1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
|
//===--- PartialApplySimplification.cpp - Lower partial applications ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// Reduces all partial application functions into explicit closure
/// constructions.
///
/// \c partial_apply is a useful high-level representation for optimization
/// passes like inlining, but it abstracts over many details of how closures
/// are constructed. In order to make IRGen lowering simpler, and provide some
/// opportunity for other passes to optimize closure construction.
///
/// When a closure implementation function is private, and is only referenced by
/// partial applications all of the same shape, then we can replace the function
/// with one that takes a closure box instead of the partially applied
/// arguments. Otherwise, a partial application forwarder function is generated
/// as a shim between the closure entry point, which takes the box, and the
/// original function, which takes the loaded arguments.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-partial-apply-simplification"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "swift/SIL/SILCloner.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/TypeSubstCloner.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/SpecializationMangler.h"
STATISTIC(NumInvocationFunctionsChanged,
"Number of invocation functions rewritten");
STATISTIC(NumUnsupportedChangesToInvocationFunctions,
"Number of invocation functions that could be rewritten, but aren't yet");
STATISTIC(NumPartialApplyCalleesWithNonApplyUses,
"Number of invocation functions with non-apply uses");
STATISTIC(NumPartialApplyCalleesWithEscapingAndApplyUses,
"Number of invocation functions with both escaping and full apply uses");
STATISTIC(NumPartialApplyCalleesPossiblyUsedExternally,
"Number of invocation functions possibly used externally");
STATISTIC(NumPartialApplyCalleesDeclarationOnly,
"Number of invocation functions that are declaration-only");
STATISTIC(NumPartialApplyCalleesWithMismatchedPartialApplies,
"Number of invocation functions that have mismatched partial_apply sites");
STATISTIC(NumDynamicPartialApplicationForwarders,
"Number of dynamic partial application forwarder thunks generated");
using namespace swift;
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
namespace {
struct KnownCallee {
/// The set of function_refs to the callee.
llvm::SetVector<FunctionRefInst *> FunctionRefs;
/// The set of partial application sites.
llvm::SetVector<PartialApplyInst *> PartialApplications;
/// The set of full application sites.
llvm::SetVector<FullApplySite> FullApplications;
/// If the callee has a non-partial-apply, non-apply use, this points to an
/// arbitrary one, for logging purposes.
SILInstruction *NonApplyUse = nullptr;
};
class PartialApplySimplificationPass : public SILModuleTransform {
/// The entry point to the transformation.
void run() override {
// Scan all partial applications in the module so we know what to work with.
llvm::DenseMap<SILFunction *, KnownCallee> knownCallees;
llvm::SetVector<swift::PartialApplyInst *> dynamicCallees;
for (auto &f : *getModule()) {
scanFunction(&f, knownCallees, dynamicCallees);
}
for (auto &knownCallee : knownCallees) {
processKnownCallee(knownCallee.first, knownCallee.second);
}
for (auto *dynamicPA : dynamicCallees) {
processDynamicCallee(dynamicPA);
}
}
void scanFunction(SILFunction *f,
llvm::DenseMap<SILFunction *,
KnownCallee> &knownCallees,
llvm::SetVector<PartialApplyInst *> &dynamicCallees);
void processKnownCallee(SILFunction *callee,
const KnownCallee &pa);
void processDynamicCallee(PartialApplyInst *pa);
void generateForwardingThunksForKnownCallee();
void rewriteKnownCalleeConventionOnly(SILFunction *callee,
const KnownCallee &pa,
PartialApplyInst *examplePA,
CanSILFunctionType newCalleeTy);
void rewriteKnownCalleeWithExplicitContext(SILFunction *callee,
const KnownCallee &pa,
PartialApplyInst *examplePA);
};
}
/// True if the partial application is in a form that can be trivially
/// lowered.
///
/// This is true if:
/// - the callee has convention(method)
/// - one argument is applied
/// - the callee is either not generic, or can read its generic environment
/// out of the single applied argument
/// - if the partial application is noescape:
/// - the argument is word-sized or smaller
/// - the argument is either trivial, or passed with a net +0 convention
/// (guaranteed, unowned, in_guaranteed, inout)
/// - if the partial application is escapable:
/// - the argument is either a single Swift-refcounted word, or trivial and
/// sized strictly less than one word
/// - the argument ownership convention matches the callee convention of the
/// resulting function
static bool isSimplePartialApply(SILModule &M,
CanSILFunctionType calleeTy,
TypeExpansionContext context,
ParameterConvention calleeConvention,
unsigned numPartiallyAppliedArgs,
bool isOnStack) {
if (calleeTy->isPolymorphic()) {
// TODO: Check if the "self" parameter provides the generic environment
return false;
}
if (calleeTy->getRepresentation() != SILFunctionTypeRepresentation::Method) {
return false;
}
// TODO: could discount empty captured values here
if (numPartiallyAppliedArgs != 1) {
return false;
}
auto contextParam = calleeTy->getSelfParameter();
auto argTy = contextParam.getArgumentType(M, calleeTy, context);
if (isOnStack) {
switch (contextParam.getConvention()) {
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Pack_Inout:
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
// Indirect and pack arguments are trivially word sized.
return true;
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Unowned:
return SILType::getPrimitiveObjectType(argTy)
.isPointerSizeAndAligned(M, context.getResilienceExpansion());
// TODO: If we're running as an IRGen pass, use IRGen's version of
// `isPointerSizeAndAligned` as a more accurate check.
// +1 arguments need a thunk to stage a copy for the callee to consume.
case ParameterConvention::Direct_Owned:
case ParameterConvention::Indirect_In:
return false;
}
} else {
if (contextParam.isFormalIndirect()) {
return false;
}
// The context parameter's convention must match the callee convention of
// the resulting closure.
if (contextParam.getConvention() != calleeConvention) {
return false;
}
// The context type must consist of only a swift-refcounted object
// reference.
return SILType::getPrimitiveObjectType(argTy)
.isSingleSwiftRefcounted(M, context.getResilienceExpansion());
}
return true;
}
static bool isSimplePartialApply(PartialApplyInst *i) {
return isSimplePartialApply(i->getModule(),
i->getCallee()->getType().castTo<SILFunctionType>(),
i->getFunction()->getTypeExpansionContext(),
i->getFunctionType()->getCalleeConvention(),
i->getNumArguments(),
i->isOnStack());
}
void PartialApplySimplificationPass::scanFunction(SILFunction *f,
llvm::DenseMap<SILFunction *,
KnownCallee> &knownCallees,
llvm::SetVector<PartialApplyInst *> &dynamicCallees) {
// Consider all partial_apply instructions.
for (auto &block : *f) {
for (auto &inst : block) {
// Examine the uses of static function refs.
if (auto *fr = dyn_cast<FunctionRefInst>(&inst)) {
auto &knownCallee = knownCallees[fr->getReferencedFunction()];
knownCallee.FunctionRefs.insert(fr);
for (auto *frUse : fr->getUses()) {
// Collect partial applications for further transformation.
if (auto pa = dyn_cast<PartialApplyInst>(frUse->getUser())) {
knownCallee.PartialApplications.insert(pa);
continue;
}
// Collect full apply sites for potential transformation as well.
if (auto fa = FullApplySite::isa(frUse->getUser())) {
knownCallee.FullApplications.insert(fa);
continue;
}
// Record if the function has uses that aren't partial applies.
knownCallee.NonApplyUse = frUse->getUser();
}
}
if (auto *pa = dyn_cast<PartialApplyInst>(&inst)) {
// Static callees get handled when we see the function_ref.
if (isa<FunctionRefInst>(pa->getCallee())) {
continue;
}
// If the callee isn't static, then we'll need to create a dynamic
// forwarder thunk to simplify this partial application.
dynamicCallees.insert(pa);
}
}
}
}
void PartialApplySimplificationPass::processKnownCallee(SILFunction *callee,
const KnownCallee &pa) {
// Skip functions with no partial application uses.
if (pa.PartialApplications.empty())
return;
LLVM_DEBUG(llvm::dbgs() << "***** Processing known partial_apply callee "
<< callee->getName() << " *****\n");
// If the subject of the partial application has other uses that aren't
// partial applications, then thunk it.
if (pa.NonApplyUse) {
LLVM_DEBUG(llvm::dbgs() << "Callee has non-apply uses; thunking\n";
pa.NonApplyUse->print(llvm::dbgs()));
++NumPartialApplyCalleesWithNonApplyUses;
return generateForwardingThunksForKnownCallee();
}
// If the subject of the partial application might have external references,
// or is itself an external reference, we can't change the existing function
// signature. We'll always use forwarding thunks in this case.
if (callee->isPossiblyUsedExternally()) {
LLVM_DEBUG(llvm::dbgs() << "Callee is possibly used externally; thunking\n");
++NumPartialApplyCalleesPossiblyUsedExternally;
return generateForwardingThunksForKnownCallee();
}
if (callee->empty()) {
LLVM_DEBUG(llvm::dbgs() << "Callee is a declaration only; thunking\n");
++NumPartialApplyCalleesDeclarationOnly;
return generateForwardingThunksForKnownCallee();
}
// Look at the set of all partial applications on this callee to figure
// out what to do.
// If all of the partial applications are identical (same number of arguments,
// same convention, same escapiness, etc.), then we'll alter the invocation
// function directly (or leave it alone, if the partial apply is simple
// enough already.)
// Take an arbitrary partial application as an example to compare the others.
auto examplePA = pa.PartialApplications.front();
for (auto i = pa.PartialApplications.begin() + 1,
e = pa.PartialApplications.end();
i != e;
++i) {
auto thisPA = *i;
if (examplePA->getNumArguments() != thisPA->getNumArguments()
|| examplePA->getFunctionType()->getCalleeConvention()
!= thisPA->getFunctionType()->getCalleeConvention()
|| !examplePA->getFunctionType()->getExtInfo()
.isEqualTo(thisPA->getFunctionType()->getExtInfo(), true)) {
LLVM_DEBUG(llvm::dbgs() << "Mismatched partial application arguments; thunking:\n";
thisPA->print(llvm::dbgs());
examplePA->print(llvm::dbgs()));
++NumPartialApplyCalleesWithMismatchedPartialApplies;
return generateForwardingThunksForKnownCallee();
}
}
// OK, all the partial applications look the same.
LLVM_DEBUG(llvm::dbgs() << "All partial applications look like this:\n";
examplePA->print(llvm::dbgs()));
// If they're simple already, then we don't need to do anything.
if (isSimplePartialApply(examplePA)) {
LLVM_DEBUG(llvm::dbgs() << "And they're already simple, don't need to do anything!\n");
return;
}
// Would the partial application become simple with a mere convention change?
auto calleeTyAsMethod = callee->getLoweredFunctionType()
->getWithRepresentation(SILFunctionTypeRepresentation::Method);
if (isSimplePartialApply(callee->getModule(),
calleeTyAsMethod,
examplePA->getFunction()->getTypeExpansionContext(),
examplePA->getFunctionType()->getCalleeConvention(),
examplePA->getNumArguments(),
examplePA->isOnStack())) {
return rewriteKnownCalleeConventionOnly(callee, pa, examplePA,
calleeTyAsMethod);
}
// TODO: We could also look at whether a ownership convention change on the
// argument(s) might make it into a simple partial_apply.
// If the partial applications form escaping closures, and there are also
// full application sites, then we don't want to burden those full
// application sites with having to allocate a box for the captured arguments.
// Emit a thunk for the partial application sites.
//
// TODO: Evaluate if stack-allocating the escapable box is acceptable.
if (!examplePA->isOnStack() && !pa.FullApplications.empty()) {
LLVM_DEBUG(llvm::dbgs() << "Callee has mix of escaping partial_apply and full application sites; thunking:\n";
pa.FullApplications.front().getInstruction()->print(llvm::dbgs()));
++NumPartialApplyCalleesWithEscapingAndApplyUses;
return generateForwardingThunksForKnownCallee();
}
// Rewrite the function type to take the captures in box form.
rewriteKnownCalleeWithExplicitContext(callee, pa, examplePA);
}
void PartialApplySimplificationPass::processDynamicCallee(PartialApplyInst *pa){
// TODO
++NumDynamicPartialApplicationForwarders;
}
void PartialApplySimplificationPass::generateForwardingThunksForKnownCallee() {
LLVM_DEBUG(llvm::dbgs() << "TODO: create forwarding thunk here\n");
return;
}
void PartialApplySimplificationPass::
rewriteKnownCalleeConventionOnly(SILFunction *callee,
const KnownCallee &pa,
PartialApplyInst *examplePA,
CanSILFunctionType newCalleeTy) {
// Rewrite the type of the invocation function.
callee->rewriteLoweredTypeUnsafe(newCalleeTy);
// Rewrite the apply sites using the new function type.
auto rewriteApplySite = [&](ApplySite site) {
SILBuilder B(*site.getFunction());
B.setInsertionPoint(site.getInstruction());
auto loc = site.getLoc();
auto fr = B.createFunctionRef(loc, callee);
SILInstruction *newInst;
SmallVector<SILValue, 4> args;
args.append(site.getArguments().begin(),
site.getArguments().end());
switch (site.getKind()) {
case ApplySiteKind::PartialApplyInst: {
auto pa = cast<PartialApplyInst>(site.getInstruction());
newInst = B.createPartialApply(loc, fr, site.getSubstitutionMap(), args,
pa->getCalleeConvention(),
pa->getResultIsolation(),
pa->isOnStack());
break;
}
case ApplySiteKind::ApplyInst:
newInst = B.createApply(loc, fr, site.getSubstitutionMap(), args);
break;
case ApplySiteKind::BeginApplyInst:
newInst = B.createBeginApply(loc, fr, site.getSubstitutionMap(), args);
break;
case ApplySiteKind::TryApplyInst: {
auto tryApply = cast<TryApplyInst>(site.getInstruction());
newInst = B.createTryApply(loc, fr, site.getSubstitutionMap(), args,
tryApply->getNormalBB(),
tryApply->getErrorBB());
break;
}
}
site.getInstruction()->replaceAllUsesPairwiseWith(newInst);
site.getInstruction()->eraseFromParent();
};
for (auto paSite : pa.PartialApplications) {
rewriteApplySite(paSite);
}
for (auto faSite : pa.FullApplications) {
rewriteApplySite(faSite);
}
// Once all the applications have been rewritten, then the original
// function refs with the old function type should all be unused. Delete
// them, since they are no longer valid.
for (auto fr : pa.FunctionRefs) {
fr->eraseFromParent();
}
}
void PartialApplySimplificationPass::
rewriteKnownCalleeWithExplicitContext(SILFunction *callee,
const KnownCallee &pa,
PartialApplyInst *examplePA) {
auto &C = callee->getASTContext();
auto origTy = callee->getLoweredFunctionType();
auto paResultTy = cast<SILFunctionType>(examplePA->getType().getASTType());
// The box captures the generic context and the values of the arguments that
// were partially applied. The invocation function is modified to take
// a single partially-applied argument for the box, and unload the
// elements of the box inside the function.
SmallVector<SILField, 4> boxFields;
unsigned numUnapplied
= origTy->getParameters().size() - examplePA->getArguments().size();
auto partiallyAppliedParams = origTy->getParameters().slice(numUnapplied);
for (auto param : partiallyAppliedParams) {
switch (param.getConvention()) {
// Conventions where a copy of the argument is captured.
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
boxFields.push_back(SILField(param.getInterfaceType(), /*mutable*/false));
break;
// Conventions where an address to the argument is captured.
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Pack_Inout:
// Put a RawPointer in the box, which we can turn back into an address
// in the function
boxFields.push_back(SILField(C.TheRawPointerType, /*mutable*/false));
break;
}
}
// The new signature carries over the unapplied arguments.
SmallVector<SILParameterInfo, 4> newParams;
for (unsigned i = 0; i < numUnapplied; ++i) {
newParams.push_back(origTy->getParameters()[i]);
}
// Instead of the applied arguments, we receive a box containing the
// values for those arguments. Work out what that box type is.
// TODO: We need a representation of boxes that
// capture the generic environment to represent partial applications in
// their full generality.
if (origTy->getInvocationGenericSignature()) {
LLVM_DEBUG(llvm::dbgs() << "TODO: generic partial_apply not yet implemented\n");
++NumUnsupportedChangesToInvocationFunctions;
return;
}
// TODO: SILBoxType is only implemented for a single field right now, and we
// don't yet have a corresponding type for nonescaping captures, so
// represent the captures as a tuple for now.
CanType tupleTy;
if (boxFields.size() == 1) {
tupleTy = boxFields[0].getLoweredType();
} else {
llvm::SmallVector<TupleTypeElt, 4> tupleElts;
for (auto field : boxFields) {
tupleElts.push_back(TupleTypeElt(field.getLoweredType()));
}
tupleTy = TupleType::get(tupleElts, C)->getCanonicalType();
}
CanType contextTy;
SILParameterInfo contextParam;
bool isNoEscape = examplePA->getFunctionType()->isNoEscape();
if (isNoEscape) {
contextTy = tupleTy;
// Nonescaping closures borrow their context from the outer frame.
contextParam = SILParameterInfo(contextTy,
ParameterConvention::Indirect_In_Guaranteed);
} else {
SILField tupleField(tupleTy, /*mutable*/ false);
auto newBoxLayout = SILLayout::get(C,
origTy->getInvocationGenericSignature(),
tupleField,
/*capturesGenerics*/ false);
SubstitutionMap identitySubstitutionMap;
if (auto origSig = origTy->getInvocationGenericSignature()) {
identitySubstitutionMap = origSig->getIdentitySubstitutionMap();
}
contextTy = SILBoxType::get(C, newBoxLayout, identitySubstitutionMap);
contextParam = SILParameterInfo(contextTy,
paResultTy->getCalleeConvention());
}
newParams.push_back(contextParam);
auto newExtInfo = origTy->getExtInfo()
.withRepresentation(SILFunctionTypeRepresentation::Method);
auto newTy = SILFunctionType::get(origTy->getInvocationGenericSignature(),
newExtInfo, origTy->getCoroutineKind(),
origTy->getCalleeConvention(),
newParams,
origTy->getYields(),
origTy->getResults(),
origTy->getOptionalErrorResult(),
origTy->getPatternSubstitutions(),
origTy->getInvocationSubstitutions(),
C);
LLVM_DEBUG(llvm::dbgs() << "Changing invocation function signature to\n";
newTy->print(llvm::dbgs());
llvm::dbgs() << '\n');
// Change the invocation function to use the new type, and unbox the
// captures in its entry block.
callee->rewriteLoweredTypeUnsafe(newTy);
// Update the entry block.
{
SILBuilder B(*callee);
auto &entry = *callee->begin();
// Insert an argument for the context before the originally applied args.
auto contextArgTy = callee->mapTypeIntoContext(
SILType::getPrimitiveObjectType(contextTy));
if (isIndirectFormalParameter(contextParam.getConvention())) {
contextArgTy = contextArgTy.getAddressType();
}
ValueOwnershipKind contextOwnership(*callee, contextArgTy,
SILArgumentConvention(contextParam.getConvention()));
auto numUnappliedArgs = numUnapplied + origTy->getNumIndirectFormalResults();
auto contextArg = entry.insertFunctionArgument(numUnappliedArgs,
contextArgTy,
contextOwnership);
auto appliedBBArgs = entry.getArguments().slice(numUnappliedArgs + 1);
// Replace the original arguments applied by the partial_apply, by
// projections out of the box.
SmallVector<AllocStackInst *, 4> AddedStackAllocs;
B.setInsertionPoint(&entry, entry.begin());
auto loc = examplePA->getLoc();
for (unsigned i = 0; i < appliedBBArgs.size(); ++i) {
auto appliedArg = appliedBBArgs[i];
auto param = partiallyAppliedParams[i];
SILValue proj;
if (isNoEscape) {
proj = contextArg;
} else {
proj = B.createProjectBox(loc, contextArg, 0);
}
if (boxFields.size() > 1) {
proj = B.createTupleElementAddr(loc, proj, i);
}
// Load the value out of the context according to the current ownership
// mode of the function and the calling convention for the parameter.
SILValue projectedArg;
if (callee->hasOwnership()) {
switch (auto conv = param.getConvention()) {
case ParameterConvention::Direct_Unowned:
// Load an unowned image of the value from the box.
projectedArg = B.createLoadUnowned(loc, proj, IsNotTake);
break;
case ParameterConvention::Direct_Guaranteed:
// Load a borrow of the value from the box.
projectedArg = B.createLoadBorrow(loc, proj);
break;
case ParameterConvention::Direct_Owned:
// Load a copy of the value from the box.
projectedArg = B.createLoad(loc, proj, LoadOwnershipQualifier::Copy);
break;
case ParameterConvention::Indirect_In: {
// Allocate space for a copy of the value that can be consumed by the
// function body. We'll need to deallocate the stack slot after the
// cloned body.
auto copySlot = B.createAllocStack(loc,
proj->getType().getAddressType());
AddedStackAllocs.push_back(copySlot);
B.createCopyAddr(loc, proj, copySlot, IsNotTake, IsInitialization);
projectedArg = copySlot;
break;
}
case ParameterConvention::Indirect_In_Guaranteed:
// We can borrow the value in-place in the box.
projectedArg = proj;
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable: {
// The box capture is a RawPointer with the value of the capture
// address.
auto ptrVal = B.createLoad(loc, proj, LoadOwnershipQualifier::Trivial);
projectedArg = B.createPointerToAddress(loc, ptrVal,
appliedArg->getType(),
/*strict*/ conv == ParameterConvention::Indirect_Inout);
break;
}
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("unsupported!");
break;
}
} else {
switch (auto conv = param.getConvention()) {
case ParameterConvention::Direct_Unowned:
// Load an unowned image of the value from the box.
projectedArg = B.createLoad(loc, proj, LoadOwnershipQualifier::Unqualified);
break;
case ParameterConvention::Direct_Guaranteed:
// Load a borrow of the value from the box.
projectedArg = B.createLoad(loc, proj, LoadOwnershipQualifier::Unqualified);
break;
case ParameterConvention::Direct_Owned:
// Load a copy of the value from the box.
projectedArg = B.createLoad(loc, proj, LoadOwnershipQualifier::Unqualified);
B.createRetainValue(loc, projectedArg, Atomicity::Atomic);
break;
case ParameterConvention::Indirect_In: {
// Allocate space for a copy of the value that can be consumed by the
// function body. We'll need to deallocate the stack slot after the
// cloned body.
auto copySlot = B.createAllocStack(loc,
proj->getType().getAddressType());
AddedStackAllocs.push_back(copySlot);
B.createCopyAddr(loc, proj, copySlot, IsNotTake, IsInitialization);
projectedArg = copySlot;
break;
}
case ParameterConvention::Indirect_In_Guaranteed:
// We can borrow the value in-place in the box.
projectedArg = proj;
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable: {
// The box capture is a RawPointer with the value of the capture
// address.
auto ptrVal = B.createLoad(loc, proj, LoadOwnershipQualifier::Unqualified);
projectedArg = B.createPointerToAddress(loc, ptrVal,
appliedArg->getType(),
/*strict*/ conv == ParameterConvention::Indirect_Inout);
break;
}
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("unsupported!");
break;
}
}
// Replace the original bb arg with the applied arg.
appliedArg->replaceAllUsesWith(projectedArg);
}
// If the box is callee-consumed, we can release it now.
if (contextParam.getConvention() == ParameterConvention::Direct_Owned) {
if (callee->hasOwnership()) {
B.createDestroyValue(loc, contextArg);
} else {
B.createStrongRelease(loc, contextArg, Atomicity::Atomic);
}
}
// Erase the original applied arguments.
for (unsigned i = 0; i < appliedBBArgs.size(); ++i) {
entry.eraseArgument(numUnappliedArgs + 1);
}
// If we needed to introduce any stack slots to consume copies of
// Indirect_In arguments, then balance them with deallocations on all
// function exits.
if (!AddedStackAllocs.empty()) {
llvm_unreachable("todo");
}
}
// Rewrite partial applications to partially apply the new clone.
auto rewriteApplySite = [&](ApplySite site) {
auto caller = site->getFunction();
SILBuilder B(*caller);
auto loc = site->getLoc();
B.setInsertionPoint(site.getInstruction());
auto newFunctionRef = B.createFunctionRef(loc, callee);
SILValue contextBuffer, contextProj;
auto contextStorageTy = SILType::getPrimitiveAddressType(contextTy)
.subst(getModule()->Types, site.getSubstitutionMap());
if (isNoEscape) {
auto contextAlloc = B.createAllocStack(loc, contextStorageTy);
contextBuffer = contextProj = contextAlloc;
// We'll need to deallocate the context buffer after we don't need it.
// For a partial_apply, that's after the partial_apply itself is
// deallocated.
if (auto ppa = dyn_cast<PartialApplyInst>(site.getInstruction())) {
auto deallocStackUses = ppa->getUsersOfType<DeallocStackInst>();
assert(deallocStackUses.begin() != deallocStackUses.end());
for (auto use : deallocStackUses) {
B.setInsertionPoint(use->getNextInstruction());
B.createDeallocStack(loc, contextBuffer);
}
// For a full application, we're done immediately after the call.
// If the apply site is a terminator, dealloc in all the successor
// blocks.
} else if (auto term = dyn_cast<TermInst>(site.getInstruction())) {
for (auto successor : term->getSuccessorBlocks()) {
B.setInsertionPoint(successor->begin());
B.createDeallocStack(loc, contextBuffer);
}
// If the apply site is a normal instruction, dealloc after it.
} else {
B.setInsertionPoint(site.getInstruction()->getNextInstruction());
B.createDeallocStack(loc, contextBuffer);
}
// Continue emitting code to populate the context.
B.setInsertionPoint(contextAlloc->getNextInstruction());
} else {
contextBuffer = B.createAllocBox(
loc, contextStorageTy.castTo<SILBoxType>(),
/*debug variable*/ std::nullopt, DoesNotHaveDynamicLifetime,
/*reflection*/ true);
contextProj = B.createProjectBox(loc, contextBuffer, 0);
}
// Transfer the formerly partially-applied arguments into the box.
SmallVector<SILValue, 4> newArgs;
// Carry over non-partial-applied arguments, if any.
auto appliedArgs = site.getArguments();
auto paArgsOffset = appliedArgs.size() - boxFields.size();
for (unsigned i = 0; i < paArgsOffset; ++i) {
newArgs.push_back(appliedArgs[i]);
}
for (unsigned i = 0; i < boxFields.size(); ++i) {
auto arg = appliedArgs[i + paArgsOffset];
SILValue proj = contextProj;
if (boxFields.size() > 1) {
proj = B.createTupleElementAddr(loc, proj, i);
}
auto param = partiallyAppliedParams[i];
switch (auto conv = param.getConvention()) {
case ParameterConvention::Direct_Owned:
case ParameterConvention::Direct_Unowned:
case ParameterConvention::Direct_Guaranteed:
// Move the value into the box.
if (caller->hasOwnership()) {
B.createStore(loc, arg, proj, StoreOwnershipQualifier::Init);
} else {
B.createStore(loc, arg, proj, StoreOwnershipQualifier::Unqualified);
}
break;
case ParameterConvention::Indirect_In_Guaranteed:
case ParameterConvention::Indirect_In:
// Move the value from its current memory location to the box.
B.createCopyAddr(loc, arg, proj, IsTake, IsInitialization);
break;
case ParameterConvention::Indirect_InoutAliasable:
case ParameterConvention::Indirect_Inout: {
// Pass a pointer to the argument into the box.
auto p = B.createAddressToPointer(loc, arg,
SILType::getRawPointerType(C),
/*needsStackProtection=*/ false);
if (caller->hasOwnership()) {
B.createStore(loc, p, proj, StoreOwnershipQualifier::Trivial);
} else {
B.createStore(loc, p, proj, StoreOwnershipQualifier::Unqualified);
}
break;
}
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
llvm_unreachable("unsupported!");
break;
}
}
// Transform the application to use the context instead of the original
// arguments.
newArgs.push_back(contextBuffer);
SILInstruction *newInst;
switch (site.getKind()) {
case ApplySiteKind::PartialApplyInst: {
auto oldPA = cast<PartialApplyInst>(site.getInstruction());
auto paIsolation = oldPA->getResultIsolation();
auto paConvention = isNoEscape ? ParameterConvention::Direct_Guaranteed
: contextParam.getConvention();
auto paOnStack = isNoEscape ? PartialApplyInst::OnStack
: PartialApplyInst::NotOnStack;
auto newPA = B.createPartialApply(loc, newFunctionRef,
site.getSubstitutionMap(),
newArgs,
paConvention,
paIsolation,
paOnStack);
assert(isSimplePartialApply(newPA)
&& "partial apply wasn't simple after transformation?");
newInst = newPA;
break;
}
case ApplySiteKind::ApplyInst:
newInst = B.createApply(loc, newFunctionRef,
site.getSubstitutionMap(), newArgs);
break;
case ApplySiteKind::BeginApplyInst:
newInst = B.createBeginApply(loc, newFunctionRef,
site.getSubstitutionMap(), newArgs);
break;
case ApplySiteKind::TryApplyInst: {
auto tai = cast<TryApplyInst>(site.getInstruction());
newInst = B.createTryApply(loc, newFunctionRef,
site.getSubstitutionMap(), newArgs,
tai->getNormalBB(),
tai->getErrorBB());
break;
}
}
site.getInstruction()->replaceAllUsesPairwiseWith(newInst);
site.getInstruction()->eraseFromParent();
};
for (auto paSite : pa.PartialApplications) {
rewriteApplySite(paSite);
}
// Rewrite full application sites to package up the partially applied
// arguments as well.
for (auto fa : pa.FullApplications) {
rewriteApplySite(fa);
}
// Once all the applications have been rewritten, then the original
// function refs with the old function type should all be unused. Delete
// them, since they are no longer valid.
for (auto fr : pa.FunctionRefs) {
fr->eraseFromParent();
}
++NumInvocationFunctionsChanged;
return;
}
SILTransform *swift::createPartialApplySimplification() {
return new PartialApplySimplificationPass();
}
|