1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
//===--- GenericSpecializer.cpp - Specialization of generic functions -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Specialize calls to generic functions by substituting static type
// information.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-generic-specializer"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/ConstantFolding.h"
#include "swift/SILOptimizer/Utils/Devirtualize.h"
#include "swift/SILOptimizer/Utils/Generics.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/StackNesting.h"
#include "llvm/ADT/SmallVector.h"
using namespace swift;
namespace {
static void transferSpecializeAttributeTargets(SILModule &M,
SILOptFunctionBuilder &builder,
Decl *d) {
auto *vd = cast<AbstractFunctionDecl>(d);
for (auto *A : vd->getAttrs().getAttributes<SpecializeAttr>()) {
auto *SA = cast<SpecializeAttr>(A);
// Filter _spi.
auto spiGroups = SA->getSPIGroups();
auto hasSPIGroup = !spiGroups.empty();
if (hasSPIGroup) {
if (vd->getModuleContext() != M.getSwiftModule() &&
!M.getSwiftModule()->isImportedAsSPI(SA, vd)) {
continue;
}
}
if (auto *targetFunctionDecl = SA->getTargetFunctionDecl(vd)) {
auto target = SILDeclRef(targetFunctionDecl);
auto targetSILFunction = builder.getOrCreateFunction(
SILLocation(vd), target, NotForDefinition,
[&builder](SILLocation loc, SILDeclRef constant) -> SILFunction * {
return builder.getOrCreateFunction(loc, constant, NotForDefinition);
});
auto kind = SA->getSpecializationKind() ==
SpecializeAttr::SpecializationKind::Full
? SILSpecializeAttr::SpecializationKind::Full
: SILSpecializeAttr::SpecializationKind::Partial;
Identifier spiGroupIdent;
if (hasSPIGroup) {
spiGroupIdent = spiGroups[0];
}
auto availability = AvailabilityInference::annotatedAvailableRangeForAttr(
SA, M.getSwiftModule()->getASTContext());
targetSILFunction->addSpecializeAttr(SILSpecializeAttr::create(
M, SA->getSpecializedSignature(vd), SA->getTypeErasedParams(),
SA->isExported(), kind, nullptr,
spiGroupIdent, vd->getModuleContext(), availability));
}
}
}
} // end anonymous namespace
bool swift::specializeAppliesInFunction(SILFunction &F,
SILTransform *transform,
bool isMandatory) {
SILOptFunctionBuilder FunctionBuilder(*transform);
DeadInstructionSet DeadApplies;
llvm::SmallSetVector<SILInstruction *, 8> Applies;
OptRemark::Emitter ORE(DEBUG_TYPE, F);
bool Changed = false;
for (auto &BB : F) {
// Collect the applies for this block in reverse order so that we
// can pop them off the end of our vector and process them in
// forward order.
for (auto &I : llvm::reverse(BB)) {
// Skip non-apply instructions, apply instructions with no
// substitutions, apply instructions where we do not statically
// know the called function, and apply instructions where we do
// not have the body of the called function.
ApplySite Apply = ApplySite::isa(&I);
if (!Apply || !Apply.hasSubstitutions())
continue;
auto *Callee = Apply.getReferencedFunctionOrNull();
if (!Callee)
continue;
FunctionBuilder.getModule().performOnceForPrespecializedImportedExtensions(
[&FunctionBuilder](AbstractFunctionDecl *pre) {
transferSpecializeAttributeTargets(FunctionBuilder.getModule(), FunctionBuilder,
pre);
});
if (!Callee->isDefinition() && !Callee->hasPrespecialization()) {
ORE.emit([&]() {
using namespace OptRemark;
return RemarkMissed("NoDef", I)
<< "Unable to specialize generic function "
<< NV("Callee", Callee) << " since definition is not visible";
});
continue;
}
Applies.insert(Apply.getInstruction());
}
// Attempt to specialize each apply we collected, deleting any
// that we do specialize (along with other instructions we clone
// in the process of doing so). We pop from the end of the list to
// avoid tricky iterator invalidation issues.
while (!Applies.empty()) {
auto *I = Applies.pop_back_val();
auto Apply = ApplySite::isa(I);
assert(Apply && "Expected an apply!");
SILFunction *Callee = Apply.getReferencedFunctionOrNull();
assert(Callee && "Expected to have a known callee");
if (!Apply.canOptimize())
continue;
if (!isMandatory && !Callee->shouldOptimize())
continue;
// We have a call that can potentially be specialized, so
// attempt to do so.
llvm::SmallVector<SILFunction *, 2> NewFunctions;
trySpecializeApplyOfGeneric(FunctionBuilder, Apply, DeadApplies,
NewFunctions, ORE, isMandatory);
// Remove all the now-dead applies. We must do this immediately
// rather than defer it in order to avoid problems with cloning
// dead instructions when doing recursive specialization.
while (!DeadApplies.empty()) {
auto *AI = DeadApplies.pop_back_val();
// Remove any applies we are deleting so that we don't attempt
// to specialize them.
Applies.remove(AI);
recursivelyDeleteTriviallyDeadInstructions(AI, true);
Changed = true;
}
if (auto *sft = dyn_cast<SILFunctionTransform>(transform)) {
// If calling the specialization utility resulted in new functions
// (as opposed to returning a previous specialization), we need to notify
// the pass manager so that the new functions get optimized.
for (SILFunction *NewF : reverse(NewFunctions)) {
sft->addFunctionToPassManagerWorklist(NewF, Callee);
}
}
}
}
return Changed;
}
namespace {
/// The generic specializer, used in the optimization pipeline.
class GenericSpecializer : public SILFunctionTransform {
/// The entry point to the transformation.
void run() override {
SILFunction &F = *getFunction();
LLVM_DEBUG(llvm::dbgs() << "***** GenericSpecializer on function:"
<< F.getName() << " *****\n");
if (specializeAppliesInFunction(F, this, /*isMandatory*/ false)) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createGenericSpecializer() {
return new GenericSpecializer();
}
|