1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
//===--- EagerSpecializer.cpp - Performs Eager Specialization -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Eager Specializer
/// -----------------
///
/// This transform specializes functions that are annotated with the
/// @_specialize(<type list>) attribute. A function may be annotated with
/// multiple @_specialize attributes, each with a list of concrete types. For
/// each @_specialize attribute, this transform clones the annotated generic
/// function, creating a new function signature by substituting the concrete
/// types specified in the attribute into the function's generic
/// signature. Dispatch to each specialized function is implemented by inserting
/// call at the beginning of the original generic function guarded by a type
/// check.
///
/// TODO: We have not determined whether to support inexact type checks. It
/// will be a tradeoff between utility of the attribute vs. cost of the check.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "eager-specializer"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Type.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// Temporary flag.
llvm::cl::opt<bool> EagerSpecializeFlag(
"enable-eager-specializer", llvm::cl::init(true),
llvm::cl::desc("Run the eager-specializer pass."));
static void
cleanupCallArguments(SILBuilder &builder, SILLocation loc,
ArrayRef<SILValue> values,
ArrayRef<unsigned> valueIndicesThatNeedEndBorrow) {
for (int index : valueIndicesThatNeedEndBorrow) {
auto *lbi = cast<LoadBorrowInst>(values[index]);
builder.createEndBorrow(loc, lbi);
}
}
/// Returns true if the given return or throw block can be used as a merge point
/// for new return or error values.
static bool isTrivialReturnBlock(SILBasicBlock *RetBB) {
auto *RetInst = RetBB->getTerminator();
assert(RetInst->isFunctionExiting() &&
"expected a properly terminated return or throw block");
auto RetOperand = RetInst->getOperand(0);
// Allow:
// % = tuple ()
// return % : $()
if (RetOperand->getType().isVoid()) {
if (!RetBB->args_empty())
return false;
auto *TupleI = dyn_cast<TupleInst>(RetBB->begin());
if (!TupleI || !TupleI->getType().isVoid())
return false;
if (&*std::next(RetBB->begin()) != RetInst)
return false;
return RetOperand == TupleI;
}
// Allow:
// bb(% : $T)
// return % : $T
if (&*RetBB->begin() != RetInst)
return false;
if (RetBB->args_size() != 1)
return false;
return (RetOperand == RetBB->getArgument(0));
}
/// Adds a CFG edge from the unterminated NewRetBB to a merged "return" or
/// "throw" block. If the return block is not already a canonical merged return
/// block, then split it. If the return type is not Void, add a BBArg that
/// propagates NewRetVal to the return instruction.
static void addReturnValueImpl(SILBasicBlock *RetBB, SILBasicBlock *NewRetBB,
SILValue NewRetVal) {
auto *F = NewRetBB->getParent();
SILBuilder Builder(*F);
Builder.setCurrentDebugScope(F->getDebugScope());
SILLocation Loc = F->getLocation();
auto *RetInst = RetBB->getTerminator();
assert(RetInst->isFunctionExiting() &&
"expected a properly terminated return or throw block");
assert(RetInst->getOperand(0)->getType() == NewRetVal->getType() &&
"Mismatched return type");
SILBasicBlock *MergedBB = RetBB;
// Split the return block if it is nontrivial.
if (!isTrivialReturnBlock(RetBB)) {
if (NewRetVal->getType().isVoid()) {
// Canonicalize Void return type into something that isTrivialReturnBlock
// expects.
auto *TupleI = dyn_cast<TupleInst>(RetInst->getOperand(0));
if (TupleI && TupleI->hasOneUse()) {
TupleI->moveBefore(RetInst);
} else {
Builder.setInsertionPoint(RetInst);
TupleI = Builder.createTuple(RetInst->getLoc(), {});
RetInst->setOperand(0, TupleI);
}
MergedBB = RetBB->split(TupleI->getIterator());
Builder.setInsertionPoint(RetBB);
Builder.createBranch(Loc, MergedBB);
} else {
// Forward the existing return argument to a new BBArg.
MergedBB = RetBB->split(RetInst->getIterator());
SILValue OldRetVal = RetInst->getOperand(0);
RetInst->setOperand(0, MergedBB->createPhiArgument(OldRetVal->getType(),
OwnershipKind::Owned));
Builder.setInsertionPoint(RetBB);
Builder.createBranch(Loc, MergedBB, {OldRetVal});
}
}
// Create a CFG edge from NewRetBB to MergedBB.
Builder.setInsertionPoint(NewRetBB);
SmallVector<SILValue, 1> BBArgs;
if (!NewRetVal->getType().isVoid())
BBArgs.push_back(NewRetVal);
Builder.createBranch(Loc, MergedBB, BBArgs);
// Then split any critical edges we created to the merged block.
splitCriticalEdgesTo(MergedBB);
}
/// Adds a CFG edge from the unterminated NewRetBB to a merged "return" block.
static void addReturnValue(SILBasicBlock *NewRetBB, SILBasicBlock *OldRetBB,
SILValue NewRetVal) {
auto *RetBB = OldRetBB;
addReturnValueImpl(RetBB, NewRetBB, NewRetVal);
}
/// Adds a CFG edge from the unterminated NewThrowBB to a merged "throw" block.
static void addThrowValue(SILBasicBlock *NewThrowBB, SILValue NewErrorVal) {
auto *ThrowBB = &*NewThrowBB->getParent()->findThrowBB();
addReturnValueImpl(ThrowBB, NewThrowBB, NewErrorVal);
}
/// Emits a call to a throwing function as defined by FuncRef, and passes the
/// specified Args. Uses the provided Builder to insert a try_apply at the given
/// SILLocation and generates control flow to handle the rethrow.
///
/// TODO: Move this to Utils.
static SILValue
emitApplyWithRethrow(SILBuilder &Builder, SILLocation Loc, SILValue FuncRef,
CanSILFunctionType CanSILFuncTy, SubstitutionMap Subs,
ArrayRef<SILValue> CallArgs,
ArrayRef<unsigned> CallArgIndicesThatNeedEndBorrow) {
auto &F = Builder.getFunction();
SILFunctionConventions fnConv(CanSILFuncTy, Builder.getModule());
SILBasicBlock *ErrorBB = F.createBasicBlock();
SILBasicBlock *NormalBB = F.createBasicBlock();
Builder.createTryApply(Loc, FuncRef, Subs, CallArgs, NormalBB, ErrorBB);
{
// Emit the rethrow logic.
Builder.emitBlock(ErrorBB);
SILValue Error = ErrorBB->createPhiArgument(
fnConv.getSILErrorType(F.getTypeExpansionContext()),
OwnershipKind::Owned);
cleanupCallArguments(Builder, Loc, CallArgs,
CallArgIndicesThatNeedEndBorrow);
addThrowValue(ErrorBB, Error);
}
// Advance Builder to the fall-thru path and return a SILArgument holding the
// result value.
Builder.clearInsertionPoint();
Builder.emitBlock(NormalBB);
SILValue finalArgument = Builder.getInsertionBB()->createPhiArgument(
fnConv.getSILResultType(F.getTypeExpansionContext()),
OwnershipKind::Owned);
cleanupCallArguments(Builder, Loc, CallArgs, CallArgIndicesThatNeedEndBorrow);
return finalArgument;
}
/// Emits code to invoke the specified specialized CalleeFunc using the
/// provided SILBuilder.
///
/// TODO: Move this to Utils.
static SILValue emitInvocation(SILBuilder &Builder,
const ReabstractionInfo &ReInfo, SILLocation Loc,
SILFunction *CalleeFunc,
ArrayRef<SILValue> CallArgs,
ArrayRef<unsigned> ArgsNeedEndBorrow) {
auto *FuncRefInst = Builder.createFunctionRef(Loc, CalleeFunc);
auto CanSILFuncTy = CalleeFunc->getLoweredFunctionType();
auto CalleeSubstFnTy = CanSILFuncTy;
SubstitutionMap Subs;
if (CanSILFuncTy->isPolymorphic()) {
// Create a substituted callee type.
assert(CanSILFuncTy == ReInfo.getSpecializedType() &&
"Types should be the same");
// We form here the list of substitutions and the substituted callee
// type. For specializations with layout constraints, we claim that
// the substitution T satisfies the specialized requirement
// 'TS : LayoutConstraint', where LayoutConstraint could be
// e.g. _Trivial(64). We claim it, because we ensure it by the
// method how this call is constructed.
// This is a hack and works currently just by coincidence.
// But it is not quite true from the SIL type system
// point of view as we do not really cast at the SIL level the original
// parameter value of type T into a more specialized generic
// type 'TS : LayoutConstraint'.
//
// TODO: Introduce a proper way to express such a cast.
// It could be an instruction similar to checked_cast_br, e.g.
// something like:
// 'checked_constraint_cast_br %1 : T to $opened("") <TS : _Trivial(64)>',
// where <TS: _Trivial(64)> introduces a new archetype with the given
// constraints.
if (ReInfo.getSpecializedType()->isPolymorphic()) {
Subs = ReInfo.getCallerParamSubstitutionMap();
CalleeSubstFnTy = CanSILFuncTy->substGenericArgs(
Builder.getModule(), ReInfo.getCallerParamSubstitutionMap(),
Builder.getTypeExpansionContext());
assert(!CalleeSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!CalleeSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
}
}
auto CalleeSILSubstFnTy = SILType::getPrimitiveObjectType(CalleeSubstFnTy);
SILFunctionConventions fnConv(CalleeSILSubstFnTy.castTo<SILFunctionType>(),
Builder.getModule());
bool isNonThrowing = false;
// It is a function whose type claims it is throwing, but
// it actually never throws inside its body?
if (CanSILFuncTy->hasErrorResult() &&
CalleeFunc->findThrowBB() == CalleeFunc->end()) {
isNonThrowing = true;
}
// Is callee a non-throwing function according to its type
// or de-facto?
if (!CanSILFuncTy->hasErrorResult() ||
CalleeFunc->findThrowBB() == CalleeFunc->end()) {
ApplyOptions Options;
if (isNonThrowing)
Options |= ApplyFlags::DoesNotThrow;
auto *AI = Builder.createApply(CalleeFunc->getLocation(), FuncRefInst, Subs,
CallArgs, Options);
cleanupCallArguments(Builder, Loc, CallArgs, ArgsNeedEndBorrow);
return AI;
}
return emitApplyWithRethrow(Builder, CalleeFunc->getLocation(), FuncRefInst,
CalleeSubstFnTy, Subs, CallArgs,
ArgsNeedEndBorrow);
}
/// Returns the thick metatype for the given SILType.
/// e.g. $*T -> $@thick T.Type
static SILType getThickMetatypeType(CanType Ty) {
auto SwiftTy = CanMetatypeType::get(Ty, MetatypeRepresentation::Thick);
return SILType::getPrimitiveObjectType(SwiftTy);
}
namespace {
/// Helper class for emitting code to dispatch to a specialized function.
class EagerDispatch {
SILFunction *GenericFunc;
const ReabstractionInfo &ReInfo;
const SILFunctionConventions substConv;
SILBuilder Builder;
SILLocation Loc;
// Function to check if a given object is a class.
SILFunction *IsClassF;
public:
// Instantiate a SILBuilder for inserting instructions at the top of the
// original generic function.
EagerDispatch(SILFunction *GenericFunc,
const ReabstractionInfo &ReInfo)
: GenericFunc(GenericFunc), ReInfo(ReInfo),
substConv(ReInfo.getSubstitutedType(), GenericFunc->getModule()),
Builder(*GenericFunc), Loc(GenericFunc->getLocation()) {
Builder.setCurrentDebugScope(GenericFunc->getDebugScope());
IsClassF = Builder.getModule().loadFunction(
"_swift_isClassOrObjCExistentialType", SILModule::LinkingMode::LinkAll);
assert(IsClassF);
}
void emitDispatchTo(SILFunction *NewFunc);
protected:
void emitTypeCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy);
void emitTrivialAndSizeCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout);
void emitIsTrivialCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout);
void emitRefCountedObjectCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout);
void emitLayoutCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy);
SILValue emitArgumentCast(CanSILFunctionType CalleeSubstFnTy,
SILFunctionArgument *OrigArg, unsigned Idx);
SILValue
emitArgumentConversion(SmallVectorImpl<SILValue> &CallArgs,
SmallVectorImpl<unsigned> &ArgAtIndexNeedsEndBorrow);
};
} // end anonymous namespace
/// Inserts type checks in the original generic function for dispatching to the
/// given specialized function. Converts call arguments. Emits an invocation of
/// the specialized function. Handle the return value.
void EagerDispatch::emitDispatchTo(SILFunction *NewFunc) {
SILBasicBlock *OldReturnBB = nullptr;
auto ReturnBB = GenericFunc->findReturnBB();
if (ReturnBB != GenericFunc->end())
OldReturnBB = &*ReturnBB;
// 1. Emit a cascading sequence of type checks blocks.
// First split the entry BB, moving all instructions to the FailedTypeCheckBB.
auto &EntryBB = GenericFunc->front();
SILBasicBlock *FailedTypeCheckBB = EntryBB.split(EntryBB.begin());
Builder.setInsertionPoint(&EntryBB, EntryBB.begin());
// Iterate over all dependent types in the generic signature, which will match
// the specialized attribute's substitution list. Visit only
// SubstitutableTypes, skipping DependentTypes.
auto GenericSig =
GenericFunc->getLoweredFunctionType()->getInvocationGenericSignature();
auto SubMap = ReInfo.getClonerParamSubstitutionMap();
GenericSig->forEachParam([&](GenericTypeParamType *ParamTy, bool Canonical) {
if (!Canonical)
return;
auto Replacement = Type(ParamTy).subst(SubMap);
assert(!Replacement->hasTypeParameter());
if (!Replacement->hasArchetype()) {
// Dispatch on concrete type.
emitTypeCheck(FailedTypeCheckBB, ParamTy, Replacement);
} else if (auto Archetype = Replacement->getAs<ArchetypeType>()) {
// If Replacement has a layout constraint, then dispatch based
// on its size and the fact that it is trivial.
auto LayoutInfo = Archetype->getLayoutConstraint();
if (LayoutInfo && LayoutInfo->isTrivial()) {
// Emit a check that it is a trivial type of a certain size.
emitTrivialAndSizeCheck(FailedTypeCheckBB, ParamTy,
Replacement, LayoutInfo);
} else if (LayoutInfo && LayoutInfo->isRefCounted()) {
// Emit a check that it is an object of a reference counted type.
emitRefCountedObjectCheck(FailedTypeCheckBB, ParamTy,
Replacement, LayoutInfo);
}
}
});
static_cast<void>(FailedTypeCheckBB);
if (OldReturnBB == &EntryBB) {
OldReturnBB = FailedTypeCheckBB;
}
// 2. Convert call arguments, casting and adjusting for calling convention.
SmallVector<SILValue, 8> CallArgs;
SmallVector<unsigned, 8> ArgAtIndexNeedsEndBorrow;
SILValue StoreResultTo =
emitArgumentConversion(CallArgs, ArgAtIndexNeedsEndBorrow);
// 3. Emit an invocation of the specialized function.
// Emit any rethrow with no cleanup since all args have been forwarded and
// nothing has been locally allocated or copied.
SILValue Result = emitInvocation(Builder, ReInfo, Loc, NewFunc, CallArgs,
ArgAtIndexNeedsEndBorrow);
// 4. Handle the return value.
auto VoidTy = Builder.getModule().Types.getEmptyTupleType();
if (StoreResultTo) {
// Store the direct result to the original result address.
Builder.emitStoreValueOperation(Loc, Result, StoreResultTo,
StoreOwnershipQualifier::Init);
// And return Void.
Result = Builder.createTuple(Loc, VoidTy, { });
}
// Ensure that void return types original from a tuple instruction.
else if (Result->getType().isVoid())
Result = Builder.createTuple(Loc, VoidTy, { });
// Function marked as @NoReturn must be followed by 'unreachable'.
if (NewFunc->isNoReturnFunction(Builder.getTypeExpansionContext()) ||
!OldReturnBB)
Builder.createUnreachable(Loc);
else {
auto resultTy = GenericFunc->getConventions().getSILResultType(
Builder.getTypeExpansionContext());
auto GenResultTy = GenericFunc->mapTypeIntoContext(resultTy);
SILValue CastResult =
Builder.createUncheckedForwardingCast(Loc, Result, GenResultTy);
addReturnValue(Builder.getInsertionBB(), OldReturnBB, CastResult);
}
}
// Emits a type check in the current block.
// Advances the builder to the successful type check's block.
//
// Precondition: Builder's current insertion block is not terminated.
//
// Postcondition: Builder's insertion block is a new block that defines the
// specialized call argument and has not been terminated.
//
// The type check is emitted in the current block as:
// metatype $@thick T.Type
// %a = unchecked_bitwise_cast % to $Builtin.Int64
// metatype $@thick <Specialized>.Type
// %b = unchecked_bitwise_cast % to $Builtin.Int64
// builtin "cmp_eq_Int64"(%a : $Builtin.Int64, %b : $Builtin.Int64)
// : $Builtin.Int1
// cond_br %
void EagerDispatch::
emitTypeCheck(SILBasicBlock *FailedTypeCheckBB, SubstitutableType *ParamTy,
Type SubTy) {
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
// Instantiate a thick metatype for <Specialized>.Type
auto SpecializedMT = Builder.createMetatype(
Loc, getThickMetatypeType(SubTy->getCanonicalType()));
auto &Ctx = Builder.getASTContext();
auto WordTy = SILType::getBuiltinWordType(Ctx);
auto GenericMTVal =
Builder.createUncheckedBitwiseCast(Loc, GenericMT, WordTy);
auto SpecializedMTVal =
Builder.createUncheckedBitwiseCast(Loc, SpecializedMT, WordTy);
auto Cmp =
Builder.createBuiltinBinaryFunction(Loc, "cmp_eq", WordTy,
SILType::getBuiltinIntegerType(1, Ctx),
{GenericMTVal, SpecializedMTVal});
auto *SuccessBB = Builder.getFunction().createBasicBlock();
auto *FailBB = createSplitBranchTarget(FailedTypeCheckBB, Builder, Loc);
Builder.createCondBranch(Loc, Cmp, SuccessBB, FailBB);
Builder.emitBlock(SuccessBB);
}
static SubstitutionMap getSingleSubstitutionMap(SILFunction *F,
Type Ty) {
return SubstitutionMap::get(
F->getGenericEnvironment()->getGenericSignature(),
[&](SubstitutableType *type) { return Ty; },
MakeAbstractConformanceForGenericType());
}
void EagerDispatch::emitIsTrivialCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy, Type SubTy,
LayoutConstraint Layout) {
auto &Ctx = Builder.getASTContext();
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
auto BoolTy = SILType::getBuiltinIntegerType(1, Ctx);
SubstitutionMap SubMap = getSingleSubstitutionMap(GenericFunc, ContextTy);
// Emit a check that it is a pod object.
auto IsPOD = Builder.createBuiltin(Loc, Ctx.getIdentifier("ispod"), BoolTy,
SubMap, {GenericMT});
auto *SuccessBB = Builder.getFunction().createBasicBlock();
auto *FailBB = createSplitBranchTarget(FailedTypeCheckBB, Builder, Loc);
Builder.createCondBranch(Loc, IsPOD, SuccessBB, FailBB);
Builder.emitBlock(SuccessBB);
}
void EagerDispatch::emitTrivialAndSizeCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy,
Type SubTy,
LayoutConstraint Layout) {
if (Layout->isAddressOnlyTrivial()) {
emitIsTrivialCheck(FailedTypeCheckBB, ParamTy, SubTy, Layout);
return;
}
auto &Ctx = Builder.getASTContext();
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
auto WordTy = SILType::getBuiltinWordType(Ctx);
auto BoolTy = SILType::getBuiltinIntegerType(1, Ctx);
SubstitutionMap SubMap = getSingleSubstitutionMap(GenericFunc, ContextTy);
auto ParamSize = Builder.createBuiltin(Loc, Ctx.getIdentifier("sizeof"),
WordTy, SubMap, { GenericMT });
auto LayoutSize =
Builder.createIntegerLiteral(Loc, WordTy, Layout->getTrivialSizeInBytes());
const char *CmpOpName = Layout->isFixedSizeTrivial() ? "cmp_eq" : "cmp_le";
auto Cmp =
Builder.createBuiltinBinaryFunction(Loc, CmpOpName, WordTy,
BoolTy,
{ParamSize, LayoutSize});
auto *SuccessBB1 = Builder.getFunction().createBasicBlock();
auto *FailBB1 = createSplitBranchTarget(FailedTypeCheckBB, Builder, Loc);
Builder.createCondBranch(Loc, Cmp, SuccessBB1, FailBB1);
Builder.emitBlock(SuccessBB1);
// Emit a check that it is a pod object.
// TODO: Perform this check before all the fixed size checks!
auto IsPOD = Builder.createBuiltin(Loc, Ctx.getIdentifier("ispod"),
BoolTy, SubMap, { GenericMT });
auto *SuccessBB2 = Builder.getFunction().createBasicBlock();
auto *FailBB2 = createSplitBranchTarget(FailedTypeCheckBB, Builder, Loc);
Builder.createCondBranch(Loc, IsPOD, SuccessBB2, FailBB2);
Builder.emitBlock(SuccessBB2);
}
void EagerDispatch::emitRefCountedObjectCheck(SILBasicBlock *FailedTypeCheckBB,
SubstitutableType *ParamTy,
Type SubTy,
LayoutConstraint Layout) {
auto &Ctx = Builder.getASTContext();
// Instantiate a thick metatype for T.Type
auto ContextTy = GenericFunc->mapTypeIntoContext(ParamTy);
auto GenericMT = Builder.createMetatype(
Loc, getThickMetatypeType(ContextTy->getCanonicalType()));
auto Int8Ty = SILType::getBuiltinIntegerType(8, Ctx);
auto BoolTy = SILType::getBuiltinIntegerType(1, Ctx);
SubstitutionMap SubMap = getSingleSubstitutionMap(GenericFunc, ContextTy);
// Emit a check that it is a reference-counted object.
// TODO: Perform this check before all fixed size checks.
// FIXME: What builtin do we use to check it????
auto CanBeClass = Builder.createBuiltin(
Loc, Ctx.getIdentifier("canBeClass"), Int8Ty, SubMap, {GenericMT});
auto ClassConst =
Builder.createIntegerLiteral(Loc, Int8Ty, 1);
auto Cmp1 =
Builder.createBuiltinBinaryFunction(Loc, "cmp_eq", Int8Ty,
BoolTy,
{CanBeClass, ClassConst});
auto *SuccessBB = Builder.getFunction().createBasicBlock();
auto *MayBeClassCheckBB = Builder.getFunction().createBasicBlock();
auto *SwiftClassBB = createSplitBranchTarget(SuccessBB, Builder, Loc);
Builder.createCondBranch(Loc, Cmp1, SwiftClassBB, MayBeClassCheckBB);
Builder.emitBlock(MayBeClassCheckBB);
auto MayBeClassConst =
Builder.createIntegerLiteral(Loc, Int8Ty, 2);
auto Cmp2 =
Builder.createBuiltinBinaryFunction(Loc, "cmp_eq", Int8Ty,
BoolTy,
{CanBeClass, MayBeClassConst});
auto *IsClassCheckBB = Builder.getFunction().createBasicBlock();
auto *FailClassCheckBB =
createSplitBranchTarget(FailedTypeCheckBB, Builder, Loc);
Builder.createCondBranch(Loc, Cmp2, IsClassCheckBB, FailClassCheckBB);
Builder.emitBlock(IsClassCheckBB);
auto *FRI = Builder.createFunctionRef(Loc, IsClassF);
auto IsClassRuntimeCheck = Builder.createApply(Loc, FRI, SubMap,
{GenericMT});
// Extract the i1 from the Bool struct.
StructDecl *BoolStruct = cast<StructDecl>(Ctx.getBoolDecl());
auto Members = BoolStruct->getStoredProperties();
assert(Members.size() == 1 &&
"Bool should have only one property with name '_value'");
auto Member = Members[0];
auto BoolValue =
Builder.emitStructExtract(Loc, IsClassRuntimeCheck, Member, BoolTy);
auto *FailBB = createSplitBranchTarget(FailedTypeCheckBB, Builder, Loc);
auto *ObjCOrExistentialBB = createSplitBranchTarget(SuccessBB, Builder, Loc);
Builder.createCondBranch(Loc, BoolValue, ObjCOrExistentialBB, FailBB);
Builder.emitBlock(SuccessBB);
}
/// Cast a generic argument to its specialized type.
SILValue EagerDispatch::emitArgumentCast(CanSILFunctionType CalleeSubstFnTy,
SILFunctionArgument *OrigArg,
unsigned Idx) {
SILFunctionConventions substConv(CalleeSubstFnTy,
Builder.getModule());
auto CastTy =
substConv.getSILArgumentType(Idx, Builder.getTypeExpansionContext());
assert(CastTy.isAddress()
== (OrigArg->isIndirectResult()
|| substConv.isSILIndirect(OrigArg->getKnownParameterInfo()))
&& "bad arg type");
if (CastTy.isAddress())
return Builder.createUncheckedAddrCast(Loc, OrigArg, CastTy);
return Builder.createUncheckedForwardingCast(Loc, OrigArg, CastTy);
}
/// Converts each generic function argument into a SILValue that can be passed
/// to the specialized call by emitting a cast followed by a load.
///
/// Populates the CallArgs with the converted arguments.
///
/// Returns the SILValue to store the result into if the specialized function
/// has a direct result.
SILValue EagerDispatch::emitArgumentConversion(
SmallVectorImpl<SILValue> &CallArgs,
SmallVectorImpl<unsigned> &ArgAtIndexNeedsEndBorrow) {
auto OrigArgs = GenericFunc->begin()->getSILFunctionArguments();
assert(OrigArgs.size() == substConv.getNumSILArguments()
&& "signature mismatch");
// Create a substituted callee type.
auto SubstitutedType = ReInfo.getSubstitutedType();
auto SpecializedType = ReInfo.getSpecializedType();
auto CanSILFuncTy = SubstitutedType;
auto CalleeSubstFnTy = CanSILFuncTy;
if (CanSILFuncTy->isPolymorphic()) {
CalleeSubstFnTy = CanSILFuncTy->substGenericArgs(
Builder.getModule(), ReInfo.getCallerParamSubstitutionMap(),
Builder.getTypeExpansionContext());
assert(!CalleeSubstFnTy->isPolymorphic() &&
"Substituted callee type should not be polymorphic");
assert(!CalleeSubstFnTy->hasTypeParameter() &&
"Substituted callee type should not have type parameters");
SubstitutedType = CalleeSubstFnTy;
SpecializedType =
ReInfo.createSpecializedType(SubstitutedType, Builder.getModule());
}
assert(!substConv.useLoweredAddresses()
|| OrigArgs.size() == ReInfo.getNumArguments() &&
"signature mismatch");
CallArgs.reserve(OrigArgs.size());
SILValue StoreResultTo;
for (auto *OrigArg : OrigArgs) {
unsigned ArgIdx = OrigArg->getIndex();
auto CastArg = emitArgumentCast(SubstitutedType, OrigArg, ArgIdx);
LLVM_DEBUG(llvm::dbgs() << " Cast generic arg: ";
CastArg->print(llvm::dbgs()));
if (!substConv.useLoweredAddresses()) {
CallArgs.push_back(CastArg);
continue;
}
if (ArgIdx < substConv.getSILArgIndexOfFirstParam()) {
// Handle result arguments.
unsigned formalIdx =
substConv.getIndirectFormalResultIndexForSILArg(ArgIdx);
if (ReInfo.isFormalResultConverted(formalIdx)) {
// The result is converted from indirect to direct. We need to insert
// a store later.
assert(!StoreResultTo);
StoreResultTo = CastArg;
continue;
}
CallArgs.push_back(CastArg);
continue;
}
// Handle arguments for formal parameters.
unsigned paramIdx = ArgIdx - substConv.getSILArgIndexOfFirstParam();
if (!ReInfo.isParamConverted(paramIdx)) {
CallArgs.push_back(CastArg);
continue;
}
// An argument is converted from indirect to direct. Instead of the
// address we pass the loaded value.
//
// FIXME: If type of CastArg is an archetype, but it is loadable because
// of a layout constraint on the caller side, we have a problem here
// We need to load the value on the caller side, but this archetype is
// not statically known to be loadable on the caller side (though we
// have proven dynamically that it has a fixed size).
//
// We can try to load it as an int value of width N, but then it is not
// clear how to convert it into a value of the archetype type, which is
// expected. May be we should pass it as @in parameter and make it
// loadable on the caller's side?
auto argConv = substConv.getSILArgumentConvention(ArgIdx);
SILValue Val;
if (!argConv.isGuaranteedConvention()) {
Val = Builder.emitLoadValueOperation(Loc, CastArg,
LoadOwnershipQualifier::Take);
} else {
Val = Builder.emitLoadBorrowOperation(Loc, CastArg);
if (Val->getOwnershipKind() == OwnershipKind::Guaranteed)
ArgAtIndexNeedsEndBorrow.push_back(CallArgs.size());
}
CallArgs.push_back(Val);
}
return StoreResultTo;
}
namespace {
class EagerSpecializerTransform : public SILFunctionTransform {
const bool onlyCreatePrespecializations;
public:
EagerSpecializerTransform(bool onlyPrespecialize)
: onlyCreatePrespecializations(onlyPrespecialize) {}
void run() override;
};
} // end anonymous namespace
/// Specializes a generic function for a concrete type list.
static SILFunction *eagerSpecialize(SILOptFunctionBuilder &FuncBuilder,
SILFunction *GenericFunc,
const SILSpecializeAttr &SA,
const ReabstractionInfo &ReInfo,
SmallVectorImpl<SILFunction *> &newFunctions) {
assert(ReInfo.getSpecializedType());
LLVM_DEBUG(llvm::dbgs() << "Specializing " << GenericFunc->getName() << "\n");
LLVM_DEBUG(auto FT = GenericFunc->getLoweredFunctionType();
llvm::dbgs() << " Generic Sig:"; llvm::dbgs().indent(2);
FT->getInvocationGenericSignature()->print(llvm::dbgs());
llvm::dbgs() << " Generic Env:"; llvm::dbgs().indent(2);
GenericFunc->getGenericEnvironment()->dump(llvm::dbgs());
llvm::dbgs() << " Specialize Attr:"; SA.print(llvm::dbgs());
llvm::dbgs() << "\n");
GenericFuncSpecializer
FuncSpecializer(FuncBuilder, GenericFunc,
ReInfo.getClonerParamSubstitutionMap(),
ReInfo);
SILFunction *NewFunc = FuncSpecializer.lookupSpecialization();
if (!NewFunc) {
NewFunc = FuncSpecializer.tryCreateSpecialization(
true /*forcePrespecialization*/);
if (NewFunc)
newFunctions.push_back(NewFunc);
}
if (!NewFunc) {
LLVM_DEBUG(llvm::dbgs() << " Failed. Cannot specialize function.\n");
} else if (SA.isExported()) {
NewFunc->setLinkage(NewFunc->isDefinition() ? SILLinkage::Public
: SILLinkage::PublicExternal);
NewFunc->setAvailabilityForLinkage(SA.getAvailability());
}
return NewFunc;
}
/// Run the pass.
void EagerSpecializerTransform::run() {
if (!EagerSpecializeFlag)
return;
SILOptFunctionBuilder FuncBuilder(*this);
auto &F = *getFunction();
// Process functions in any order.
if (!F.shouldOptimize() && !onlyCreatePrespecializations) {
LLVM_DEBUG(llvm::dbgs() << " Cannot specialize function " << F.getName()
<< " because it is marked to be "
"excluded from optimizations.\n");
return;
}
// Only specialize functions in their home module.
if (F.isExternalDeclaration() || F.isAvailableExternally())
return;
if (F.isDynamicallyReplaceable())
return;
if (!F.getLoweredFunctionType()->getInvocationGenericSignature())
return;
// Create a specialized function with ReabstractionInfo for each attribute.
SmallVector<SILFunction *, 8> SpecializedFuncs;
SmallVector<ReabstractionInfo, 4> ReInfoVec;
ReInfoVec.reserve(F.getSpecializeAttrs().size());
SmallVector<SILFunction *, 8> newFunctions;
// TODO: Use a decision-tree to reduce the amount of dynamic checks being
// performed.
SmallVector<SILSpecializeAttr *, 8> attrsToRemove;
bool onlyCreatePrespecializations = this->onlyCreatePrespecializations;
for (auto *SA : F.getSpecializeAttrs()) {
if (onlyCreatePrespecializations && !SA->isExported()) {
attrsToRemove.push_back(SA);
continue;
}
auto *targetFunc = &F;
// If the _specialize attribute specifies another target function use it
// instead to specialize.
if (SA->getTargetFunction()) {
targetFunc = SA->getTargetFunction();
if (!targetFunc->isDefinition()) {
auto &module = FuncBuilder.getModule();
bool success = module.loadFunction(targetFunc,
SILModule::LinkingMode::LinkAll);
assert(success);
}
onlyCreatePrespecializations = true;
} else if (targetFunc->getLinkage() == SILLinkage::Shared) {
// We have `shared` linkage if we deserialize a public serialized
// function.
// That means we are loading it from another module. In this case, we
// don't want to create a pre-specialization.
SpecializedFuncs.push_back(nullptr);
ReInfoVec.emplace_back(ReabstractionInfo(F.getModule()));
continue;
}
ReInfoVec.emplace_back(FuncBuilder.getModule().getSwiftModule(),
FuncBuilder.getModule().isWholeModule(), targetFunc,
SA->getSpecializedSignature(), SA->isExported());
auto *NewFunc = eagerSpecialize(FuncBuilder, targetFunc, *SA,
ReInfoVec.back(), newFunctions);
SpecializedFuncs.push_back(
(onlyCreatePrespecializations ||
SA->isExported() /*currently we don't handle coroutines in emitDispatchTo*/)
? nullptr
: NewFunc);
if (!SA->isExported())
attrsToRemove.push_back(SA);
}
// TODO: Optimize the dispatch code to minimize the amount
// of checks. Use decision trees for this purpose.
bool Changed = false;
CalleeCache *calleeCache = getAnalysis<BasicCalleeAnalysis>()->getCalleeCache();
if (!onlyCreatePrespecializations)
for_each3(F.getSpecializeAttrs(), SpecializedFuncs, ReInfoVec,
[&](const SILSpecializeAttr *SA, SILFunction *NewFunc,
const ReabstractionInfo &ReInfo) {
if (NewFunc) {
NewFunc->verify(calleeCache);
Changed = true;
EagerDispatch(&F, ReInfo).emitDispatchTo(NewFunc);
}
});
// Invalidate everything since we delete calls as well as add new
// calls and branches.
if (Changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
// As specializations are created, the non-exported attributes should be
// removed.
for (auto *SA : attrsToRemove)
F.removeSpecializeAttr(SA);
// If any specializations were created, reverify the original body now that it
// has checks.
if (!newFunctions.empty())
F.verify(calleeCache);
for (SILFunction *newF : newFunctions) {
addFunctionToPassManagerWorklist(newF, nullptr);
}
}
SILTransform *swift::createEagerSpecializer() {
return new EagerSpecializerTransform(false/*onlyCreatePrespecializations*/);
}
SILTransform *swift::createOnonePrespecializations() {
return new EagerSpecializerTransform(true /*onlyCreatePrespecializations*/);
}
|