1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
|
//===--- SILCodeMotion.cpp - Code Motion Optimizations --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-codemotion"
#include "swift/AST/Module.h"
#include "swift/Basic/BlotMapVector.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <optional>
STATISTIC(NumSunk, "Number of instructions sunk");
STATISTIC(NumRefCountOpsSimplified, "Number of enum ref count ops simplified");
STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumSILArgumentReleaseHoisted, "Number of silargument release instructions hoisted");
llvm::cl::opt<bool> DisableSILRRCodeMotion("disable-sil-cm-rr-cm", llvm::cl::init(true));
using namespace swift;
namespace {
//===----------------------------------------------------------------------===//
// Utility
//===----------------------------------------------------------------------===//
static void createRefCountOpForPayload(SILBuilder &Builder, SILInstruction *I,
EnumElementDecl *EnumDecl,
SILValue DefOfEnum = SILValue()) {
assert(EnumDecl->hasAssociatedValues() &&
"We assume enumdecl has an argument type");
SILModule &Mod = I->getModule();
// The enum value is either passed as an extra argument if we are moving an
// retain that does not refer to the enum typed value - otherwise it is the
// argument to the refcount instruction.
SILValue EnumVal = DefOfEnum ? DefOfEnum : I->getOperand(0);
SILType ArgType = EnumVal->getType().getEnumElementType(
EnumDecl, Mod, TypeExpansionContext(Builder.getFunction()));
auto *UEDI =
Builder.createUncheckedEnumData(I->getLoc(), EnumVal, EnumDecl, ArgType);
SILType UEDITy = UEDI->getType();
// If our payload is trivial, we do not need to insert any retain or release
// operations.
if (UEDITy.isTrivial(*I->getFunction()))
return;
++NumRefCountOpsSimplified;
// If we have a retain value...
if (auto RCI = dyn_cast<RetainValueInst>(I)) {
// And our payload is refcounted, insert a strong_retain onto the
// payload.
if (UEDITy.isReferenceCounted(Mod)) {
Builder.createStrongRetain(I->getLoc(), UEDI, RCI->getAtomicity());
return;
}
// Otherwise, insert a retain_value on the payload.
Builder.createRetainValue(I->getLoc(), UEDI, RCI->getAtomicity());
return;
}
// At this point we know that we must have a release_value and a non-trivial
// payload.
assert(isa<ReleaseValueInst>(I) && "If I is not a retain value here, it must "
"be a release value since enums do not have reference semantics.");
auto *RCI = cast<ReleaseValueInst>(I);
// If our payload has reference semantics, insert the strong release.
if (UEDITy.isReferenceCounted(Mod)) {
Builder.createStrongRelease(I->getLoc(), UEDI, RCI->getAtomicity());
return;
}
// Otherwise if our payload is non-trivial but lacking reference semantics,
// insert the release_value.
Builder.createReleaseValue(I->getLoc(), UEDI, RCI->getAtomicity());
}
//===----------------------------------------------------------------------===//
// Enum Tag Dataflow
//===----------------------------------------------------------------------===//
namespace {
class EnumCaseDataflowContext;
using EnumBBCaseList =
llvm::SmallVector<std::pair<SILBasicBlock *, EnumElementDecl *>, 2>;
/// Class that performs enum tag state dataflow on the given BB.
class BBEnumTagDataflowState
: public SILInstructionVisitor<BBEnumTagDataflowState, bool> {
EnumCaseDataflowContext *Context;
NullablePtr<SILBasicBlock> BB;
SmallBlotMapVector<unsigned, EnumElementDecl *, 4> ValueToCaseMap;
SmallBlotMapVector<unsigned, EnumBBCaseList, 4> EnumToEnumBBCaseListMap;
public:
BBEnumTagDataflowState() = default;
BBEnumTagDataflowState(const BBEnumTagDataflowState &Other) = default;
~BBEnumTagDataflowState() = default;
SWIFT_DEBUG_DUMP;
bool init(EnumCaseDataflowContext &Context, SILBasicBlock *NewBB);
SILBasicBlock *getBB() { return BB.get(); }
using iterator = decltype(ValueToCaseMap)::iterator;
iterator begin() { return ValueToCaseMap.getItems().begin(); }
iterator end() { return ValueToCaseMap.getItems().end(); }
void clear() { ValueToCaseMap.clear(); }
bool visitSILInstruction(SILInstruction *I) { return false; }
bool visitEnumInst(EnumInst *EI);
bool visitUncheckedEnumDataInst(UncheckedEnumDataInst *UEDI);
bool visitRetainValueInst(RetainValueInst *RVI);
bool visitReleaseValueInst(ReleaseValueInst *RVI);
bool process();
bool hoistDecrementsIntoSwitchRegions(AliasAnalysis *AA);
bool sinkIncrementsOutOfSwitchRegions(AliasAnalysis *AA,
RCIdentityFunctionInfo *RCIA);
void handlePredSwitchEnum(SwitchEnumInst *S);
void handlePredCondSelectEnum(CondBranchInst *CondBr);
/// Helper method which initializes this state map with the data from the
/// first predecessor BB.
///
/// We will be performing an intersection in a later step of the merging.
bool initWithFirstPred(SILBasicBlock *FirstPredBB);
/// Top level merging function for predecessors.
void mergePredecessorStates();
/// If we have a single predecessor, see if the predecessor's terminator was a
/// switch_enum or a (cond_br + select_enum). If so, track in this block the
/// enum state of the operand.
void mergeSinglePredTermInfoIntoState(SILBasicBlock *Pred);
private:
EnumCaseDataflowContext &getContext() const;
unsigned getIDForValue(SILValue V) const;
SILValue getValueForID(unsigned ID) const;
};
/// Map all blocks to BBEnumTagDataflowState in RPO order.
class EnumCaseDataflowContext {
PostOrderFunctionInfo *PO;
std::vector<BBEnumTagDataflowState> BBToStateVec;
std::vector<SILValue> IDToEnumValueMap;
llvm::DenseMap<SILValue, unsigned> EnumValueToIDMap;
public:
EnumCaseDataflowContext(PostOrderFunctionInfo *PO) : PO(PO), BBToStateVec() {
BBToStateVec.resize(PO->size());
unsigned RPOIdx = 0;
for (SILBasicBlock *BB : PO->getReversePostOrder()) {
BBToStateVec[RPOIdx].init(*this, BB);
++RPOIdx;
}
}
/// Return true if we have a valid value for the given ID;
bool hasValueForID(unsigned ID) const {
return ID < IDToEnumValueMap.size() && IDToEnumValueMap[ID];
}
SILValue getValueForID(unsigned ID) const { return IDToEnumValueMap[ID]; }
unsigned getIDForValue(SILValue V) const {
// We are being a little tricky here. Here is what is happening:
//
// 1. When we start we do not know if we are already tracking V, so we
// prepare /as if/ V was new.
//
// 2. When we perform the insertion, if V already has a value associated
// with it, we return the iterator to that value. The iterator contains
// inside of it the actual index.
//
// 3. Otherwise, we initialize V in EnumValueToIDMap with NewID. Rather than
// re-accessing the iterator, we just return the value we have already
// computed.
unsigned NewID = IDToEnumValueMap.size();
auto &This = const_cast<EnumCaseDataflowContext &>(*this);
auto Iter = This.EnumValueToIDMap.insert({V, NewID});
if (!Iter.second)
return Iter.first->second;
This.IDToEnumValueMap.emplace_back(V);
return NewID;
}
void blotValue(SILValue V) {
unsigned ID = getIDForValue(V);
IDToEnumValueMap[ID] = SILValue();
}
unsigned size() const { return BBToStateVec.size(); }
BBEnumTagDataflowState &getRPOState(unsigned RPOIdx) {
return BBToStateVec[RPOIdx];
}
/// \return BBEnumTagDataflowState or NULL for unreachable blocks.
BBEnumTagDataflowState *getBBState(SILBasicBlock *BB) {
if (auto ID = PO->getRPONumber(BB)) {
return &getRPOState(*ID);
}
return nullptr;
}
};
} // end anonymous namespace
EnumCaseDataflowContext &BBEnumTagDataflowState::getContext() const {
// Context and BB are initialized together, so we only need to check one.
assert(BB.isNonNull() && "Uninitialized state?!");
return *Context;
}
unsigned BBEnumTagDataflowState::getIDForValue(SILValue V) const {
return getContext().getIDForValue(V);
}
SILValue BBEnumTagDataflowState::getValueForID(unsigned ID) const {
return getContext().getValueForID(ID);
}
void BBEnumTagDataflowState::handlePredSwitchEnum(SwitchEnumInst *S) {
// Find the tag associated with our BB and set the state of the
// enum we switch on to that value. This is important so we can determine
// covering switches for enums that have cases without payload.
// Next check if we are the target of a default switch_enum case. If we are,
// no interesting information can be extracted, so bail...
if (S->hasDefault() && S->getDefaultBB() == getBB())
return;
// Otherwise, attempt to find the tag associated with this BB in the switch
// enum...
for (unsigned i = 0, e = S->getNumCases(); i != e; ++i) {
auto P = S->getCase(i);
// If this case of the switch is not matched up with this BB, skip the
// case...
if (P.second != getBB())
continue;
// Ok, we found the case for our BB. If we don't have an enum tag (which can
// happen if we have a default statement), return. There is nothing more we
// can do.
if (!P.first)
return;
// Ok, we have a matching BB and a matching enum tag. Set the state and
// return.
ValueToCaseMap[getIDForValue(S->getOperand())] = P.first;
return;
}
llvm_unreachable("A successor of a switch_enum terminated BB should be in "
"the switch_enum.");
}
void BBEnumTagDataflowState::handlePredCondSelectEnum(CondBranchInst *CondBr) {
auto *EITI = dyn_cast<SelectEnumInst>(CondBr->getCondition());
if (!EITI)
return;
NullablePtr<EnumElementDecl> TrueElement = EITI->getSingleTrueElement();
if (TrueElement.isNull())
return;
// Find the tag associated with our BB and set the state of the
// enum we switch on to that value. This is important so we can determine
// covering switches for enums that have cases without payload.
// Check if we are the true case, ie, we know that we are the given tag.
const auto &Operand = EITI->getEnumOperand();
if (CondBr->getTrueBB() == getBB()) {
ValueToCaseMap[getIDForValue(Operand)] = TrueElement.get();
return;
}
// If the enum only has 2 values and its tag isn't the true branch, then we
// know the true branch must be the other tag.
if (EnumDecl *E = Operand->getType().getEnumOrBoundGenericEnum()) {
// We can't do this optimization on non-exhaustive enums.
const SILFunction *Fn = CondBr->getFunction();
bool IsExhaustive =
E->isEffectivelyExhaustive(Fn->getModule().getSwiftModule(),
Fn->getResilienceExpansion());
if (!IsExhaustive)
return;
// Look for a single other element on this enum.
EnumElementDecl *OtherElt = nullptr;
for (EnumElementDecl *Elt : E->getAllElements()) {
// Skip the case where we find the select_enum element
if (Elt == TrueElement.get())
continue;
// If we find another element, then we must have more than 2, so bail.
if (OtherElt)
return;
OtherElt = Elt;
}
// Only a single enum element? How would this even get here? We should
// handle it in SILCombine.
if (!OtherElt)
return;
// FIXME: Can we ever not be the false BB here?
if (CondBr->getTrueBB() != getBB()) {
ValueToCaseMap[getIDForValue(Operand)] = OtherElt;
return;
}
}
}
bool BBEnumTagDataflowState::initWithFirstPred(SILBasicBlock *FirstPredBB) {
// Try to look up the state for the first pred BB.
BBEnumTagDataflowState *FirstPredState = getContext().getBBState(FirstPredBB);
// If we fail, we found an unreachable block, bail.
if (FirstPredState == nullptr) {
LLVM_DEBUG(llvm::dbgs() << " Found an unreachable block!\n");
return false;
}
// Ok, our state is in the map, copy in the predecessors value to case map.
ValueToCaseMap = FirstPredState->ValueToCaseMap;
// If we are predecessors only successor, we can potentially hoist releases
// into it, so associate the first pred BB and the case for each value that we
// are tracking with it.
//
// TODO: I am writing this too fast. Clean this up later.
if (FirstPredBB->getSingleSuccessorBlock()) {
for (auto P : ValueToCaseMap.getItems()) {
if (!P.has_value())
continue;
EnumToEnumBBCaseListMap[P->first].push_back({FirstPredBB, P->second});
}
}
return true;
}
void BBEnumTagDataflowState::mergeSinglePredTermInfoIntoState(
SILBasicBlock *Pred) {
// Grab the terminator of our one predecessor and if it is a switch enum, mix
// it into this state.
TermInst *PredTerm = Pred->getTerminator();
if (auto *S = dyn_cast<SwitchEnumInst>(PredTerm)) {
handlePredSwitchEnum(S);
return;
}
auto *CondBr = dyn_cast<CondBranchInst>(PredTerm);
if (!CondBr)
return;
handlePredCondSelectEnum(CondBr);
}
void BBEnumTagDataflowState::mergePredecessorStates() {
// If we have no predecessors, there is nothing to do so return early...
if (getBB()->pred_empty()) {
LLVM_DEBUG(llvm::dbgs() << " No Preds.\n");
return;
}
auto PI = getBB()->pred_begin(), PE = getBB()->pred_end();
if (*PI == getBB()) {
LLVM_DEBUG(llvm::dbgs() << " Found a self loop. Bailing!\n");
return;
}
// Grab the first predecessor BB.
SILBasicBlock *FirstPred = *PI;
++PI;
// Attempt to initialize our state with our first predecessor's state by just
// copying. We will be doing an intersection with all of the other BB.
if (!initWithFirstPred(FirstPred))
return;
// If we only have one predecessor see if we can gain any information and or
// knowledge from the terminator of our one predecessor. There is nothing more
// that we can do, return.
//
// This enables us to get enum information from switch_enum and cond_br about
// the value that an enum can take in our block. This is a common case that
// comes up.
if (PI == PE) {
mergeSinglePredTermInfoIntoState(FirstPred);
return;
}
LLVM_DEBUG(llvm::dbgs() <<" Merging in rest of predecessors...\n");
// Enum values that while merging we found conflicting values for. We blot
// them after the loop in order to ensure that we can still find the ends of
// switch regions.
llvm::SmallVector<unsigned, 4> CurBBValuesToBlot;
// If we do not find state for a specific value in any of our predecessor BBs,
// we cannot be the end of a switch region since we cannot cover our
// predecessor BBs with enum decls. Blot after the loop.
llvm::SmallVector<unsigned, 4> PredBBValuesToBlot;
// And for each remaining predecessor...
do {
// If we loop on ourselves, bail...
if (*PI == getBB()) {
LLVM_DEBUG(llvm::dbgs() << " Found a self loop. Bailing!\n");
return;
}
// Grab the predecessors state...
SILBasicBlock *PredBB = *PI;
BBEnumTagDataflowState *PredBBState = getContext().getBBState(PredBB);
if (PredBBState == nullptr) {
LLVM_DEBUG(llvm::dbgs() << " Found an unreachable block!\n");
return;
}
++PI;
// Then for each (SILValue, Enum Tag) that we are tracking...
for (auto P : ValueToCaseMap.getItems()) {
// If this SILValue was blotted, there is nothing left to do, we found
// some sort of conflicting definition and are being conservative.
if (!P.has_value())
continue;
// Then attempt to look up the enum state associated in our SILValue in
// the predecessor we are processing.
auto PredIter = PredBBState->ValueToCaseMap.find(P->first);
// If we cannot find the state associated with this SILValue in this
// predecessor or the ID in the corresponding predecessor was blotted, we
// cannot find a covering switch for this BB or forward any enum tag
// information for this enum value.
if (PredIter == PredBBState->ValueToCaseMap.end() ||
!(*PredIter).has_value()) {
// Otherwise, we are conservative and do not forward the EnumTag that we
// are tracking. Blot it!
LLVM_DEBUG(llvm::dbgs() << " Blotting: " << P->first);
CurBBValuesToBlot.push_back(P->first);
PredBBValuesToBlot.push_back(P->first);
continue;
}
// Then try to lookup the actual value associated with the ID. If we do
// not find one, then the enum was destroyed by another part of the pass.
SILValue PredValue = getValueForID((*PredIter)->first);
if (!PredValue)
continue;
// Check if out predecessor has any other successors. If that is true we
// clear all the state since we cannot hoist safely.
if (!PredBB->getSingleSuccessorBlock()) {
EnumToEnumBBCaseListMap.clear();
LLVM_DEBUG(llvm::dbgs() << " Predecessor has other "
"successors. Clearing BB cast list map.\n");
} else {
// Otherwise, add this case to our predecessor case list. We will unique
// this after we have finished processing all predecessors.
auto Case = std::make_pair(PredBB, (*PredIter)->second);
EnumToEnumBBCaseListMap[(*PredIter)->first].push_back(Case);
}
// And the states match, the enum state propagates to this BB.
if ((*PredIter)->second == P->second)
continue;
// Otherwise, we are conservative and do not forward the EnumTag that we
// are tracking. Blot it!
LLVM_DEBUG(llvm::dbgs() << " Blotting: " << P->first);
CurBBValuesToBlot.push_back(P->first);
}
} while (PI != PE);
for (unsigned ID : CurBBValuesToBlot) {
ValueToCaseMap.erase(ID);
}
for (unsigned ID : PredBBValuesToBlot) {
EnumToEnumBBCaseListMap.erase(ID);
}
}
bool BBEnumTagDataflowState::visitEnumInst(EnumInst *EI) {
unsigned ID = getIDForValue(SILValue(EI));
LLVM_DEBUG(llvm::dbgs() << " Storing enum into map. ID: " << ID
<< ". Value: " << *EI);
ValueToCaseMap[ID] = EI->getElement();
return false;
}
bool BBEnumTagDataflowState::visitUncheckedEnumDataInst(
UncheckedEnumDataInst *UEDI) {
unsigned ID = getIDForValue(UEDI->getOperand());
LLVM_DEBUG(llvm::dbgs() << " Storing unchecked enum data into map. ID: "
<< ID << ". Value: " << *UEDI);
ValueToCaseMap[ID] = UEDI->getElement();
return false;
}
bool BBEnumTagDataflowState::visitRetainValueInst(RetainValueInst *RVI) {
auto FindResult = ValueToCaseMap.find(getIDForValue(RVI->getOperand()));
if (FindResult == ValueToCaseMap.end())
return false;
// If we do not have any argument, kill the retain_value.
if (!(*FindResult)->second->hasAssociatedValues()) {
RVI->eraseFromParent();
return true;
}
LLVM_DEBUG(llvm::dbgs() << " Found RetainValue: " << *RVI);
LLVM_DEBUG(llvm::dbgs() << " Paired to Enum Oracle: "
<< (*FindResult)->first);
SILBuilderWithScope Builder(RVI);
createRefCountOpForPayload(Builder, RVI, (*FindResult)->second);
RVI->eraseFromParent();
return true;
}
bool BBEnumTagDataflowState::visitReleaseValueInst(ReleaseValueInst *RVI) {
auto FindResult = ValueToCaseMap.find(getIDForValue(RVI->getOperand()));
if (FindResult == ValueToCaseMap.end())
return false;
// If the enum has a deinit, preserve the original release.
if (hasValueDeinit(RVI->getOperand()))
return false;
// If we do not have any argument, just delete the release value.
if (!(*FindResult)->second->hasAssociatedValues()) {
RVI->eraseFromParent();
return true;
}
LLVM_DEBUG(llvm::dbgs() << " Found ReleaseValue: " << *RVI);
LLVM_DEBUG(llvm::dbgs() << " Paired to Enum Oracle: "
<< (*FindResult)->first);
SILBuilderWithScope Builder(RVI);
createRefCountOpForPayload(Builder, RVI, (*FindResult)->second);
RVI->eraseFromParent();
return true;
}
bool BBEnumTagDataflowState::process() {
bool Changed = false;
auto SI = getBB()->begin();
while (SI != getBB()->end()) {
SILInstruction *I = &*SI;
++SI;
Changed |= visit(I);
}
return Changed;
}
bool BBEnumTagDataflowState::hoistDecrementsIntoSwitchRegions(
AliasAnalysis *AA) {
bool Changed = false;
unsigned NumPreds = std::distance(getBB()->pred_begin(), getBB()->pred_end());
for (auto II = getBB()->begin(), IE = getBB()->end(); II != IE;) {
auto *RVI = dyn_cast<ReleaseValueInst>(&*II);
++II;
// If this instruction is not a release, skip it...
if (!RVI)
continue;
LLVM_DEBUG(llvm::dbgs() << " Visiting release: " << *RVI);
// Grab the operand of the release value inst.
SILValue Op = RVI->getOperand();
// Lookup the [(BB, EnumTag)] list for this operand.
unsigned ID = getIDForValue(Op);
auto R = EnumToEnumBBCaseListMap.find(ID);
// If we don't have one, skip this release value inst.
if (R == EnumToEnumBBCaseListMap.end()) {
LLVM_DEBUG(llvm::dbgs() << " Could not find [(BB, EnumTag)] "
"list for release_value's operand. Bailing!\n");
continue;
}
// If the enum has a deinit, preserve the original release.
if (hasValueDeinit(Op))
return false;
auto &EnumBBCaseList = (*R)->second;
// If we don't have an enum tag for each predecessor of this BB, bail since
// we do not know how to handle that BB.
if (EnumBBCaseList.size() != NumPreds) {
LLVM_DEBUG(llvm::dbgs() << " Found [(BB, EnumTag)] list for "
"release_value's operand, but we do not have "
"an enum tag for each predecessor. Bailing!\n");
LLVM_DEBUG(llvm::dbgs() << " List:\n");
LLVM_DEBUG(for (auto P : EnumBBCaseList) {
llvm::dbgs() << " ";
P.second->dump(llvm::dbgs());
});
continue;
}
// Finally ensure that we have no users of this operand preceding the
// release_value in this BB. If we have users like that we cannot hoist the
// release past them unless we know that there is an additional set of
// releases that together post-dominate this release. If we cannot do this,
// skip this release.
//
// TODO: We need information from the ARC optimizer to prove that property
// if we are going to use it.
if (valueHasARCUsesInInstructionRange(Op, getBB()->begin(),
SILBasicBlock::iterator(RVI), AA)) {
LLVM_DEBUG(llvm::dbgs() << " Release value has use that stops "
"hoisting! Bailing!\n");
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Its safe to perform the "
"transformation!\n");
// Otherwise perform the transformation.
for (auto P : EnumBBCaseList) {
// If we don't have an argument for this case, there is nothing to
// do... continue...
if (!P.second->hasAssociatedValues())
continue;
// Otherwise create the release_value before the terminator of the
// predecessor.
assert(P.first->getSingleSuccessorBlock() &&
"Cannot hoist release into BB that has multiple successors");
SILBuilderWithScope Builder(P.first->getTerminator(), RVI);
createRefCountOpForPayload(Builder, RVI, P.second);
}
RVI->eraseFromParent();
++NumHoisted;
Changed = true;
}
return Changed;
}
static SILInstruction *findLastSinkableMatchingEnumValueRCIncrementInPred(
AliasAnalysis *AA, RCIdentityFunctionInfo *RCIA, SILValue EnumValue,
SILBasicBlock *BB) {
// Otherwise, see if we can find a retain_value or strong_retain associated
// with that enum in the relevant predecessor.
auto FirstInc = std::find_if(
BB->rbegin(), BB->rend(),
[&RCIA, &EnumValue](const SILInstruction &I) -> bool {
// If I is not an increment, ignore it.
if (!isa<StrongRetainInst>(I) && !isa<RetainValueInst>(I))
return false;
// Otherwise, if the increments operand stripped of RC identity
// preserving
// ops matches EnumValue, it is the first increment we are interested
// in.
return EnumValue == RCIA->getRCIdentityRoot(I.getOperand(0));
});
// If we do not find a ref count increment in the relevant BB, skip this
// enum since there is nothing we can do.
if (FirstInc == BB->rend())
return nullptr;
// Otherwise, see if there are any instructions in between FirstPredInc and
// the end of the given basic block that could decrement first pred. If such
// an instruction exists, we cannot perform this optimization so continue.
if (valueHasARCDecrementOrCheckInInstructionRange(
EnumValue, (*FirstInc).getIterator(),
BB->getTerminator()->getIterator(), AA))
return nullptr;
return &*FirstInc;
}
static bool findRetainsSinkableFromSwitchRegionForEnum(
AliasAnalysis *AA, RCIdentityFunctionInfo *RCIA, SILValue EnumValue,
EnumBBCaseList &Map, SmallVectorImpl<SILInstruction *> &DeleteList) {
// For each predecessor with argument type...
for (auto &P : Map) {
SILBasicBlock *PredBB = P.first;
EnumElementDecl *Decl = P.second;
// If the case does not have an argument type, skip the predecessor since
// there will not be a retain to sink.
if (!Decl->hasAssociatedValues())
continue;
// Ok, we found a payloaded predecessor. Look backwards through the
// predecessor for the first ref count increment on EnumValue. If there
// are no ref count decrements in between the increment and the terminator
// of the BB, then we can sink the retain out of the switch enum.
auto *Inc = findLastSinkableMatchingEnumValueRCIncrementInPred(
AA, RCIA, EnumValue, PredBB);
// If we do not find such an increment, there is nothing we can do, bail.
if (!Inc)
return false;
// Otherwise add the increment to the delete list.
DeleteList.push_back(Inc);
}
// If we were able to process each predecessor successfully, return true.
return true;
}
bool BBEnumTagDataflowState::sinkIncrementsOutOfSwitchRegions(
AliasAnalysis *AA, RCIdentityFunctionInfo *RCIA) {
bool Changed = false;
unsigned NumPreds = std::distance(getBB()->pred_begin(), getBB()->pred_end());
llvm::SmallVector<SILInstruction *, 4> DeleteList;
// For each (EnumValue, [(BB, EnumTag)]) that we are tracking...
for (auto &P : EnumToEnumBBCaseListMap) {
// Clear our delete list.
DeleteList.clear();
// If EnumValue is null, we deleted this entry. There is nothing to do for
// this value... Skip it.
if (!P.has_value())
continue;
// Look up the actual enum value using our index to make sure that other
// parts of the pass have not destroyed the value. In such a case, just
// continue.
SILValue EnumValue = getContext().getValueForID(P->first);
if (!EnumValue)
continue;
EnumValue = RCIA->getRCIdentityRoot(EnumValue);
EnumBBCaseList &Map = P->second;
// If we do not have a tag associated with this enum value for each
// predecessor, we are not a switch region exit for this enum value. Skip
// this value.
if (Map.size() != NumPreds)
continue;
// Look through our predecessors for a set of ref count increments on our
// enum value for every payloaded case that *could* be sunk. If we miss an
// increment from any of the payloaded case there is nothing we can do here,
// so skip this enum value.
if (!findRetainsSinkableFromSwitchRegionForEnum(AA, RCIA, EnumValue, Map,
DeleteList))
continue;
// If we do not have any payload arguments, then we should have an empty
// delete list and there is nothing to do here.
if (DeleteList.empty())
continue;
// Ok, we can perform this transformation! Insert the new retain_value and
// delete all of the ref count increments from the predecessor BBs.
//
// TODO: Which debug loc should we use here? Using one of the locs from the
// delete list seems reasonable for now...
SILBuilder Builder(getBB()->begin());
Builder.createRetainValue(
DeleteList[0]->getLoc(), EnumValue,
cast<RefCountingInst>(DeleteList[0])->getAtomicity());
for (auto *I : DeleteList)
I->eraseFromParent();
++NumSunk;
Changed = true;
}
return Changed;
}
void BBEnumTagDataflowState::dump() const {
#ifndef NDEBUG
llvm::dbgs() << "Dumping state for BB" << BB.get()->getDebugID() << "\n";
llvm::dbgs() << "Block States:\n";
for (auto &P : ValueToCaseMap) {
if (!P) {
llvm::dbgs() << " Skipping blotted value.\n";
continue;
}
unsigned ID = P->first;
SILValue V = getContext().getValueForID(ID);
if (!V) {
llvm::dbgs() << " ID: " << ID << ". Value: BLOTTED.\n";
continue;
}
llvm::dbgs() << " ID: " << ID << ". Value: " << V;
}
llvm::dbgs() << "Predecessor States:\n";
// For each (EnumValue, [(BB, EnumTag)]) that we are tracking...
for (auto &P : EnumToEnumBBCaseListMap) {
if (!P) {
llvm::dbgs() << " Skipping blotted value.\n";
continue;
}
unsigned ID = P->first;
SILValue V = getContext().getValueForID(ID);
if (!V) {
llvm::dbgs() << " ID: " << ID << ". Value: BLOTTED.\n";
continue;
}
llvm::dbgs() << " ID: " << ID << ". Value: " << V;
llvm::dbgs() << " Case List:\n";
for (auto &P2 : P->second) {
llvm::dbgs() << " BB" << P2.first->getDebugID() << ": ";
P2.second->dump(llvm::dbgs());
llvm::dbgs() << "\n";
}
llvm::dbgs() << " End Case List.\n";
}
#endif
}
bool BBEnumTagDataflowState::init(EnumCaseDataflowContext &NewContext,
SILBasicBlock *NewBB) {
assert(NewBB && "NewBB should not be null");
Context = &NewContext;
BB = NewBB;
return true;
}
//===----------------------------------------------------------------------===//
// Generic Sinking Code
//===----------------------------------------------------------------------===//
/// Hoist release on a SILArgument to its predecessors.
static bool hoistSILArgumentReleaseInst(SILBasicBlock *BB) {
// There is no block to hoist releases to.
if (BB->pred_empty())
return false;
// Only try to hoist the first instruction. RRCM should have hoisted the
// release
// to the beginning of the block if it can.
auto Head = &*BB->begin();
// Make sure it is a release instruction.
if (!isReleaseInstruction(&*Head))
return false;
// Make sure it is a release on a SILArgument of the current basic block..
auto *SA = dyn_cast<SILArgument>(Head->getOperand(0));
if (!SA || SA->getParent() != BB)
return false;
// Make sure the release will not be blocked by the terminator instructions
// Make sure the terminator does not block, nor is a branch with multiple
// targets.
for (auto P : BB->getPredecessorBlocks()) {
if (!isa<BranchInst>(P->getTerminator()))
return false;
}
// Make sure we can get all the incoming values.
llvm::SmallVector<SILValue, 4> PredValues;
if (!SA->getIncomingPhiValues(PredValues))
return false;
// Ok, we can get all the incoming values and create releases for them.
unsigned indices = 0;
for (auto P : BB->getPredecessorBlocks()) {
createDecrementBefore(PredValues[indices++], P->getTerminator());
}
// Erase the old instruction.
Head->eraseFromParent();
++NumSILArgumentReleaseHoisted;
return true;
}
static const int SinkSearchWindow = 6;
/// Returns True if we can sink this instruction to another basic block.
static bool canSinkInstruction(SILInstruction *Inst) {
return !Inst->hasUsesOfAnyResult() && !isa<TermInst>(Inst);
}
/// Returns true if this instruction is a skip barrier, which means that
/// we can't sink other instructions past it.
static bool isSinkBarrier(SILInstruction *Inst) {
if (isa<TermInst>(Inst))
return false;
if (Inst->mayHaveSideEffects())
return true;
return false;
}
using ValueInBlock = std::pair<SILValue, SILBasicBlock *>;
using ValueToBBArgIdxMap = llvm::DenseMap<ValueInBlock, int>;
enum OperandRelation {
/// Uninitialized state.
NotDeterminedYet,
/// The original operand values are equal.
AlwaysEqual,
/// The operand values are equal after replacing with the successor block
/// arguments.
EqualAfterMove
};
/// Find a root value for operand \p In. This function inspects a sil
/// value and strips trivial conversions such as values that are passed
/// as arguments to basic blocks with a single predecessor or type casts.
/// This is a shallow one-step search and not a deep recursive search.
///
/// For example, in the SIL code below, the root of %10 is %3, because it is
/// the only possible incoming value.
///
/// bb1:
/// %3 = unchecked_enum_data %0 : $Optional<X>, #Optional.Some!enumelt
/// checked_cast_br [exact] X in %3 : $X to $X, bb4, bb5 // id: %4
///
/// bb4(%10 : $X): // Preds: bb1
/// strong_release %10 : $X
/// br bb2
///
static SILValue findValueShallowRoot(const SILValue &In) {
// If this is a basic block argument with a single caller
// then we know exactly which value is passed to the argument.
if (auto *Arg = dyn_cast<SILArgument>(In)) {
SILBasicBlock *Parent = Arg->getParent();
SILBasicBlock *Pred = Parent->getSinglePredecessorBlock();
if (!Pred)
return In;
// If the terminator is a cast instruction then use the pre-cast value.
if (auto CCBI = dyn_cast<CheckedCastBranchInst>(Pred->getTerminator())) {
assert(CCBI->getSuccessBB() == Parent && "Inspecting the wrong block");
// In swift it is legal to cast non reference-counted references into
// object references. For example: func f(x : C.Type) -> Any {return x}
// Here we check that the uncasted reference is reference counted.
SILValue V = CCBI->getOperand();
if (V->getType().isReferenceCounted(Pred->getParent()->getModule())) {
return V;
}
}
// If the single predecessor terminator is a branch then the root is
// the argument to the terminator.
if (auto BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
assert(BI->getDestBB() == Parent && "Invalid terminator");
unsigned Idx = Arg->getIndex();
return BI->getArg(Idx);
}
if (auto CBI = dyn_cast<CondBranchInst>(Pred->getTerminator())) {
return CBI->getArgForDestBB(Parent, Arg);
}
}
return In;
}
/// Search for an instruction that is identical to \p Iden by scanning
/// \p BB starting at the end of the block, stopping on sink barriers.
/// The \p opRelation must be consistent for all operand comparisons.
SILInstruction *findIdenticalInBlock(SILBasicBlock *BB, SILInstruction *Iden,
const ValueToBBArgIdxMap &valueToArgIdxMap,
OperandRelation &opRelation) {
int SkipBudget = SinkSearchWindow;
SILBasicBlock::iterator InstToSink = BB->getTerminator()->getIterator();
SILBasicBlock *IdenBlock = Iden->getParent();
// The compare function for instruction operands.
auto operandCompare = [&](const SILValue &Op1, const SILValue &Op2) -> bool {
if (opRelation != EqualAfterMove && Op1 == Op2) {
// The trivial case.
opRelation = AlwaysEqual;
return true;
}
// Check if both operand values are passed to the same block argument in the
// successor block. This means that the operands are equal after we move the
// instruction into the successor block.
if (opRelation != AlwaysEqual) {
auto Iter1 = valueToArgIdxMap.find({Op1, IdenBlock});
if (Iter1 != valueToArgIdxMap.end()) {
auto Iter2 = valueToArgIdxMap.find({Op2, BB});
if (Iter2 != valueToArgIdxMap.end() && Iter1->second == Iter2->second) {
opRelation = EqualAfterMove;
return true;
}
}
}
return false;
};
while (SkipBudget) {
// If we found a sinkable instruction that is identical to our goal
// then return it.
if (canSinkInstruction(&*InstToSink) &&
Iden->isIdenticalTo(&*InstToSink, operandCompare)) {
LLVM_DEBUG(llvm::dbgs() << "Found an identical instruction.");
return &*InstToSink;
}
// If this instruction is a skip-barrier end the scan.
if (isSinkBarrier(&*InstToSink))
return nullptr;
// If this is the first instruction in the block then we are done.
if (InstToSink == BB->begin())
return nullptr;
--SkipBudget;
InstToSink = std::prev(InstToSink);
LLVM_DEBUG(llvm::dbgs() << "Continuing scan. Next inst: " << *InstToSink);
}
return nullptr;
}
/// The 2 instructions given are not identical, but are passed as arguments
/// to a common successor. It may be cheaper to pass one of their operands
/// to the successor instead of the whole instruction.
/// Return None if no such operand could be found, otherwise return the index
/// of a suitable operand.
static std::optional<unsigned>
cheaperToPassOperandsAsArguments(SILInstruction *First,
SILInstruction *Second) {
// This will further enable to sink strong_retain_unowned instructions,
// which provides more opportunities for the unowned-optimization in
// LLVMARCOpts.
#define LOADABLE_REF_STORAGE(Name, ...) \
if (isa<Name##ToRefInst>(First) && isa<Name##ToRefInst>(Second)) { \
return 0; \
}
#include "swift/AST/ReferenceStorage.def"
// TODO: Add more cases than Struct
auto *FirstStruct = dyn_cast<StructInst>(First);
auto *SecondStruct = dyn_cast<StructInst>(Second);
if (!FirstStruct || !SecondStruct)
return std::nullopt;
assert(FirstStruct->getNumOperands() == SecondStruct->getNumOperands() &&
FirstStruct->getType() == SecondStruct->getType() &&
"Types should be identical");
std::optional<unsigned> DifferentOperandIndex;
// Check operands.
for (unsigned i = 0, e = First->getNumOperands(); i != e; ++i) {
if (FirstStruct->getOperand(i) != SecondStruct->getOperand(i)) {
// Only track one different operand for now
if (DifferentOperandIndex)
return std::nullopt;
DifferentOperandIndex = i;
}
}
if (!DifferentOperandIndex)
return std::nullopt;
// Found a different operand, now check to see if its type is something
// cheap enough to sink.
// TODO: Sink more than just integers.
SILType ArgTy = FirstStruct->getOperand(*DifferentOperandIndex)->getType();
if (!ArgTy.is<BuiltinIntegerType>())
return std::nullopt;
return *DifferentOperandIndex;
}
/// Return the value that's passed from block \p From to block \p To
/// (if there is a branch between From and To) as the Nth argument.
SILValue getArgForBlock(SILBasicBlock *From, SILBasicBlock *To,
unsigned ArgNum) {
TermInst *Term = From->getTerminator();
if (auto *CondBr = dyn_cast<CondBranchInst>(Term)) {
if (CondBr->getFalseBB() == To)
return CondBr->getFalseArgs()[ArgNum];
if (CondBr->getTrueBB() == To)
return CondBr->getTrueArgs()[ArgNum];
}
if (auto *Br = dyn_cast<BranchInst>(Term))
return Br->getArg(ArgNum);
return SILValue();
}
// Try to sink values from the Nth argument \p ArgNum.
static bool sinkLiteralArguments(SILBasicBlock *BB, unsigned ArgNum) {
assert(ArgNum < BB->getNumArguments() && "Invalid argument");
// Check if the argument passed to the first predecessor is a literal inst.
SILBasicBlock *FirstPred = *BB->pred_begin();
SILValue FirstArg = getArgForBlock(FirstPred, BB, ArgNum);
LiteralInst *FirstLiteral = dyn_cast_or_null<LiteralInst>(FirstArg);
if (!FirstLiteral)
return false;
// Check if the Nth argument in all predecessors is identical.
for (auto P : BB->getPredecessorBlocks()) {
if (P == FirstPred)
continue;
// Check that the incoming value is identical to the first literal.
SILValue PredArg = getArgForBlock(P, BB, ArgNum);
LiteralInst *PredLiteral = dyn_cast_or_null<LiteralInst>(PredArg);
if (!PredLiteral || !PredLiteral->isIdenticalTo(FirstLiteral))
return false;
}
// Replace the use of the argument with the cloned literal.
auto Cloned = FirstLiteral->clone(&*BB->begin());
BB->getArgument(ArgNum)->replaceAllUsesWith(Cloned);
return true;
}
// Try to sink values from the Nth argument \p ArgNum.
static bool sinkArgument(EnumCaseDataflowContext &Context, SILBasicBlock *BB, unsigned ArgNum) {
assert(ArgNum < BB->getNumArguments() && "Invalid argument");
// Find the first predecessor, the first terminator and the Nth argument.
SILBasicBlock *FirstPred = *BB->pred_begin();
TermInst *FirstTerm = FirstPred->getTerminator();
auto FirstPredArg = FirstTerm->getOperand(ArgNum);
auto *FSI = dyn_cast<SingleValueInstruction>(FirstPredArg);
// TODO: MultiValueInstruction?
// We only move instructions with a single use.
if (!FSI || !hasOneNonDebugUse(FSI))
return false;
// The list of identical instructions.
SmallVector<SingleValueInstruction *, 8> Clones;
Clones.push_back(FSI);
// Don't move instructions that are sensitive to their location.
//
// If this instruction can read memory, we try to be conservatively not to
// move it, as there may be instructions that can clobber the read memory
// from current place to the place where it is moved to.
if (FSI->mayReadFromMemory() ||
(FSI->mayHaveSideEffects() && !isa<AllocationInst>(FSI)))
return false;
// If the instructions are different, but only in terms of a cheap operand
// then we can still sink it, and create new arguments for this operand.
std::optional<unsigned> DifferentOperandIndex;
// Check if the Nth argument in all predecessors is identical.
for (auto P : BB->getPredecessorBlocks()) {
if (P == FirstPred)
continue;
// Only handle branch or conditional branch instructions.
TermInst *TI = P->getTerminator();
if (!isa<BranchInst>(TI) && !isa<CondBranchInst>(TI))
return false;
// Find the Nth argument passed to BB.
SILValue Arg = TI->getOperand(ArgNum);
// If it's not the same basic kind of node, neither isIdenticalTo nor
// cheaperToPassOperandsAsArguments will return true.
if (Arg->getKind() != FSI->getValueKind())
return false;
// Since it's the same kind, Arg must also be a single-value instruction.
auto *SI = cast<SingleValueInstruction>(Arg);
if (!hasOneNonDebugUse(SI))
return false;
if (SI->isIdenticalTo(FSI)) {
Clones.push_back(SI);
continue;
}
// If the instructions are close enough, then we should sink them anyway.
// For example, we should sink 'struct S(%0)' if %0 is small, eg, an integer
auto MaybeDifferentOp = cheaperToPassOperandsAsArguments(FSI, SI);
// Couldn't find a suitable operand, so bail.
if (!MaybeDifferentOp)
return false;
unsigned DifferentOp = *MaybeDifferentOp;
// Make sure we found the same operand as prior iterations.
if (DifferentOperandIndex && DifferentOp != *DifferentOperandIndex)
return false;
DifferentOperandIndex = DifferentOp;
Clones.push_back(SI);
}
auto *Undef = SILUndef::get(FSI);
// Delete the debug info of the instruction that we are about to sink.
deleteAllDebugUses(FSI);
if (DifferentOperandIndex) {
// Sink one of the instructions to BB
FSI->moveBefore(&*BB->begin());
// The instruction we are lowering has an argument which is different
// for each predecessor. We need to sink the instruction, then add
// arguments for each predecessor.
BB->getArgument(ArgNum)->replaceAllUsesWith(FSI);
const auto &ArgType = FSI->getOperand(*DifferentOperandIndex)->getType();
BB->replacePhiArgument(ArgNum, ArgType, OwnershipKind::Owned);
// Update all branch instructions in the predecessors to pass the new
// argument to this BB.
auto CloneIt = Clones.begin();
for (auto P : BB->getPredecessorBlocks()) {
// Only handle branch or conditional branch instructions.
TermInst *TI = P->getTerminator();
assert((isa<BranchInst>(TI) || isa<CondBranchInst>(TI)) &&
"Branch instruction required");
// TODO: MultiValueInstruction
auto *CloneInst = *CloneIt;
TI->setOperand(ArgNum, CloneInst->getOperand(*DifferentOperandIndex));
// Now delete the clone as we only needed it operand.
if (CloneInst != FSI)
eliminateDeadInstruction(CloneInst);
++CloneIt;
}
assert(CloneIt == Clones.end() && "Clone/pred mismatch");
// The sunk instruction should now read from the argument of the BB it
// was moved to.
FSI->setOperand(*DifferentOperandIndex, BB->getArgument(ArgNum));
return true;
}
// Sink one of the copies of the instruction.
FSI->replaceAllUsesWithUndef();
FSI->moveBefore(&*BB->begin());
BB->getArgument(ArgNum)->replaceAllUsesWith(FSI);
// The argument is no longer in use. Replace all incoming inputs with undef
// and try to delete the instruction.
for (auto S : Clones) {
if (S != FSI) {
deleteAllDebugUses(S);
S->replaceAllUsesWith(Undef);
auto DeadArgInst = cast<SILInstruction>(S);
for (SILValue Result : DeadArgInst->getResults()) {
Context.blotValue(Result);
}
DeadArgInst->eraseFromParent();
}
}
return true;
}
/// Try to sink literals that are passed to arguments that are coming from
/// multiple predecessors.
/// Notice that unlike other sinking methods in this file we do allow sinking
/// of literals from blocks with multiple successors.
static bool sinkLiteralsFromPredecessors(SILBasicBlock *BB) {
if (BB->pred_empty() || BB->getSinglePredecessorBlock())
return false;
// Try to sink values from each of the arguments to the basic block.
bool Changed = false;
for (int i = 0, e = BB->getNumArguments(); i < e; ++i)
Changed |= sinkLiteralArguments(BB, i);
return Changed;
}
/// Try to sink identical arguments coming from multiple predecessors.
static bool sinkArgumentsFromPredecessors(EnumCaseDataflowContext &Context,
SILBasicBlock *BB) {
if (BB->pred_empty() || BB->getSinglePredecessorBlock())
return false;
// This block must be the only successor of all the predecessors.
for (auto P : BB->getPredecessorBlocks())
if (P->getSingleSuccessorBlock() != BB)
return false;
// Try to sink values from each of the arguments to the basic block.
bool Changed = false;
for (int i = 0, e = BB->getNumArguments(); i < e; ++i)
Changed |= sinkArgument(Context, BB, i);
return Changed;
}
/// canonicalize retain/release instructions and make them amenable to
/// sinking by selecting canonical pointers. We reduce the number of possible
/// inputs by replacing values that are unlikely to be a canonical values.
/// Reducing the search space increases the chances of matching ref count
/// instructions to one another and the chance of sinking them. We replace
/// values that come from basic block arguments with the caller values and
/// strip casts.
static bool canonicalizeRefCountInstrs(SILBasicBlock *BB) {
bool Changed = false;
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
if (!isa<StrongReleaseInst>(I) && !isa<StrongRetainInst>(I))
continue;
SILValue Ref = I->getOperand(0);
SILValue Root = findValueShallowRoot(Ref);
if (Ref != Root) {
I->setOperand(0, Root);
Changed = true;
}
}
return Changed;
}
static bool sinkCodeFromPredecessors(EnumCaseDataflowContext &Context,
SILBasicBlock *BB) {
bool Changed = false;
if (BB->pred_empty())
return Changed;
// This block must be the only successor of all the predecessors.
for (auto P : BB->getPredecessorBlocks())
if (P->getSingleSuccessorBlock() != BB)
return Changed;
SILBasicBlock *FirstPred = *BB->pred_begin();
// The first Pred must have at least one non-terminator.
if (FirstPred->getTerminator() == &*FirstPred->begin())
return Changed;
LLVM_DEBUG(llvm::dbgs() << " Sinking values from predecessors.\n");
// Map values in predecessor blocks to argument indices of the successor
// block. For example:
//
// bb1:
// br bb3(%a, %b) // %a -> 0, %b -> 1
// bb2:
// br bb3(%c, %d) // %c -> 0, %d -> 1
// bb3(%x, %y):
// ...
ValueToBBArgIdxMap valueToArgIdxMap;
for (auto P : BB->getPredecessorBlocks()) {
if (auto *BI = dyn_cast<BranchInst>(P->getTerminator())) {
auto Args = BI->getArgs();
for (size_t idx = 0, size = Args.size(); idx < size; ++idx) {
valueToArgIdxMap[{Args[idx], P}] = idx;
}
}
}
unsigned SkipBudget = SinkSearchWindow;
// Start scanning backwards from the terminator.
auto InstToSink = FirstPred->getTerminator()->getIterator();
while (SkipBudget) {
LLVM_DEBUG(llvm::dbgs() << "Processing: " << *InstToSink);
// Save the duplicated instructions in case we need to remove them.
SmallVector<SILInstruction *, 4> Dups;
if (canSinkInstruction(&*InstToSink)) {
OperandRelation opRelation = NotDeterminedYet;
// For all preds:
for (auto P : BB->getPredecessorBlocks()) {
if (P == FirstPred)
continue;
// Search the duplicated instruction in the predecessor.
if (SILInstruction *DupInst = findIdenticalInBlock(
P, &*InstToSink, valueToArgIdxMap, opRelation)) {
Dups.push_back(DupInst);
} else {
LLVM_DEBUG(llvm::dbgs() << "Instruction mismatch.\n");
Dups.clear();
break;
}
}
// If we found duplicated instructions, sink one of the copies and delete
// the rest.
if (Dups.size()) {
LLVM_DEBUG(llvm::dbgs() << "Moving: " << *InstToSink);
InstToSink->moveBefore(&*BB->begin());
if (opRelation == EqualAfterMove) {
// Replace operand values (which are passed to the successor block)
// with corresponding block arguments.
for (size_t idx = 0, numOps = InstToSink->getNumOperands();
idx < numOps; ++idx) {
ValueInBlock OpInFirstPred(InstToSink->getOperand(idx), FirstPred);
assert(valueToArgIdxMap.count(OpInFirstPred) != 0);
int argIdx = valueToArgIdxMap[OpInFirstPred];
InstToSink->setOperand(idx, BB->getArgument(argIdx));
}
}
Changed = true;
for (auto I : Dups) {
I->replaceAllUsesPairwiseWith(&*InstToSink);
for (SILValue Result : I->getResults()) {
Context.blotValue(Result);
}
I->eraseFromParent();
++NumSunk;
}
// Restart the scan.
InstToSink = FirstPred->getTerminator()->getIterator();
LLVM_DEBUG(llvm::dbgs() << "Restarting scan. Next inst: "
<< *InstToSink);
continue;
}
}
// If this instruction was a barrier then we can't sink anything else.
if (isSinkBarrier(&*InstToSink)) {
LLVM_DEBUG(llvm::dbgs() << "Aborting on barrier: " << *InstToSink);
return Changed;
}
// This is the first instruction, we are done.
if (InstToSink == FirstPred->begin()) {
LLVM_DEBUG(llvm::dbgs() << "Reached the first instruction.");
return Changed;
}
--SkipBudget;
InstToSink = std::prev(InstToSink);
LLVM_DEBUG(llvm::dbgs() << "Continuing scan. Next inst: " << *InstToSink);
}
return Changed;
}
/// Sink retain_value, release_value before switch_enum to be retain_value,
/// release_value on the payload of the switch_enum in the destination BBs. We
/// only do this if the destination BBs have only the switch enum as its
/// predecessor.
static bool tryToSinkRefCountAcrossSwitch(SwitchEnumInst *Switch,
SILBasicBlock::iterator RV,
AliasAnalysis *AA,
RCIdentityFunctionInfo *RCIA) {
// If this instruction is not a retain_value, there is nothing left for us to
// do... bail...
if (!isa<RetainValueInst>(RV))
return false;
SILValue Ptr = RV->getOperand(0);
// Next go over all instructions after I in the basic block. If none of them
// can decrement our ptr value, we can move the retain over the ref count
// inst. If any of them do potentially decrement the ref count of Ptr, we can
// not move it.
auto SwitchIter = Switch->getIterator();
if (auto B = valueHasARCDecrementOrCheckInInstructionRange(Ptr, RV,
SwitchIter, AA)) {
RV->moveBefore(&**B);
return true;
}
// If the retain value's argument is not the switch's argument, we can't do
// anything with our simplistic analysis... bail...
if (RCIA->getRCIdentityRoot(Ptr) !=
RCIA->getRCIdentityRoot(Switch->getOperand()))
return false;
// If the enum has a deinit, preserve the original release.
assert(!hasValueDeinit(Ptr) &&
"enum with deinit is not RC-identical to its payload");
// If S has a default case bail since the default case could represent
// multiple cases.
//
// TODO: I am currently just disabling this behavior so we can get this out
// for Seed 5. After Seed 5, we should be able to recognize if a switch_enum
// handles all cases except for 1 and has a default case. We might be able to
// stick code into SILBuilder that has this behavior.
if (Switch->hasDefault())
return false;
// Ok, we have a ref count instruction, sink it!
SILBuilderWithScope Builder(Switch, &*RV);
for (unsigned i = 0, e = Switch->getNumCases(); i != e; ++i) {
auto Case = Switch->getCase(i);
EnumElementDecl *Enum = Case.first;
SILBasicBlock *Succ = Case.second;
Builder.setInsertionPoint(&*Succ->begin());
if (Enum->hasAssociatedValues())
createRefCountOpForPayload(Builder, &*RV, Enum, Switch->getOperand());
}
RV->eraseFromParent();
++NumSunk;
return true;
}
/// Sink retain_value, release_value before select_enum to be retain_value,
/// release_value on the payload of the switch_enum in the destination BBs. We
/// only do this if the destination BBs have only the switch enum as its
/// predecessor.
static bool tryToSinkRefCountAcrossSelectEnum(CondBranchInst *CondBr,
SILBasicBlock::iterator I,
AliasAnalysis *AA,
RCIdentityFunctionInfo *RCIA) {
// If this instruction is not a retain_value, there is nothing left for us to
// do... bail...
if (!isa<RetainValueInst>(I))
return false;
// Make sure the condition comes from a select_enum
auto *SEI = dyn_cast<SelectEnumInst>(CondBr->getCondition());
if (!SEI)
return false;
// Try to find a single literal "true" case.
// TODO: More general conditions in which we can relate the BB to a single
// case, such as when there's a single literal "false" case.
NullablePtr<EnumElementDecl> TrueElement = SEI->getSingleTrueElement();
if (TrueElement.isNull())
return false;
// Next go over all instructions after I in the basic block. If none of them
// can decrement our ptr value, we can move the retain over the ref count
// inst. If any of them do potentially decrement the ref count of Ptr, we can
// not move it.
SILValue Ptr = I->getOperand(0);
auto CondBrIter = CondBr->getIterator();
if (auto B = valueHasARCDecrementOrCheckInInstructionRange(Ptr, std::next(I),
CondBrIter, AA)) {
I->moveBefore(&**B);
return false;
}
// If the retain value's argument is not the cond_br's argument, we can't do
// anything with our simplistic analysis... bail...
if (RCIA->getRCIdentityRoot(Ptr) !=
RCIA->getRCIdentityRoot(SEI->getEnumOperand()))
return false;
// If the enum has a deinit, preserve the original release.
assert(!hasValueDeinit(Ptr) &&
"enum with deinit is not RC-identical to its payload");
// Work out which enum element is the true branch, and which is false.
// If the enum only has 2 values and its tag isn't the true branch, then we
// know the true branch must be the other tag.
EnumElementDecl *Elts[2] = {TrueElement.get(), nullptr};
EnumDecl *E = SEI->getEnumOperand()->getType().getEnumOrBoundGenericEnum();
if (!E)
return false;
// Look for a single other element on this enum.
EnumElementDecl *OtherElt = nullptr;
for (EnumElementDecl *Elt : E->getAllElements()) {
// Skip the case where we find the select_enum element
if (Elt == TrueElement.get())
continue;
// If we find another element, then we must have more than 2, so bail.
if (OtherElt)
return false;
OtherElt = Elt;
}
// Only a single enum element? How would this even get here? We should
// handle it in SILCombine.
if (!OtherElt)
return false;
Elts[1] = OtherElt;
SILBuilderWithScope Builder(SEI, &*I);
// Ok, we have a ref count instruction, sink it!
for (unsigned i = 0; i != 2; ++i) {
EnumElementDecl *Enum = Elts[i];
SILBasicBlock *Succ = i == 0 ? CondBr->getTrueBB() : CondBr->getFalseBB();
Builder.setInsertionPoint(&*Succ->begin());
if (Enum->hasAssociatedValues())
createRefCountOpForPayload(Builder, &*I, Enum, SEI->getEnumOperand());
}
I->eraseFromParent();
++NumSunk;
return true;
}
static bool tryTosinkIncrementsIntoSwitchRegions(SILBasicBlock::iterator T,
SILBasicBlock::iterator I,
bool CanSinkToSuccessors,
AliasAnalysis *AA,
RCIdentityFunctionInfo *RCIA) {
// The following methods should only be attempted if we can sink to our
// successor.
if (CanSinkToSuccessors) {
// If we have a switch, try to sink ref counts across it and then return
// that result. We do not keep processing since the code below cannot
// properly sink ref counts over switch_enums so we might as well exit
// early.
if (auto *S = dyn_cast<SwitchEnumInst>(T))
return tryToSinkRefCountAcrossSwitch(S, I, AA, RCIA);
// In contrast, even if we do not sink ref counts across a cond_br from a
// select_enum, we may be able to sink anyways. So we do not return on a
// failure case.
if (auto *CondBr = dyn_cast<CondBranchInst>(T))
if (tryToSinkRefCountAcrossSelectEnum(CondBr, I, AA, RCIA))
return true;
}
// At this point, this is a retain on a regular SSA value, leave it to retain
// release code motion to sink.
return false;
}
/// Try sink a retain as far as possible. This is either to successor BBs,
/// or as far down the current BB as possible
static bool sinkIncrementsIntoSwitchRegions(SILBasicBlock *BB,
AliasAnalysis *AA,
RCIdentityFunctionInfo *RCIA) {
// Make sure that each one of our successors only has one predecessor,
// us.
// If that condition is not true, we can still sink to the end of this BB,
// but not to successors.
bool CanSinkToSuccessor = std::none_of(
BB->succ_begin(), BB->succ_end(), [](const SILSuccessor &S) -> bool {
SILBasicBlock *SuccBB = S.getBB();
return !SuccBB || !SuccBB->getSinglePredecessorBlock();
});
SILInstruction *S = BB->getTerminator();
auto SI = S->getIterator(), SE = BB->begin();
if (SI == SE)
return false;
bool Changed = false;
// Walk from the terminator up the BB. Try move retains either to the next
// BB, or the end of this BB. Note that ordering is maintained of retains
// within this BB.
SI = std::prev(SI);
while (SI != SE) {
SILInstruction *Inst = &*SI;
SI = std::prev(SI);
// Try to:
//
// 1. If there are no decrements between our ref count inst and
// terminator, sink the ref count inst into either our successors.
// 2. If there are such decrements, move the retain right before that
// decrement.
Changed |= tryTosinkIncrementsIntoSwitchRegions(
S->getIterator(), Inst->getIterator(), CanSinkToSuccessor, AA, RCIA);
}
// Handle the first instruction in the BB.
Changed |= tryTosinkIncrementsIntoSwitchRegions(S->getIterator(), SI,
CanSinkToSuccessor, AA, RCIA);
return Changed;
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
static bool processFunction(SILFunction *F, AliasAnalysis *AA,
PostOrderFunctionInfo *PO,
RCIdentityFunctionInfo *RCIA,
bool HoistReleases) {
bool Changed = false;
EnumCaseDataflowContext BBToStateMap(PO);
for (unsigned RPOIdx = 0, RPOEnd = BBToStateMap.size(); RPOIdx < RPOEnd;
++RPOIdx) {
LLVM_DEBUG(llvm::dbgs() << "Visiting BB RPO#" << RPOIdx << "\n");
BBEnumTagDataflowState &State = BBToStateMap.getRPOState(RPOIdx);
LLVM_DEBUG(llvm::dbgs() <<" Predecessors (empty if no predecessors):\n");
LLVM_DEBUG(for (SILBasicBlock *Pred
: State.getBB()->getPredecessorBlocks()) {
llvm::dbgs() << " BB#" << RPOIdx << "; Ptr: " << Pred << "\n";
});
LLVM_DEBUG(llvm::dbgs() << " State Addr: " << &State << "\n");
// Merge in our predecessor states. We relook up our the states for our
// predecessors to avoid memory invalidation issues due to copying in the
// dense map.
LLVM_DEBUG(llvm::dbgs() << " Merging predecessors!\n");
State.mergePredecessorStates();
// If our predecessors cover any of our enum values, attempt to hoist
// releases up the CFG onto enum payloads or sink retains out of switch
// regions.
LLVM_DEBUG(llvm::dbgs() << " Attempting to move releases into "
"predecessors!\n");
// Perform a relatively local forms of retain sinking and release hoisting
// regarding switch regions and SILargument. This are not handled by retain
// release code motion.
if (HoistReleases) {
Changed |= State.hoistDecrementsIntoSwitchRegions(AA);
}
// Sink switch related retains.
Changed |= sinkIncrementsIntoSwitchRegions(State.getBB(), AA, RCIA);
Changed |= State.sinkIncrementsOutOfSwitchRegions(AA, RCIA);
// Then attempt to sink code from predecessors. This can include retains
// which is why we always attempt to move releases up the CFG before sinking
// code from predecessors. We will never sink the hoisted releases from
// predecessors since the hoisted releases will be on the enum payload
// instead of the enum itself.
Changed |= canonicalizeRefCountInstrs(State.getBB());
Changed |= sinkCodeFromPredecessors(BBToStateMap, State.getBB());
Changed |= sinkArgumentsFromPredecessors(BBToStateMap, State.getBB());
Changed |= sinkLiteralsFromPredecessors(State.getBB());
// Try to hoist release of a SILArgument to predecessors.
Changed |= hoistSILArgumentReleaseInst(State.getBB());
// Then perform the dataflow.
LLVM_DEBUG(llvm::dbgs() << " Performing the dataflow!\n");
Changed |= State.process();
}
return Changed;
}
class SILCodeMotion : public SILFunctionTransform {
bool HoistReleases;
public:
SILCodeMotion(bool TryReleaseHoisting) : HoistReleases(TryReleaseHoisting) {}
/// The entry point to the transformation.
void run() override {
auto *F = getFunction();
// Skip functions with ownership for now.
if (F->hasOwnership())
return;
auto *AA = getAnalysis<AliasAnalysis>(F);
auto *PO = getAnalysis<PostOrderAnalysis>()->get(F);
auto *RCIA = getAnalysis<RCIdentityAnalysis>()->get(getFunction());
LLVM_DEBUG(llvm::dbgs() << "***** CodeMotion on function: " << F->getName()
<< " *****\n");
if (processFunction(F, AA, PO, RCIA, HoistReleases))
invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
}
};
} // end anonymous namespace
/// Code motion that does not releases into diamonds.
SILTransform *swift::createEarlyCodeMotion() {
return new SILCodeMotion(false);
}
/// Code motion that hoists releases into diamonds.
SILTransform *swift::createLateCodeMotion() {
return new SILCodeMotion(true);
}
|