccessInst>(barrier)) {
auto *bai = eai->getBeginAccess();
// Don't hoist a destroy into an unrelated access scope.
if (stripAccessMarkers(bai) != stripAccessMarkers(storageRoot))
return false;
SILInstruction *instruction = eai;
while ((instruction = instruction->getPreviousInstruction())) {
if (instruction == bai)
return false;
if (foldBarrier(instruction, storage, deinitBarriers))
return true;
if (deinitBarriers.isBarrier(instruction))
return false;
}
}
return foldBarrier(barrier, storage, deinitBarriers);
}
// \p barrier may be null if the destroy is at function entry.
void HoistDestroys::insertDestroy(SILInstruction *barrier,
SILInstruction *insertBefore,
const KnownStorageUses &knownUses) {
if (auto *branch = dyn_cast<BranchInst>(insertBefore)) {
destroyMergeBlocks.insert(branch->getDestBB());
}
// Avoid mutating SIL for no reason. This could lead to infinite loops.
if (isa<DestroyAddrInst>(insertBefore) ||
isa<DestroyValueInst>(insertBefore)) {
if (llvm::find(knownUses.originalDestroys, insertBefore) !=
knownUses.originalDestroys.end()) {
reusedDestroys.insert(insertBefore);
return;
}
}
const SILDebugScope *scope =
barrier ? barrier->getDebugScope() : getFunction()->getDebugScope();
createDestroy(insertBefore, scope);
}
void HoistDestroys::createDestroy(SILInstruction *insertBefore,
const SILDebugScope *scope) {
auto loc = RegularLocation::getAutoGeneratedLocation();
SILInstruction *newDestroy;
if (storageRoot->getType().isAddress()) {
newDestroy =
SILBuilder(insertBefore, scope).createDestroyAddr(loc, storageRoot);
} else {
newDestroy =
SILBuilder(insertBefore, scope).createDestroyValue(loc, storageRoot);
}
deleter.getCallbacks().createdNewInst(newDestroy);
}
void HoistDestroys::mergeDestroys(SILBasicBlock *mergeBlock) {
SmallVector<SILInstruction *, 4> deadDestroys;
for (auto *predecessors : mergeBlock->getPredecessorBlocks()) {
auto *tailDestroy = predecessors->getTerminator()->getPreviousInstruction();
if (!tailDestroy || (!isa<DestroyAddrInst>(tailDestroy) &&
!isa<DestroyValueInst>(tailDestroy))) {
return;
}
if (tailDestroy->getOperand(0) != storageRoot)
return;
deadDestroys.push_back(tailDestroy);
}
if (deadDestroys.size() < 2) // ignore trivial fall-thru
return;
createDestroy(&mergeBlock->front(), deadDestroys[0]->getDebugScope());
for (auto *deadDestroy : deadDestroys) {
remainingDestroyAddrs.erase(deadDestroy);
deleter.forceDelete(deadDestroy);
}
}
// =============================================================================
// Top-Level API
// =============================================================================
bool hoistDestroys(SILValue root, bool ignoreDeinitBarriers,
SmallPtrSetImpl<SILInstruction *> &remainingDestroyAddrs,
InstructionDeleter &deleter,
BasicCalleeAnalysis *calleeAnalysis) {
LLVM_DEBUG(llvm::dbgs() << "Performing destroy hoisting on " << root);
// Don't canonicalize the lifetimes of addresses of move-only type.
// According to language rules, they are fixed.
if (root->getType().isMoveOnly())
return false;
SILFunction *function = root->getFunction();
if (!function)
return false;
// The algorithm assumes no critical edges.
assert(function->hasOwnership() && "requires OSSA");
// If lexical lifetimes aren't enabled, then deinit barriers aren't respected.
auto &module = function->getModule();
auto enableLexicalLifetimes =
module.getASTContext().SILOpts.supportsLexicalLifetimes(module);
ignoreDeinitBarriers = ignoreDeinitBarriers || !enableLexicalLifetimes;
return HoistDestroys(root, ignoreDeinitBarriers, remainingDestroyAddrs,
deleter, calleeAnalysis)
.perform();
}
// =============================================================================
// Pipeline Pass
// =============================================================================
namespace {
class DestroyAddrHoisting : public swift::SILFunctionTransform {
void run() override;
};
} // end anonymous namespace
// TODO: Handle alloc_box the same way, as long as the box doesn't escape.
//
// TODO: Handle address and boxes that are captured in no-escape closures.
void DestroyAddrHoisting::run() {
if (!getFunction()->hasOwnership())
return;
InstructionDeleter deleter;
bool changed = false;
llvm::SmallVector<AllocStackInst *, 4> asis;
llvm::SmallVector<BeginAccessInst *, 4> bais;
llvm::SmallVector<StoreInst *, 4> sis;
llvm::SmallVector<CopyAddrInst *, 4> cais;
// Collect the instructions that we'll be transforming.
for (auto &block : *getFunction()) {
for (auto &inst : block) {
if (auto *asi = dyn_cast<AllocStackInst>(&inst)) {
asis.push_back(asi);
} else if (auto *bai = dyn_cast<BeginAccessInst>(&inst)) {
if (bai->getAccessKind() == SILAccessKind::Modify) {
bais.push_back(bai);
}
} else if (auto *si = dyn_cast<StoreInst>(&inst)) {
if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
sis.push_back(si);
}
} else if (auto *cai = dyn_cast<CopyAddrInst>(&inst)) {
if (cai->isInitializationOfDest() == IsNotInitialization) {
cais.push_back(cai);
}
}
}
}
// Before hoisting, expand all
//
// store [assign]
//
// instructions into
//
// destroy_addr
// store [init]
//
// sequences to create more destroy_addrs to hoist.
//
// Record the newly created destroy_addrs and the stores they were split off
// of. After hoisting, if they have not been hoisted away from the store
// instruction, we will merge them back together.
llvm::SmallVector<std::pair<DestroyAddrInst *, StoreInst *>, 8>
splitDestroysAndStores;
// The destroy_addrs that were created that have not been deleted. Items are
// erased from the set as the destroy_addrs are deleted.
SmallPtrSet<SILInstruction *, 8> remainingDestroyAddrs;
// The number of destroys that were split off of store [init]s and not
// recombined.
int splitDestroys = 0;
for (auto *si : sis) {
auto builder = SILBuilderWithScope(si);
auto *dai = builder.createDestroyAddr(
RegularLocation::getAutoGeneratedLocation(si->getLoc()),
si->getOperand(1));
si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
splitDestroysAndStores.push_back({dai, si});
remainingDestroyAddrs.insert(dai);
++splitDestroys;
}
// Similarly, also expand each
//
// copy_addr to
//
// instruction into
//
// destroy_addr
// copy_addr to [init]
//
// sequences to create still more destroy_addrs to hoist.
//
// As above, record the newly created destroy_addrs and copy_addrs off of
// which they were split. After hoisting, we'll merge them back together when
// possible.
llvm::SmallVector<std::pair<DestroyAddrInst *, CopyAddrInst *>, 8>
splitDestroysAndCopies;
for (auto *cai : cais) {
auto builder = SILBuilderWithScope(cai);
auto *dai = builder.createDestroyAddr(
RegularLocation::getAutoGeneratedLocation(cai->getLoc()),
cai->getOperand(1));
cai->setIsInitializationOfDest(IsInitialization);
splitDestroysAndCopies.push_back({dai, cai});
remainingDestroyAddrs.insert(dai);
++splitDestroys;
}
auto *calleeAnalysis = getAnalysis<BasicCalleeAnalysis>();
// We assume that the function is in reverse post order so visiting the
// blocks and pushing begin_access as we see them and then popping them off
// the end will result in hoisting inner begin_access' destroy_addrs first.
for (auto *bai : llvm::reverse(bais)) {
// [exclusive_modify_scope_hoisting] Hoisting within modify access scopes
// doesn't respect deinit barriers because
//
// Mutable variable lifetimes that are formally modified in the middle of
// a lexical scope are anchored to the beginning of the lexical scope
// rather than to the end.
//
// TODO: If the performance issues associated with failing to hoist
// destroys within an exclusive modify scope are otherwise addressed,
// it may be less confusing not to make use of the above rule and
// respect deinit barriers here also ( rdar://116335154 ).
changed |= hoistDestroys(bai, /*ignoreDeinitBarriers=*/true,
remainingDestroyAddrs, deleter, calleeAnalysis);
}
// Alloc stacks always enclose their accesses.
for (auto *asi : asis) {
changed |= hoistDestroys(asi,
/*ignoreDeinitBarriers=*/!asi->isLexical(),
remainingDestroyAddrs, deleter, calleeAnalysis);
}
// Arguments enclose everything.
for (auto *uncastArg : getFunction()->getArguments()) {
auto *arg = cast<SILFunctionArgument>(uncastArg);
if (arg->getType().isAddress()) {
auto convention = arg->getArgumentConvention();
// This is equivalent to writing
//
// convention == SILArgumentConvention::Indirect_Inout
//
// but communicates the rationale: in order to ignore deinit barriers, the
// address must be exclusively accessed and be a modification.
//
// The situation with inout parameters is analogous to that with
// mutable exclusive access scopes [exclusive_modify_scope_hoisting], so
// deinit barriers are not respected.
bool ignoredByConvention = convention.isInoutConvention() &&
convention.isExclusiveIndirectParameter();
auto lifetime = arg->getLifetime();
bool ignoreDeinitBarriers = ignoredByConvention || lifetime.isEagerMove();
changed |= hoistDestroys(arg, ignoreDeinitBarriers, remainingDestroyAddrs,
deleter, calleeAnalysis);
}
}
for (auto pair : splitDestroysAndStores) {
auto *dai = pair.first;
if (!remainingDestroyAddrs.contains(dai))
continue;
auto *si = pair.second;
if (dai->getNextInstruction() != si)
continue;
// No stores should have been rewritten during hoisting. Their ownership
// qualifiers were set to [init] when splitting off the destroy_addrs.
assert(si->getOwnershipQualifier() == StoreOwnershipQualifier::Init);
// If a newly created destroy_addr has not been hoisted from its previous
// location, combine it back together with the store [init] which it was
// split off from.
deleter.forceDelete(dai);
si->setOwnershipQualifier(StoreOwnershipQualifier::Assign);
--splitDestroys;
}
for (auto pair : splitDestroysAndCopies) {
auto *dai = pair.first;
if (!remainingDestroyAddrs.contains(dai))
continue;
auto *cai = pair.second;
if (dai->getNextInstruction() != cai)
continue;
assert(cai->isInitializationOfDest() == IsInitialization);
deleter.forceDelete(dai);
cai->setIsInitializationOfDest(IsNotInitialization);
--splitDestroys;
}
// If there were any destroy_addrs split off of stores and not recombined
// with them, then the function has changed.
changed |= splitDestroys > 0;
if (changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
}
SILTransform *swift::createDestroyAddrHoisting() {
return new DestroyAddrHoisting();
}
|