File: SILMem2Reg.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (2225 lines) | stat: -rw-r--r-- 84,644 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
//===--- SILMem2Reg.cpp - Promotes AllocStacks to registers ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This pass promotes AllocStack instructions into virtual register
// references. It only handles load, store and deallocation
// instructions. The algorithm is based on:
//
//  Sreedhar and Gao. A linear time algorithm for placing phi-nodes. POPL '95.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "sil-mem2reg"

#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Basic/GraphNodeWorklist.h"
#include "swift/Basic/TaggedUnion.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/OSSALifetimeCompletion.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/StackList.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/CanonicalizeBorrowScope.h"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/ScopeOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include <queue>

using namespace swift;
using namespace swift::siloptimizer;

STATISTIC(NumAllocStackFound,    "Number of AllocStack found");
STATISTIC(NumAllocStackCaptured, "Number of AllocStack captured");
STATISTIC(NumInstRemoved,        "Number of Instructions removed");

llvm::cl::opt<bool> Mem2RegDisableLifetimeCanonicalization(
    "sil-mem2reg-disable-lifetime-canonicalization", llvm::cl::init(false),
    llvm::cl::desc("Don't canonicalize any lifetimes during Mem2Reg."));

static bool lexicalLifetimeEnsured(AllocStackInst *asi);
static bool isGuaranteedLexicalValue(SILValue src);

namespace {

using DomTreeNode = llvm::DomTreeNodeBase<SILBasicBlock>;
using DomTreeLevelMap = llvm::DenseMap<DomTreeNode *, unsigned>;

/// A transient structure containing the values that are accessible in some
/// context: coming into a block, going out of the block, or within a block
/// (during promoteAllocationInBlock and removeSingleBlockAllocation).
///
/// At block boundaries, these are phi arguments or initializationPoints.  As we
/// iterate over a block, a way to keep track of the current (running) value
/// within a block.
class LiveValues {
public:
  struct Owned {
    SILValue stored = SILValue();
    SILValue move = SILValue();

    /// Create an instance of the minimum values required to replace a usage of
    /// an AllocStackInst.  It consists of only one value.
    ///
    /// Whether the one value occupies the stored or the move field depends on
    /// whether the alloc_stack is lexical.  If it is lexical, then usages of
    /// the asi will be replaced with usages of the move field; otherwise,
    /// those usages will be replaced with usages of the stored field.  The
    /// implementation constructs an instance to match those requirements.
    static Owned toReplace(AllocStackInst *asi, SILValue replacement) {
      if (lexicalLifetimeEnsured(asi))
        return {SILValue(), replacement};
      return {replacement, SILValue()};
    }

    /// The value with which usages of the provided AllocStackInst should be
    /// replaced.
    SILValue replacement(AllocStackInst *asi, SILInstruction *toReplace) {
      if (!lexicalLifetimeEnsured(asi)) {
        return stored;
      }
      // We should have created a move of the @owned stored value.
      assert(move);
      return move;
    }

    bool canEndLexicalLifetime() {
      // If running value originates from a load which was not preceded by a
      // store in the same basic block, then we don't have enough information
      // to end a lexical lifetime. In that case, the lifetime end will be
      // added later, when we have enough information, namely the live in
      // values, to end it.
      return move;
    }
  };
  struct Guaranteed {
    SILValue stored = SILValue();
    SILValue borrow = SILValue();

    /// Create an instance of the minimum values required to replace a usage of
    /// an AllocStackInst.  It consists of only one value.
    ///
    /// Whether the one value occupies the stored or the borrow field depends
    /// on whether the alloc_stack is lexical.  If it is lexical, then usages
    /// of \p asi will be replaced with usages of the borrow field; otherwise,
    /// those usages will be replaced with usages of the stored field.  The
    /// implementation constructs an instance to match those requirements.
    static Guaranteed toReplace(AllocStackInst *asi, SILValue replacement) {
      if (lexicalLifetimeEnsured(asi))
        return {SILValue(), replacement};
      return {replacement, SILValue()};
    }

    /// The value with which usages of the provided AllocStackInst should be
    /// replaced.
    SILValue replacement(AllocStackInst *asi, SILInstruction *toReplace) {
      if (!lexicalLifetimeEnsured(asi)) {
        return stored;
      }
      // For guaranteed lexical AllocStackInsts--i.e. those that are
      // store_borrow locations--we may have created a borrow if the stored
      // value is a non-lexical guaranteed value.
      assert(isGuaranteedLexicalValue(stored) || borrow);
      return borrow ? borrow : stored;
    }

    bool canEndLexicalLifetime() {
      // There are two different cases when we don't create a lexical lifetime
      // end for a guaranteed running value:
      //
      // If the source of the store_borrow is already lexical, then the running
      // value doesn't have a lexical lifetime of its own which could be ended.
      //
      // If running value originates from a load which was not preceded by a
      // store_borrow in the same basic block, then we don't have enough
      // information to end a lexical lifetime. In that case, the lifetime end
      // will be added later, when we have enough information, namely the live
      // in values, to end it.
      return borrow;
    }
  };

private:
  using Storage = TaggedUnion<Owned, Guaranteed>;
  Storage storage;

  LiveValues(Storage storage) : storage(storage) {}

  static LiveValues forGuaranteed(Guaranteed values) {
    return {Storage(values)};
  }

  static LiveValues forOwned(Owned values) { return {Storage(values)}; }

public:
  enum class Kind {
    Owned,
    Guaranteed,
  };

  Kind getKind() {
    if (storage.isa<Owned>()) {
      return Kind::Owned;
    }
    return Kind::Guaranteed;
  }

  bool isOwned() { return getKind() == Kind::Owned; }

  bool isGuaranteed() { return getKind() == Kind::Guaranteed; }

  static LiveValues forGuaranteed(SILValue stored, SILValue borrow) {
    return LiveValues::forGuaranteed({stored, borrow});
  }

  static LiveValues forOwned(SILValue stored, SILValue move) {
    return LiveValues::forOwned({stored, move});
  }

  static LiveValues toReplace(AllocStackInst *asi, SILValue replacement) {
    if (replacement->getOwnershipKind() == OwnershipKind::Guaranteed) {
      return LiveValues::forGuaranteed(Guaranteed::toReplace(asi, replacement));
    }
    return LiveValues::forOwned(Owned::toReplace(asi, replacement));
  }

  Owned getOwned() { return storage.get<Owned>(); }

  Guaranteed getGuaranteed() { return storage.get<Guaranteed>(); }

  SILValue replacement(AllocStackInst *asi, SILInstruction *toReplace) {
    if (auto *owned = storage.dyn_cast<Owned>()) {
      return owned->replacement(asi, toReplace);
    }
    auto &guaranteed = storage.get<Guaranteed>();
    return guaranteed.replacement(asi, toReplace);
  }

  SILValue getStored() {
    if (auto *owned = storage.dyn_cast<Owned>()) {
      return owned->stored;
    }
    auto &guaranteed = storage.get<Guaranteed>();
    return guaranteed.stored;
  }

  bool canEndLexicalLifetime() {
    if (auto *owned = storage.dyn_cast<Owned>()) {
      return owned->canEndLexicalLifetime();
    }
    auto &guaranteed = storage.get<Guaranteed>();
    return guaranteed.canEndLexicalLifetime();
  }
};

/// A transient structure used only by promoteAllocationInBlock and
/// removeSingleBlockAllocation.
///
/// A pair of a CFG-position-relative value T and a boolean indicating whether
/// the alloc_stack's storage is valid at the position where that value exists.
template <typename T>
struct StorageStateTracking {
  /// The value which exists at some CFG position.
  T value;
  /// Whether the stack storage is initialized at that position.
  bool isStorageValid;
};

} // anonymous namespace

//===----------------------------------------------------------------------===//
//                                 Utilities
//===----------------------------------------------------------------------===//

/// Make the specified instruction cease to be a user of its operands and add it
/// to the list of instructions to delete.
///
/// This both (1) removes the specified instruction from the list of users of
/// its operands, avoiding disrupting logic that examines those users and (2)
/// keeps the specified instruction in place, allowing it to be used for
/// insertion until instructionsToDelete is culled.
static void
prepareForDeletion(SILInstruction *inst,
                   SmallVectorImpl<SILInstruction *> &instructionsToDelete) {
  for (auto &operand : inst->getAllOperands()) {
    operand.set(SILUndef::get(operand.get()));
  }
  instructionsToDelete.push_back(inst);
}

static void
replaceDestroy(DestroyAddrInst *dai, SILValue newValue, SILBuilderContext &ctx,
               InstructionDeleter &deleter,
               SmallVectorImpl<SILInstruction *> &instructionsToDelete) {
  SILFunction *f = dai->getFunction();
  auto ty = dai->getOperand()->getType();

  assert(ty.isLoadable(*f) && "Unexpected promotion of address-only type!");

  assert(newValue ||
         (ty.is<TupleType>() && ty.getAs<TupleType>()->getNumElements() == 0));

  SILBuilderWithScope builder(dai, ctx);

  auto &typeLowering = f->getTypeLowering(ty);

  bool expand = shouldExpand(dai->getModule(),
                             dai->getOperand()->getType().getObjectType());
  using TypeExpansionKind = Lowering::TypeLowering::TypeExpansionKind;
  auto expansionKind = expand ? TypeExpansionKind::MostDerivedDescendents
                              : TypeExpansionKind::None;
  typeLowering.emitLoweredDestroyValue(builder, dai->getLoc(), newValue,
                                       expansionKind);

  prepareForDeletion(dai, instructionsToDelete);
}

/// Returns true if \p I is a load which loads from \p ASI.
static bool isLoadFromStack(SILInstruction *i, AllocStackInst *asi) {
  if (!isa<LoadInst>(i) && !isa<LoadBorrowInst>(i))
    return false;

  if (auto *lbi = dyn_cast<LoadBorrowInst>(i)) {
    if (BorrowedValue(lbi).hasReborrow())
      return false;
  }

  // Skip struct and tuple address projections.
  ValueBase *op = i->getOperand(0);
  while (op != asi) {
    if (!isa<UncheckedAddrCastInst>(op) && !isa<StructElementAddrInst>(op) &&
        !isa<TupleElementAddrInst>(op) && !isa<StoreBorrowInst>(op))
      return false;
    if (auto *sbi = dyn_cast<StoreBorrowInst>(op)) {
      op = sbi->getDest();
      continue;
    }
    op = cast<SingleValueInstruction>(op)->getOperand(0);
  }
  return true;
}

/// Collects all load instructions which (transitively) use \p i as address.
static void collectLoads(SILInstruction *i,
                         SmallVectorImpl<SILInstruction *> &foundLoads) {
  if (isa<LoadInst>(i) || isa<LoadBorrowInst>(i)) {
    foundLoads.push_back(i);
    return;
  }
  if (!isa<UncheckedAddrCastInst>(i) && !isa<StructElementAddrInst>(i) &&
      !isa<TupleElementAddrInst>(i))
    return;

  // Recursively search for other loads in the instruction's uses.
  for (auto *use : cast<SingleValueInstruction>(i)->getUses()) {
    collectLoads(use->getUser(), foundLoads);
  }
}

/// Returns true if \p I is an address of a LoadInst, skipping struct and
/// tuple address projections. Sets \p singleBlock to null if the load (or
/// it's address is not in \p singleBlock.
/// This function looks for these patterns:
/// 1. (load %ASI)
/// 2. (load (struct_element_addr/tuple_element_addr/unchecked_addr_cast %ASI))
static bool isAddressForLoad(SILInstruction *load, SILBasicBlock *&singleBlock,
                             bool &involvesUntakableProjection) {
  if (auto *li = dyn_cast<LoadInst>(load)) {
    // SILMem2Reg is disabled when we find a load [take] of an untakable
    // projection.  See below for further discussion.
    if (involvesUntakableProjection &&
        li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
      return false;
    }
    return true;
  }

  if (isa<LoadBorrowInst>(load)) {
    if (involvesUntakableProjection) {
      return false;
    }
    return true;
  }

  if (!isa<UncheckedAddrCastInst>(load) && !isa<StructElementAddrInst>(load) &&
      !isa<TupleElementAddrInst>(load))
    return false;

  // None of the projections are lowered to owned values:
  //
  // struct_element_addr and tuple_element_addr instructions are lowered to
  // struct_extract and tuple_extract instructions respectively.  These both
  // have guaranteed ownership (since they forward ownership and can only be
  // used on a guaranteed value).
  //
  // unchecked_addr_cast instructions are lowered to unchecked_bitwise_cast
  // instructions.  These have unowned ownership.
  //
  // So in no case can a load [take] be lowered into the new projected value
  // (some sequence of struct_extract, tuple_extract, and
  // unchecked_bitwise_cast instructions) taking over ownership of the original
  // value.  Without additional changes.
  //
  // For example, for a sequence of element_addr projections could be
  // transformed into a sequence of destructure instructions, followed by a
  // sequence of structure instructions where all the original values are
  // kept in place but the taken value is "knocked out" and replaced with
  // undef.  The running value would then be set to the newly structed
  // "knockout" value.
  //
  // Alternatively, a new copy of the running value could be created and a new
  // set of destroys placed after its last uses.
  involvesUntakableProjection = true;

  // Recursively search for other (non-)loads in the instruction's uses.
  auto *svi = cast<SingleValueInstruction>(load);
  for (auto *use : svi->getUses()) {
    SILInstruction *user = use->getUser();
    if (user->getParent() != singleBlock)
      singleBlock = nullptr;

    if (!isAddressForLoad(user, singleBlock, involvesUntakableProjection))
      return false;
  }
  return true;
}

/// Returns true if \p I is a dead struct_element_addr or tuple_element_addr.
static bool isDeadAddrProjection(SILInstruction *inst) {
  if (!isa<UncheckedAddrCastInst>(inst) && !isa<StructElementAddrInst>(inst) &&
      !isa<TupleElementAddrInst>(inst))
    return false;

  // Recursively search for uses which are dead themselves.
  for (auto UI : cast<SingleValueInstruction>(inst)->getUses()) {
    SILInstruction *II = UI->getUser();
    if (!isDeadAddrProjection(II))
      return false;
  }
  return true;
}

/// Returns true if this \p def is captured.
/// Sets \p inSingleBlock to true if all uses of \p def are in a single block.
static bool isCaptured(SILValue def, bool *inSingleBlock) {
  SILBasicBlock *singleBlock = def->getParentBlock();

  // For all users of the def
  for (auto *use : def->getUses()) {
    SILInstruction *user = use->getUser();

    if (user->getParent() != singleBlock)
      singleBlock = nullptr;

    // Loads are okay.
    bool involvesUntakableProjection = false;
    if (isAddressForLoad(user, singleBlock, involvesUntakableProjection))
      continue;

    // We can store into an AllocStack (but not the pointer).
    if (auto *si = dyn_cast<StoreInst>(user))
      if (si->getDest() == def)
        continue;

    if (auto *sbi = dyn_cast<StoreBorrowInst>(user)) {
      if (sbi->getDest() == def) {
        if (isCaptured(sbi, inSingleBlock)) {
          return true;
        }
        continue;
      }
    }

    // Deallocation is also okay, as are DebugValue w/ address value. We will
    // promote the latter into normal DebugValue.
    if (isa<DeallocStackInst>(user) || DebugValueInst::hasAddrVal(user))
      continue;

    if (isa<EndBorrowInst>(user))
      continue;

    // Destroys of loadable types can be rewritten as releases, so
    // they are fine.
    if (auto *dai = dyn_cast<DestroyAddrInst>(user))
      if (dai->getOperand()->getType().isLoadable(*dai->getFunction()))
        continue;

    // Other instructions are assumed to capture the AllocStack.
    LLVM_DEBUG(llvm::dbgs() << "*** AllocStack is captured by: " << *user);
    return true;
  }

  // None of the users capture the AllocStack.
  *inSingleBlock = (singleBlock != nullptr);
  return false;
}

/// Returns true if the \p def is only stored into.
static bool isWriteOnlyAllocation(SILValue def) {
  assert(isa<AllocStackInst>(def) || isa<StoreBorrowInst>(def));

  // For all users of the def:
  for (auto *use : def->getUses()) {
    SILInstruction *user = use->getUser();

    // It is okay to store into the AllocStack.
    if (auto *si = dyn_cast<StoreInst>(user))
      if (!isa<AllocStackInst>(si->getSrc()))
        continue;

    if (auto *sbi = dyn_cast<StoreBorrowInst>(user)) {
      // Since all uses of the alloc_stack will be via store_borrow, check if
      // there are any non-writes from the store_borrow location.
      if (!isWriteOnlyAllocation(sbi)) {
        return false;
      }
      continue;
    }

    // Deallocation is also okay.
    if (isa<DeallocStackInst>(user))
      continue;

    if (isa<EndBorrowInst>(user))
      continue;

    // If we haven't already promoted the AllocStack, we may see
    // DebugValue uses.
    if (DebugValueInst::hasAddrVal(user))
      continue;

    if (isDeadAddrProjection(user))
      continue;

    // Can't do anything else with it.
    LLVM_DEBUG(llvm::dbgs() << "*** AllocStack has non-write use: " << *user);
    return false;
  }

  return true;
}

static void
replaceLoad(SILInstruction *inst, SILValue newValue, AllocStackInst *asi,
            SILBuilderContext &ctx, InstructionDeleter &deleter,
            SmallVectorImpl<SILInstruction *> &instructionsToDelete) {
  assert(isa<LoadInst>(inst) || isa<LoadBorrowInst>(inst));
  ProjectionPath projections(newValue->getType());
  SILValue op = inst->getOperand(0);
  SILBuilderWithScope builder(inst, ctx);
  SILOptScope scope;

  while (op != asi) {
    assert(isa<UncheckedAddrCastInst>(op) || isa<StructElementAddrInst>(op) ||
           isa<TupleElementAddrInst>(op) ||
           isa<StoreBorrowInst>(op) &&
               "found instruction that should have been skipped in "
               "isLoadFromStack");
    if (auto *sbi = dyn_cast<StoreBorrowInst>(op)) {
      op = sbi->getDest();
      continue;
    }
    auto *projInst = cast<SingleValueInstruction>(op);
    projections.push_back(Projection(projInst));
    op = projInst->getOperand(0);
  }

  for (const auto &proj : llvm::reverse(projections)) {
    assert(proj.getKind() == ProjectionKind::BitwiseCast ||
           proj.getKind() == ProjectionKind::Struct ||
           proj.getKind() == ProjectionKind::Tuple);

    // struct_extract and tuple_extract expect guaranteed operand ownership
    // non-trivial RunningVal is owned. Insert borrow operation to convert them
    // to guaranteed!
    if (proj.getKind() == ProjectionKind::Struct ||
        proj.getKind() == ProjectionKind::Tuple) {
      if (auto opVal = scope.borrowValue(inst, newValue)) {
        assert(*opVal != newValue &&
               "Valid value should be different from input value");
        newValue = *opVal;
      }
    }
    newValue =
        proj.createObjectProjection(builder, inst->getLoc(), newValue).get();
  }

  op = inst->getOperand(0);

  if (auto *lbi = dyn_cast<LoadBorrowInst>(inst)) {
    if (lexicalLifetimeEnsured(asi) &&
        newValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
      SmallVector<SILInstruction *, 4> endBorrows;
      for (auto *ebi : lbi->getUsersOfType<EndBorrowInst>()) {
        endBorrows.push_back(ebi);
      }
      for (auto *ebi : endBorrows) {
        prepareForDeletion(ebi, instructionsToDelete);
      }
      lbi->replaceAllUsesWith(newValue);
    } else {
      auto *borrow = SILBuilderWithScope(lbi, ctx).createBeginBorrow(
          lbi->getLoc(), newValue, asi->isLexical());
      lbi->replaceAllUsesWith(borrow);
    }
  } else {
    auto *li = cast<LoadInst>(inst);
    // Replace users of the loaded value with `newValue`
    // If we have a load [copy], replace the users with copy_value of `newValue`
    if (li->getOwnershipQualifier() == LoadOwnershipQualifier::Copy) {
      li->replaceAllUsesWith(builder.createCopyValue(li->getLoc(), newValue));
    } else {
      li->replaceAllUsesWith(newValue);
    }
  }

  // Pop the scope so that we emit cleanups.
  std::move(scope).popAtEndOfScope(&*builder.getInsertionPoint());

  // Delete the load
  prepareForDeletion(inst, instructionsToDelete);

  while (op != asi && op->use_empty()) {
    assert(isa<UncheckedAddrCastInst>(op) || isa<StructElementAddrInst>(op) ||
           isa<TupleElementAddrInst>(op) || isa<StoreBorrowInst>(op));
    if (auto *sbi = dyn_cast<StoreBorrowInst>(op)) {
      SILValue next = sbi->getDest();
      deleter.forceDelete(sbi);
      op = next;
      continue;
    }
    auto *inst = cast<SingleValueInstruction>(op);
    SILValue next = inst->getOperand(0);
    deleter.forceDelete(inst);
    op = next;
  }
}


/// Whether lexical lifetimes should be added for the values stored into the
/// alloc_stack.
static bool lexicalLifetimeEnsured(AllocStackInst *asi) {
  return asi->getFunction()->hasOwnership() &&
         asi->getFunction()
                 ->getModule()
                 .getASTContext()
                 .SILOpts.LexicalLifetimes == LexicalLifetimesOption::On &&
         asi->isLexical() &&
         !asi->getElementType().isTrivial(*asi->getFunction());
}

static bool isGuaranteedLexicalValue(SILValue src) {
  return src->getOwnershipKind() == OwnershipKind::Guaranteed &&
         src->isLexical();
}

/// Returns true if we have enough information to end the lifetime.
static bool canEndLexicalLifetime(LiveValues values) {
  return values.canEndLexicalLifetime();
}

static SILValue getLexicalValueForStore(SILInstruction *inst,
                                        AllocStackInst *asi) {
  assert(isa<StoreInst>(inst) || isa<StoreBorrowInst>(inst));

  SILValue stored = inst->getOperand(CopyLikeInstruction::Src);
  LLVM_DEBUG(llvm::dbgs() << "*** Found Store def " << stored);

  if (!lexicalLifetimeEnsured(asi)) {
    return SILValue();
  }
  if (isa<StoreBorrowInst>(inst)) {
    if (isGuaranteedLexicalValue(stored)) {
      return SILValue();
    }
    auto borrow = cast<BeginBorrowInst>(inst->getNextInstruction());
    return borrow;
  }
  auto move = cast<MoveValueInst>(inst->getNextInstruction());
  return move;
}

/// Begin a lexical borrow scope for the value stored into the provided
/// StoreInst after that instruction.
///
/// The beginning of the scope looks like
///
///     %lifetime = move_value [lexical] %original
///
/// Because the value was consumed by the original store instruction, it can
/// be rewritten to be consumed by a lexical move_value.
static StorageStateTracking<LiveValues>
beginOwnedLexicalLifetimeAfterStore(AllocStackInst *asi, StoreInst *inst) {
  assert(lexicalLifetimeEnsured(asi));
  SILValue stored = inst->getOperand(CopyLikeInstruction::Src);
  SILLocation loc = RegularLocation::getAutoGeneratedLocation(inst->getLoc());

  MoveValueInst *mvi = nullptr;
  SILBuilderWithScope::insertAfter(inst, [&](SILBuilder &builder) {
    mvi = builder.createMoveValue(loc, stored, IsLexical);
  });
  StorageStateTracking<LiveValues> vals = {LiveValues::forOwned(stored, mvi),
                                           /*isStorageValid=*/true};
  return vals;
}

/// Begin a lexical borrow scope for the value stored via the provided
/// StoreBorrowInst after that instruction.  Only do so if the stored value is
/// non-lexical.
static StorageStateTracking<LiveValues>
beginGuaranteedLexicalLifetimeAfterStore(AllocStackInst *asi,
                                         StoreBorrowInst *inst) {
  assert(lexicalLifetimeEnsured(asi));
  SILValue stored = inst->getOperand(CopyLikeInstruction::Src);
  SILLocation loc = RegularLocation::getAutoGeneratedLocation(inst->getLoc());

  if (isGuaranteedLexicalValue(stored)) {
    return {LiveValues::forGuaranteed(stored, {}), /*isStorageValid*/ true};
  }
  auto *borrow = SILBuilderWithScope(inst->getNextInstruction())
                     .createBeginBorrow(loc, stored, IsLexical);
  return {LiveValues::forGuaranteed(stored, borrow), /*isStorageValid*/ true};
}

/// End the lexical borrow scope for an @owned stored value described by the
/// provided LiveValues struct before the specified instruction.
///
/// The end of the scope looks like
///
///     destroy_value %lifetime
///
/// This instruction corresponds to the following instructions that begin a
/// lexical borrow scope:
///
///     %lifetime = move_value [lexical] %original
///
/// However, no intervention is required to explicitly end the lifetime because
/// it will already have been ended naturally by destroy_addrs (or equivalent)
/// of the alloc_stack.
static void endOwnedLexicalLifetimeBeforeInst(AllocStackInst *asi,
                                              SILInstruction *beforeInstruction,
                                              SILBuilderContext &ctx,
                                              LiveValues::Owned values) {
  assert(lexicalLifetimeEnsured(asi));
  assert(beforeInstruction);
}

/// End the lexical borrow scope for an @guaranteed stored value described by
/// the provided LiveValues struct before the specified instruction.
static void endGuaranteedLexicalLifetimeBeforeInst(
    AllocStackInst *asi, SILInstruction *beforeInstruction,
    SILBuilderContext &ctx, LiveValues::Guaranteed values) {
  assert(lexicalLifetimeEnsured(asi));
  assert(beforeInstruction);
  assert(values.borrow);

  SILBuilderWithScope builder(beforeInstruction);
  builder.createEndBorrow(RegularLocation::getAutoGeneratedLocation(),
                          values.borrow);
}

//===----------------------------------------------------------------------===//
//                     Single Stack Allocation Promotion
//===----------------------------------------------------------------------===//

namespace {

/// Promotes a single AllocStackInst into registers..
class StackAllocationPromoter {
  using BlockToInstMap = llvm::DenseMap<SILBasicBlock *, SILInstruction *>;

  // Use a priority queue keyed on dominator tree level so that inserted nodes
  // are handled from the bottom of the dom tree upwards.
  using DomTreeNodePair = std::pair<DomTreeNode *, unsigned>;
  using NodePriorityQueue =
      std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
                          llvm::less_second>;

  /// The AllocStackInst that we are handling.
  AllocStackInst *asi;

  /// The unique deallocation instruction. This value could be NULL if there are
  /// multiple deallocations.
  DeallocStackInst *dsi;

  /// Dominator info.
  DominanceInfo *domInfo;

  /// Map from dominator tree node to tree level.
  DomTreeLevelMap &domTreeLevels;

  /// The SIL builder used when creating new instructions during register
  /// promotion.
  SILBuilderContext &ctx;

  InstructionDeleter &deleter;

  /// Instructions that could not be deleted immediately with forceDelete until
  /// StackAllocationPromoter finishes its run.
  ///
  /// There are two reasons why an instruction might not be deleted:
  /// (1) new instructions are inserted before or after it
  /// (2) it ensures that an instruction remains used, preventing it from being
  ///     deleted
  SmallVectorImpl<SILInstruction *> &instructionsToDelete;

  /// The last instruction in each block that initializes the storage that is
  /// not succeeded by an instruction that deinitializes it.
  ///
  /// The live-out values for every block can be derived from these.
  ///
  /// This is either a StoreInst or a StoreBorrowInst.
  ///
  /// If the alloc_stack is non-lexical, the only live-out value is the source
  /// operand of the instruction.
  ///
  /// If the alloc_stack is lexical but the stored value is already lexical, no
  /// additional lexical lifetime is necessary and as an optimization can be
  /// omitted.  In that case, the only live-out value is the source operand of
  /// the instruction.  This optimization has been implemented for guaranteed
  /// alloc_stacks.
  ///
  /// If the alloc_stack is lexical and the stored value is not already lexical,
  /// a lexical lifetime must be introduced that matches the duration in which
  /// the value remains in the alloc_stack:
  /// - For owned alloc_stacks, a move_value [lexical] of the stored value is
  /// created.  That move_value is the instruction after the store, and it is
  /// the other running value.
  /// - For guaranteed alloc_stacks, a begin_borrow [lexical] of the
  /// store_borrow'd value is created.  That begin_borrow is the instruction
  /// after the store_borrow, and it is the other running value.
  BlockToInstMap initializationPoints;

  /// The first instruction in each block that deinitializes the storage that is
  /// not preceded by an instruction that initializes it.
  ///
  /// That includes:
  ///     store
  ///     destroy_addr
  ///     load [take]
  /// Or
  ///     end_borrow
  /// Ending lexical lifetimes before these instructions is one way that the
  /// cross-block lexical lifetimes of initializationPoints can be ended in
  /// StackAllocationPromoter::endLexicalLifetime.
  BlockToInstMap deinitializationPoints;

public:
  /// C'tor.
  StackAllocationPromoter(
      AllocStackInst *inputASI, DominanceInfo *inputDomInfo,
      DomTreeLevelMap &inputDomTreeLevels, SILBuilderContext &inputCtx,
      InstructionDeleter &deleter,
      SmallVectorImpl<SILInstruction *> &instructionsToDelete)
      : asi(inputASI), dsi(nullptr), domInfo(inputDomInfo),
        domTreeLevels(inputDomTreeLevels), ctx(inputCtx), deleter(deleter),
        instructionsToDelete(instructionsToDelete) {
    // Scan the users in search of a deallocation instruction.
    for (auto *use : asi->getUses()) {
      if (auto *foundDealloc = dyn_cast<DeallocStackInst>(use->getUser())) {
        // Don't record multiple dealloc instructions.
        if (dsi) {
          dsi = nullptr;
          break;
        }
        // Record the deallocation instruction.
        dsi = foundDealloc;
      }
    }
  }

  /// Promote the Allocation.
  void run(BasicBlockSetVector &livePhiBlocks);

private:
  /// Promote AllocStacks into SSA.
  void promoteAllocationToPhi(BasicBlockSetVector &livePhiBlocks);

  /// Replace the dummy nodes with new block arguments.
  void addBlockArguments(BasicBlockSetVector &phiBlocks);

  /// Check if \p phi is a proactively added phi by SILMem2Reg
  bool isProactivePhi(SILPhiArgument *phi,
                      const BasicBlockSetVector &phiBlocks);

  /// Check if \p proactivePhi is live.
  bool isNecessaryProactivePhi(SILPhiArgument *proactivePhi,
                               const BasicBlockSetVector &phiBlocks);

  /// Given a \p proactivePhi that is live, backward propagate liveness to
  /// other proactivePhis.
  void propagateLiveness(SILPhiArgument *proactivePhi,
                         const BasicBlockSetVector &phiBlocks,
                         SmallPtrSetImpl<SILPhiArgument *> &livePhis);

  /// End the lexical borrow scope that is introduced for lexical alloc_stack
  /// instructions.
  void endLexicalLifetime(BasicBlockSetVector &phiBlocks);

  /// Fix all of the branch instructions and the uses to use
  /// the AllocStack definitions (which include stores and Phis).
  void fixBranchesAndUses(BasicBlockSetVector &blocks,
                          BasicBlockSetVector &liveBlocks);

  /// update the branch instructions with the new Phi argument.
  /// The blocks in \p PhiBlocks are blocks that define a value, \p Dest is
  /// the branch destination, and \p Pred is the predecessors who's branch we
  /// modify.
  void fixPhiPredBlock(BasicBlockSetVector &phiBlocks, SILBasicBlock *dest,
                       SILBasicBlock *pred);

  /// Get the values for this AllocStack variable that are flowing out of
  /// StartBB.
  std::optional<LiveValues> getLiveOutValues(BasicBlockSetVector &phiBlocks,
                                             SILBasicBlock *startBlock);

  /// Get the values for this AllocStack variable that are flowing out of
  /// StartBB or undef if there are none.
  LiveValues getEffectiveLiveOutValues(BasicBlockSetVector &phiBlocks,
                                       SILBasicBlock *startBlock);

  /// Get the values for this AllocStack variable that are flowing into block.
  std::optional<LiveValues> getLiveInValues(BasicBlockSetVector &phiBlocks,
                                            SILBasicBlock *block);

  /// Get the values for this AllocStack variable that are flowing into block or
  /// undef if there are none.
  LiveValues getEffectiveLiveInValues(BasicBlockSetVector &phiBlocks,
                                      SILBasicBlock *block);

  /// Prune AllocStacks usage in the function. Scan the function
  /// and remove in-block usage of the AllocStack. Leave only the first
  /// load and the last store.
  void pruneAllocStackUsage();

  /// Promote all of the AllocStacks in a single basic block in one
  /// linear scan. This function deletes all of the loads and stores except
  /// for the first load and the last store.
  /// \returns the last StoreInst found, whose storage was not subsequently
  ///          deinitialized
  SILInstruction *promoteAllocationInBlock(SILBasicBlock *block);
};

} // end of namespace

SILInstruction *StackAllocationPromoter::promoteAllocationInBlock(
    SILBasicBlock *blockPromotingWithin) {
  LLVM_DEBUG(llvm::dbgs() << "*** Promoting ASI in block: " << *asi);

  // RunningVal is the current value in the stack location.
  // We don't know the value of the alloca until we find the first store.
  //
  // States:
  // - None: no values have been encountered within this block
  // - Some + !isStorageValid: a value was encountered but is no longer stored--
  //                           it has been destroy_addr'd, etc
  // - Some + isStorageValid: a value was encountered and is currently stored
  std::optional<StorageStateTracking<LiveValues>> runningVals;
  // The most recent StoreInst or StoreBorrowInst that encountered while
  // iterating over the block.  The final value will be returned to the caller
  // which will use it to determine the live-out value of the block.
  SILInstruction *lastStoreInst = nullptr;

  // For all instructions in the block.
  for (auto bbi = blockPromotingWithin->begin(),
            bbe = blockPromotingWithin->end();
       bbi != bbe;) {
    SILInstruction *inst = &*bbi;
    ++bbi;

    if (isLoadFromStack(inst, asi)) {
      assert(!runningVals || runningVals->isStorageValid);
      auto *li = dyn_cast<LoadInst>(inst);
      if (li && li->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
        if (lexicalLifetimeEnsured(asi)) {
          // End the lexical lifetime at a load [take].  The storage is no
          // longer keeping the value alive.
          if (runningVals && canEndLexicalLifetime(runningVals->value)) {
            // End it right now if we have enough information.
            endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/li,
                                              ctx,
                                              runningVals->value.getOwned());
          } else {
            // If we don't have enough information, end it endLexicalLifetime.
            assert(!deinitializationPoints[blockPromotingWithin]);
            deinitializationPoints[blockPromotingWithin] = li;
          }
        }
        if (runningVals)
          runningVals->isStorageValid = false;
      }

      if (runningVals) {
        // If we are loading from the AllocStackInst and we already know the
        // content of the Alloca then use it.
        LLVM_DEBUG(llvm::dbgs() << "*** Promoting load: " << *inst);
        replaceLoad(inst, runningVals->value.replacement(asi, inst), asi, ctx,
                    deleter, instructionsToDelete);
        ++NumInstRemoved;
      } else if (li && li->getOperand() == asi &&
                 li->getOwnershipQualifier() != LoadOwnershipQualifier::Copy) {
        // If we don't know the content of the AllocStack then the loaded
        // value *is* the new value;
        // Don't use result of load [copy] as a RunningVal, it necessitates
        // additional logic for cleanup of consuming instructions of the result.
        // StackAllocationPromoter::fixBranchesAndUses will later handle it.
        LLVM_DEBUG(llvm::dbgs() << "*** First load: " << *li);
        runningVals = {LiveValues::toReplace(asi, /*replacement=*/li),
                       /*isStorageValid=*/true};
      }
      continue;
    }

    // Remove stores and record the value that we are saving as the running
    // value.
    if (auto *si = dyn_cast<StoreInst>(inst)) {
      if (si->getDest() != asi)
        continue;

      // If we see a store [assign], always convert it to a store [init]. This
      // simplifies further processing.
      if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
        if (runningVals) {
          assert(runningVals->isStorageValid);
          SILBuilderWithScope(si, ctx).createDestroyValue(
              si->getLoc(), runningVals->value.replacement(asi, si));
        } else {
          SILBuilderWithScope localBuilder(si, ctx);
          auto *newLoad = localBuilder.createLoad(si->getLoc(), asi,
                                                  LoadOwnershipQualifier::Take);
          localBuilder.createDestroyValue(si->getLoc(), newLoad);
          if (lexicalLifetimeEnsured(asi)) {
            assert(!deinitializationPoints[blockPromotingWithin]);
            deinitializationPoints[blockPromotingWithin] = si;
          }
        }
        si->setOwnershipQualifier(StoreOwnershipQualifier::Init);
      }

      // If we met a store before this one, delete it.
      if (lastStoreInst) {
        assert(cast<StoreInst>(lastStoreInst)->getOwnershipQualifier() !=
                   StoreOwnershipQualifier::Assign &&
               "store [assign] to the stack location should have been "
               "transformed to a store [init]");
        LLVM_DEBUG(llvm::dbgs()
                   << "*** Removing redundant store: " << lastStoreInst);
        ++NumInstRemoved;
        prepareForDeletion(lastStoreInst, instructionsToDelete);
      }

      auto oldRunningVals = runningVals;
      // The stored value is the new running value.
      runningVals = {LiveValues::toReplace(asi, /*replacement=*/si->getSrc()),
                     /*isStorageValid=*/true};
      // The current store is now the lastStoreInst (until we see
      // another).
      lastStoreInst = si;
      if (lexicalLifetimeEnsured(asi)) {
        if (oldRunningVals && oldRunningVals->isStorageValid &&
            canEndLexicalLifetime(oldRunningVals->value)) {
          endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/si, ctx,
                                            oldRunningVals->value.getOwned());
        }
        runningVals = beginOwnedLexicalLifetimeAfterStore(asi, si);
      }
      continue;
    }

    if (auto *sbi = dyn_cast<StoreBorrowInst>(inst)) {
      if (sbi->getDest() != asi)
        continue;

      // If we met a store before this one, delete it.
      if (lastStoreInst) {
        LLVM_DEBUG(llvm::dbgs()
                   << "*** Removing redundant store: " << lastStoreInst);
        ++NumInstRemoved;
        prepareForDeletion(lastStoreInst, instructionsToDelete);
      }

      // The stored value is the new running value.
      runningVals = {LiveValues::toReplace(asi, sbi->getSrc()),
                     /*isStorageValid=*/true};
      // The current store is now the lastStoreInst.
      lastStoreInst = sbi;
      if (lexicalLifetimeEnsured(asi)) {
        runningVals = beginGuaranteedLexicalLifetimeAfterStore(asi, sbi);
      }
      continue;
    }

    // End the lexical lifetime of the store_borrow source.
    if (auto *ebi = dyn_cast<EndBorrowInst>(inst)) {
      if (!lexicalLifetimeEnsured(asi)) {
        continue;
      }
      auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand());
      if (!sbi) {
        continue;
      }
      if (sbi->getDest() != asi) {
        continue;
      }
      assert(!deinitializationPoints[blockPromotingWithin]);
      deinitializationPoints[blockPromotingWithin] = inst;
      if (!runningVals.has_value()) {
        continue;
      }
      if (!runningVals->value.isGuaranteed()) {
        continue;
      }
      if (sbi->getSrc() != runningVals->value.getGuaranteed().stored) {
        continue;
      }
      // Mark storage as invalid and mark end_borrow as a deinit point.
      runningVals->isStorageValid = false;
      if (!canEndLexicalLifetime(runningVals->value)) {
        continue;
      }
      endGuaranteedLexicalLifetimeBeforeInst(
          asi, ebi->getNextInstruction(), ctx,
          runningVals->value.getGuaranteed());
      continue;
    }

    // Debug values will automatically be salvaged, we can ignore them.
    if (auto *dvi = DebugValueInst::hasAddrVal(inst)) {
      continue;
    }

    // Replace destroys with a release of the value.
    if (auto *dai = dyn_cast<DestroyAddrInst>(inst)) {
      if (dai->getOperand() != asi) {
        continue;
      }
      if (runningVals) {
        replaceDestroy(dai, runningVals->value.replacement(asi, dai), ctx,
                       deleter, instructionsToDelete);
        if (lexicalLifetimeEnsured(asi)) {
          endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/dai, ctx,
                                            runningVals->value.getOwned());
        }
        runningVals->isStorageValid = false;
      } else {
        assert(!deinitializationPoints[blockPromotingWithin]);
        deinitializationPoints[blockPromotingWithin] = dai;
      }
      continue;
    }

    // Stop on deallocation.
    if (auto *dsi = dyn_cast<DeallocStackInst>(inst)) {
      if (dsi->getOperand() == asi)
        break;
    }
  }

  if (lastStoreInst && runningVals->isStorageValid) {
    assert((isa<StoreBorrowInst>(lastStoreInst) ||
            (cast<StoreInst>(lastStoreInst)->getOwnershipQualifier() !=
             StoreOwnershipQualifier::Assign)) &&
           "store [assign] to the stack location should have been "
           "transformed to a store [init]");
    LLVM_DEBUG(llvm::dbgs()
               << "*** Finished promotion. Last store: " << lastStoreInst);
    return lastStoreInst;
  }

  LLVM_DEBUG(llvm::dbgs() << "*** Finished promotion with no stores.\n");
  return nullptr;
}

void StackAllocationPromoter::addBlockArguments(
    BasicBlockSetVector &phiBlocks) {
  LLVM_DEBUG(llvm::dbgs() << "*** Adding new block arguments.\n");

  for (auto *block : phiBlocks) {
    // The stored value or its lexical move.
    block->createPhiArgument(asi->getElementType(), OwnershipKind::Owned);
  }
}

std::optional<LiveValues>
StackAllocationPromoter::getLiveOutValues(BasicBlockSetVector &phiBlocks,
                                          SILBasicBlock *startBlock) {
  LLVM_DEBUG(llvm::dbgs() << "*** Searching for a value definition.\n");
  // Walk the Dom tree in search of a defining value:
  for (DomTreeNode *domNode = domInfo->getNode(startBlock); domNode;
       domNode = domNode->getIDom()) {
    SILBasicBlock *domBlock = domNode->getBlock();

    // If there is a store (that must come after the phi), use its value.
    BlockToInstMap::iterator it = initializationPoints.find(domBlock);
    if (it != initializationPoints.end()) {
      auto *inst = it->second;
      auto stored = inst->getOperand(CopyLikeInstruction::Src);
      auto lexical = getLexicalValueForStore(inst, asi);
      return isa<StoreBorrowInst>(inst)
                 ? LiveValues::forGuaranteed(stored, lexical)
                 : LiveValues::forOwned(stored, lexical);
    }

    // If there is a Phi definition in this block:
    if (phiBlocks.contains(domBlock)) {
      // Return the dummy instruction that represents the new value that we will
      // add to the basic block.
      SILValue argument =
          domBlock->getArgument(domBlock->getNumArguments() - 1);
      LLVM_DEBUG(llvm::dbgs() << "*** Found a dummy Phi def " << *argument);
      auto values = LiveValues::toReplace(asi, argument);
      return values;
    }

    // Move to the next dominating block.
    LLVM_DEBUG(llvm::dbgs() << "*** Walking up the iDOM.\n");
  }
  LLVM_DEBUG(llvm::dbgs() << "*** Could not find a Def. Using Undef.\n");
  return std::nullopt;
}

LiveValues StackAllocationPromoter::getEffectiveLiveOutValues(
    BasicBlockSetVector &phiBlocks, SILBasicBlock *startBlock) {
  if (auto values = getLiveOutValues(phiBlocks, startBlock)) {
    return *values;
  }
  auto *undef = SILUndef::get(asi->getFunction(), asi->getElementType());
  return LiveValues::forOwned(undef, undef);
}

std::optional<LiveValues>
StackAllocationPromoter::getLiveInValues(BasicBlockSetVector &phiBlocks,
                                         SILBasicBlock *block) {
  // First, check if there is a Phi value in the current block. We know that
  // our loads happen before stores, so we need to first check for Phi nodes
  // in the first block, but stores first in all other stores in the idom
  // chain.
  if (phiBlocks.contains(block)) {
    LLVM_DEBUG(llvm::dbgs() << "*** Found a local Phi definition.\n");
    SILValue argument = block->getArgument(block->getNumArguments() - 1);
    auto values = LiveValues::toReplace(asi, argument);
    return values;
  }

  if (block->pred_empty() || !domInfo->getNode(block))
    return std::nullopt;

  // No phi for this value in this block means that the value flowing
  // out of the immediate dominator reaches here.
  DomTreeNode *iDom = domInfo->getNode(block)->getIDom();
  assert(iDom &&
         "Attempt to get live-in value for alloc_stack in entry block!");

  return getLiveOutValues(phiBlocks, iDom->getBlock());
}

LiveValues StackAllocationPromoter::getEffectiveLiveInValues(
    BasicBlockSetVector &phiBlocks, SILBasicBlock *block) {
  if (auto values = getLiveInValues(phiBlocks, block)) {
    return *values;
  }
  auto *undef = SILUndef::get(asi->getFunction(), asi->getElementType());
  // TODO: Add another kind of LiveValues for undef.
  return LiveValues::forOwned(undef, undef);
}

void StackAllocationPromoter::fixPhiPredBlock(BasicBlockSetVector &phiBlocks,
                                              SILBasicBlock *destBlock,
                                              SILBasicBlock *predBlock) {
  TermInst *ti = predBlock->getTerminator();
  LLVM_DEBUG(llvm::dbgs() << "*** Fixing the terminator " << *ti << ".\n");

  LiveValues values = getEffectiveLiveOutValues(phiBlocks, predBlock);

  LLVM_DEBUG(llvm::dbgs() << "*** Found the definition: "
                          << values.getStored());

  SmallVector<SILValue> vals;
  vals.push_back(values.replacement(asi, nullptr));

  addArgumentsToBranch(vals, destBlock, ti);
  deleter.forceDelete(ti);
}

bool StackAllocationPromoter::isProactivePhi(
    SILPhiArgument *phi, const BasicBlockSetVector &phiBlocks) {
  auto *phiBlock = phi->getParentBlock();
  return phiBlocks.contains(phiBlock) &&
         phi == phiBlock->getArgument(phiBlock->getNumArguments() - 1);
}

bool StackAllocationPromoter::isNecessaryProactivePhi(
    SILPhiArgument *proactivePhi, const BasicBlockSetVector &phiBlocks) {
  assert(isProactivePhi(proactivePhi, phiBlocks));
  for (auto *use : proactivePhi->getUses()) {
    auto *branch = dyn_cast<BranchInst>(use->getUser());
    // A non-branch use is a necessary use
    if (!branch)
      return true;
    auto *destBB = branch->getDestBB();
    auto opNum = use->getOperandNumber();
    // A phi has a necessary use if it is used as a branch op for a
    // non-proactive phi
    if (!phiBlocks.contains(destBB) || (opNum != branch->getNumArgs() - 1))
      return true;
  }
  return false;
}

void StackAllocationPromoter::propagateLiveness(
    SILPhiArgument *proactivePhi, const BasicBlockSetVector &phiBlocks,
    SmallPtrSetImpl<SILPhiArgument *> &livePhis) {
  assert(isProactivePhi(proactivePhi, phiBlocks));
  if (livePhis.contains(proactivePhi))
    return;
  // If liveness has not been propagated, go over the incoming operands and mark
  // any operand values that are proactivePhis as live
  livePhis.insert(proactivePhi);
  SmallVector<SILValue> incomingPhiVals;
  proactivePhi->getIncomingPhiValues(incomingPhiVals);
  for (auto &inVal : incomingPhiVals) {
    auto *inPhi = dyn_cast<SILPhiArgument>(inVal);
    if (!inPhi)
      continue;
    if (!isProactivePhi(inPhi, phiBlocks))
      continue;
    propagateLiveness(inPhi, phiBlocks, livePhis);
  }
}

void StackAllocationPromoter::fixBranchesAndUses(
    BasicBlockSetVector &phiBlocks, BasicBlockSetVector &phiBlocksOut) {
  // First update uses of the value.
  SmallVector<SILInstruction *, 4> collectedLoads;
  // Collect all alloc_stack uses.
  SmallVector<Operand *, 4> uses(asi->getUses());

  // Collect uses of store_borrows to alloc_stack.
  for (unsigned i = 0; i < uses.size(); i++) {
    auto *use = uses[i];
    if (auto *sbi = dyn_cast<StoreBorrowInst>(use->getUser())) {
      for (auto *sbuse : sbi->getUses()) {
        uses.push_back(sbuse);
      }
    }
  }

  for (auto ui = uses.begin(), ue = uses.end(); ui != ue;) {
    auto *user = (*ui)->getUser();
    ++ui;
    bool removedUser = false;

    collectedLoads.clear();
    collectLoads(user, collectedLoads);
    for (auto *li : collectedLoads) {
      // If this block has no predecessors then nothing dominates it and
      // the instruction is unreachable. If the instruction we're
      // examining is a value, replace it with undef. Either way, delete
      // the instruction and move on.
      SILBasicBlock *loadBlock = li->getParent();
      auto def = getEffectiveLiveInValues(phiBlocks, loadBlock);

      LLVM_DEBUG(llvm::dbgs() << "*** Replacing " << *li << " with Def "
                              << def.replacement(asi, li));

      // Replace the load with the definition that we found.
      replaceLoad(li, def.replacement(asi, li), asi, ctx, deleter,
                  instructionsToDelete);
      removedUser = true;
      ++NumInstRemoved;
    }

    if (removedUser)
      continue;

    // If this block has no predecessors then nothing dominates it and
    // the instruction is unreachable. Delete the instruction and move
    // on.
    SILBasicBlock *userBlock = user->getParent();

    // Debug values will automatically be salvaged, we can ignore them.
    if (auto *dvi = DebugValueInst::hasAddrVal(user)) {
      continue;
    }

    // Replace destroys with a release of the value.
    if (auto *dai = dyn_cast<DestroyAddrInst>(user)) {
      auto def = getEffectiveLiveInValues(phiBlocks, userBlock);
      replaceDestroy(dai, def.replacement(asi, dai), ctx, deleter,
                     instructionsToDelete);
      continue;
    }
  }

  // Now that all of the uses are fixed we can fix the branches that point
  // to the blocks with the added arguments.
  // For each Block with a new Phi argument:
  for (auto *block : phiBlocks) {
    // Fix all predecessors.
    for (auto pbbi = block->getPredecessorBlocks().begin(),
              pbbe = block->getPredecessorBlocks().end();
         pbbi != pbbe;) {
      auto *predBlock = *pbbi;
      ++pbbi;
      assert(predBlock && "Invalid block!");
      fixPhiPredBlock(phiBlocks, block, predBlock);
    }
  }

  // Fix ownership of proactively created non-trivial phis
  if (asi->getFunction()->hasOwnership() &&
      !asi->getType().isTrivial(*asi->getFunction())) {
    SmallPtrSet<SILPhiArgument *, 4> livePhis;

    for (auto *block : phiBlocks) {
      auto *proactivePhi = cast<SILPhiArgument>(
          block->getArgument(block->getNumArguments() - 1));
      // First, check if the proactively added phi is necessary by looking at
      // it's immediate uses.
      if (isNecessaryProactivePhi(proactivePhi, phiBlocks)) {
        // Backward propagate liveness to other dependent proactively added phis
        propagateLiveness(proactivePhi, phiBlocks, livePhis);
      }
    }
    // Go over all proactively added phis, and delete those that were not marked
    // live above.
    auto eraseLastPhiFromBlock = [](SILBasicBlock *block) {
      auto *phi = cast<SILPhiArgument>(
          block->getArgument(block->getNumArguments() - 1));
      phi->replaceAllUsesWithUndef();
      erasePhiArgument(block, block->getNumArguments() - 1,
                       /*cleanupDeadPhiOp*/ false);
    };
    for (auto *block : phiBlocks) {
      auto *proactivePhi = cast<SILPhiArgument>(
          block->getArgument(block->getNumArguments() - 1));
      if (!livePhis.contains(proactivePhi)) {
        eraseLastPhiFromBlock(block);
      } else {
        phiBlocksOut.insert(block);
      }
    }
  } else {
    for (auto *block : phiBlocks)
      phiBlocksOut.insert(block);
  }
}

/// End the lexical lifetimes that were introduced for storage to the
/// alloc_stack and have not already been ended.
///
/// Walk forward from the out-edge of each of the blocks which began but did not
/// end a borrow scope.  The scope must be ended if any of the following three
/// conditions hold:
///
/// Normally, we are relying on the invariant that the storage's
/// deinitializations must jointly postdominate its initializations.  That fact
/// allows us to simply end scopes when memory is deinitialized.  There is only
/// one simple check to do:
///
/// (1) A block deinitializes the storage before initializing it.
///
///     These blocks and the relevant instruction within them are tracked by the
///     deinitializationPoints map.
///
/// If this were all we needed to do, we could just iterate over that map.
///
/// The above invariant does not help us with unreachable terminators, however.
/// Because it is valid to have the alloc_stack be initialized when exiting a
/// function via an unreachable, we can't rely on the memory having been
/// deinitialized.  But we still need to ensure that borrow scopes are ended and
/// values are destroyed before getting to an unreachable.
///
/// (2.a) A block has as its terminator an UnreachableInst.
///
/// (2.b) A block's single successor does not have live-in values.
///
///       This can only happen if the successor is a CFG merge and all paths
///       from here lead to unreachable.
void StackAllocationPromoter::endLexicalLifetime(
    BasicBlockSetVector &phiBlocks) {
  if (!lexicalLifetimeEnsured(asi))
    return;

  // We need to separately consider and visit incoming unopened borrow scopes
  // and outgoing unclosed borrow scopes.  The reason is that a walk should stop
  // on any path where it encounters an incoming unopened borrow scope but that
  // should _NOT_ count as a visit of outgoing unclosed borrow scopes.
  //
  // Without this distinction, a case like the following wouldn't be visited
  // properly:
  //
  //     bb1:
  //       %addr = alloc_stack
  //       store %value to [init] %addr
  //       br bb2
  //     bb2:
  //       %value_2 = load [take] %addr
  //       store %value_2 to [init] %addr
  //       br bb3
  //     bb3:
  //       destroy_addr %addr
  //       dealloc_stack %addr
  //       %r = tuple ()
  //       return %r
  //
  // Both bb1 and bb2 have cross-block initialization points.  Suppose that we
  // visited bb1 first.  We would see that it didn't have an incoming unopened
  // borrow scope (already, we can tell something is amiss that we're
  // considering this) and then add bb2 to the worklist--except it's already
  // there.  Next we would visit bb2.  We would see that it had an incoming
  // unopened borrow scope so we would close it.  And then we'd be done.  In
  // particular, we'd leave the scope that opens in bb2 unclosed.
  //
  // The root cause here is that it's important to stop walking when we hit a
  // scope close.  Otherwise, we could keep walking down to blocks which don't
  // have live-in or live-out values.
  //
  // Visiting the incoming and outgoing edges works as follows in the above
  // example:  The worklist is initialized with {(bb1, ::Out), (bb2, ::Out)}.
  // When visiting (bb1, ::Out), we see that bb1 is neither unreachable nor
  // has exactly one successor without live-in values.  So we add (bb2, ::In) to
  // the worklist.  Next, we visit (bb2, ::Out).  We see that it _also_ doesn't
  // have an unreachable terminator or a unique successor without live-in
  // values, so we add (bb3, ::In).  Next, we visit (bb2, ::In).  We see that
  // it _does_ have an incoming unopened borrow scope, so we close it and stop.
  // Finally, we visit (bb3, ::Out).  We see that it too has an incoming
  // unopened borrow scope so we close it and stop.
  enum class AvailableValuesKind : uint8_t { In, Out };

  using ScopeEndPosition =
      llvm::PointerIntPair<SILBasicBlock *, 1, AvailableValuesKind>;

  GraphNodeWorklist<ScopeEndPosition, 16> worklist;
  for (auto pair : initializationPoints) {
    worklist.insert({pair.getFirst(), AvailableValuesKind::Out});
  }
  while (!worklist.empty()) {
    auto position = worklist.pop();
    auto *bb = position.getPointer();
    switch (position.getInt()) {
    case AvailableValuesKind::In: {
      if (auto *inst = deinitializationPoints[bb]) {
        auto values = getLiveInValues(phiBlocks, bb);
        if (isa<EndBorrowInst>(inst)) {
          // Not all store_borrows will have a begin_borrow [lexical] that needs
          // to be ended. If the source is already lexical, we don't create it.
          if (!canEndLexicalLifetime(*values)) {
            continue;
          }
          endGuaranteedLexicalLifetimeBeforeInst(
              asi, /*beforeInstruction=*/inst, ctx, values->getGuaranteed());
          continue;
        }
        endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/inst, ctx,
                                          values->getOwned());
        continue;
      }
      worklist.insert({bb, AvailableValuesKind::Out});
      break;
    }
    case AvailableValuesKind::Out: {
      bool terminatesInUnreachable = isa<UnreachableInst>(bb->getTerminator());
      auto uniqueSuccessorLacksLiveInValues = [&]() -> bool {
        return bb->getSingleSuccessorBlock() &&
               !getLiveInValues(phiBlocks, bb->getSingleSuccessorBlock());
      };
      if (terminatesInUnreachable || uniqueSuccessorLacksLiveInValues()) {
        auto values = getLiveOutValues(phiBlocks, bb);
        if (values->isGuaranteed()) {
          if (!canEndLexicalLifetime(*values)) {
            continue;
          }
          endGuaranteedLexicalLifetimeBeforeInst(
              asi, /*beforeInstruction=*/bb->getTerminator(), ctx,
              values->getGuaranteed());
          continue;
        }
        endOwnedLexicalLifetimeBeforeInst(
            asi, /*beforeInstruction=*/bb->getTerminator(), ctx,
            values->getOwned());
        continue;
      }
      for (auto *successor : bb->getSuccessorBlocks()) {
        worklist.insert({successor, AvailableValuesKind::In});
      }
      break;
    }
    }
  }
}

void StackAllocationPromoter::pruneAllocStackUsage() {
  LLVM_DEBUG(llvm::dbgs() << "*** Pruning : " << *asi);
  BasicBlockSetVector functionBlocks(asi->getFunction());

  // Insert all of the blocks that asi is live in.
  for (auto *use : asi->getUses())
    functionBlocks.insert(use->getUser()->getParent());

  for (auto *sbi : asi->getUsersOfType<StoreBorrowInst>()) {
    for (auto *use : sbi->getUses()) {
      functionBlocks.insert(use->getUser()->getParent());
    }
  }

  for (auto block : functionBlocks)
    if (auto si = promoteAllocationInBlock(block)) {
      // There was a final store/store_borrow instruction which was not
      // followed by an instruction that deinitializes the memory.  Record it
      // as a cross-block initialization point.
      initializationPoints[block] = si;
    }

  LLVM_DEBUG(llvm::dbgs() << "*** Finished pruning : " << *asi);
}

void StackAllocationPromoter::promoteAllocationToPhi(
    BasicBlockSetVector &livePhiBlocks) {
  LLVM_DEBUG(llvm::dbgs() << "*** Placing Phis for : " << *asi);

  // A list of blocks that will require new Phi values.
  BasicBlockSetVector phiBlocks(asi->getFunction());

  // The "piggy-bank" data-structure that we use for processing the dom-tree
  // bottom-up.
  NodePriorityQueue priorityQueue;

  // Collect all of the stores into the AllocStack. We know that at this point
  // we have at most one store per block.
  for (auto *use : asi->getUses()) {
    SILInstruction *user = use->getUser();
    // We need to place Phis for this block.
    if (isa<StoreInst>(user) || isa<StoreBorrowInst>(user)) {
      // If the block is in the dom tree (dominated by the entry block).
      if (auto *node = domInfo->getNode(user->getParent()))
        priorityQueue.push(std::make_pair(node, domTreeLevels[node]));
    }
  }

  LLVM_DEBUG(llvm::dbgs() << "*** Found: " << priorityQueue.size()
                          << " Defs\n");

  // A list of nodes for which we already calculated the dominator frontier.
  llvm::SmallPtrSet<DomTreeNode *, 32> visited;

  SmallVector<DomTreeNode *, 32> worklist;

  // Scan all of the definitions in the function bottom-up using the priority
  // queue.
  while (!priorityQueue.empty()) {
    DomTreeNodePair rootPair = priorityQueue.top();
    priorityQueue.pop();
    DomTreeNode *root = rootPair.first;
    unsigned rootLevel = rootPair.second;

    // Walk all dom tree children of Root, inspecting their successors. Only
    // J-edges, whose target level is at most Root's level are added to the
    // dominance frontier.
    worklist.clear();
    worklist.push_back(root);

    while (!worklist.empty()) {
      DomTreeNode *node = worklist.pop_back_val();
      SILBasicBlock *nodeBlock = node->getBlock();

      // For all successors of the node:
      for (auto &nodeBlockSuccs : nodeBlock->getSuccessors()) {
        auto *successorNode = domInfo->getNode(nodeBlockSuccs);

        // Skip D-edges (edges that are dom-tree edges).
        if (successorNode->getIDom() == node)
          continue;

        // Ignore J-edges that point to nodes that are not smaller or equal
        // to the root level.
        unsigned succLevel = domTreeLevels[successorNode];
        if (succLevel > rootLevel)
          continue;

        // Ignore visited nodes.
        if (!visited.insert(successorNode).second)
          continue;

        // If the new PHInode is not dominated by the allocation then it's dead.
        if (!domInfo->dominates(asi->getParent(), successorNode->getBlock()))
          continue;

        // If the new PHInode is properly dominated by the deallocation then it
        // is obviously a dead PHInode, so we don't need to insert it.
        if (dsi && domInfo->properlyDominates(dsi->getParent(),
                                              successorNode->getBlock()))
          continue;

        // The successor node is a new PHINode. If this is a new PHI node
        // then it may require additional definitions, so add it to the PQ.
        if (phiBlocks.insert(nodeBlockSuccs))
          priorityQueue.push(std::make_pair(successorNode, succLevel));
      }

      // Add the children in the dom-tree to the worklist.
      for (auto *child : node->children())
        if (!visited.count(child))
          worklist.push_back(child);
    }
  }

  // At this point we calculated the locations of all of the new Phi values.
  // Next, add the Phi values and promote all of the loads and stores into the
  // new locations.

  // Replace the dummy values with new block arguments.
  addBlockArguments(phiBlocks);

  // Hook up the Phi nodes, loads, and debug_value_addr with incoming values.
  fixBranchesAndUses(phiBlocks, livePhiBlocks);

  endLexicalLifetime(livePhiBlocks);

  LLVM_DEBUG(llvm::dbgs() << "*** Finished placing Phis ***\n");
}

void StackAllocationPromoter::run(BasicBlockSetVector &livePhiBlocks) {
  auto *function = asi->getFunction();

  // Reduce the number of load/stores in the function to minimum.
  // After this phase we are left with up to one load and store
  // per block and the last store is recorded.
  pruneAllocStackUsage();

  // Replace AllocStacks with Phi-nodes.
  promoteAllocationToPhi(livePhiBlocks);

  // Make sure that all of the allocations were promoted into registers.
  assert(isWriteOnlyAllocation(asi) && "Non-write uses left behind");

  SmallVector<SILValue> valuesToComplete;

  // Enum types may have incomplete lifetimes in address form, when promoted to
  // value form after mem2reg, they will end up with incomplete ossa lifetimes.
  // Use the lifetime completion utility to complete such lifetimes.
  // First, collect the stored values to complete.
  if (asi->getType().isOrHasEnum()) {
    for (auto *block : livePhiBlocks) {
      SILPhiArgument *argument = cast<SILPhiArgument>(
          block->getArgument(block->getNumArguments() - 1));
      assert(argument->isPhi());
      valuesToComplete.push_back(argument);
    }
    for (auto it : initializationPoints) {
      auto *si = it.second;
      auto stored = si->getOperand(CopyLikeInstruction::Src);
      valuesToComplete.push_back(stored);
      if (auto lexical = getLexicalValueForStore(si, asi)) {
        valuesToComplete.push_back(lexical);
      }
    }
  }

  // ... and erase the allocation.
  deleter.forceDeleteWithUsers(asi);

  // Now, complete lifetimes!
  OSSALifetimeCompletion completion(function, domInfo);

  // We may have incomplete lifetimes for enum locations on trivial paths.
  // After promoting them, complete lifetime here.
  for (auto it : valuesToComplete) {
    // Set forceBoundaryCompletion as true so that we complete at boundary for
    // lexical values as well.
    completion.completeOSSALifetime(it, /* forceBoundaryCompletion */ true);
  }
}

//===----------------------------------------------------------------------===//
//                      General Memory To Registers Impl
//===----------------------------------------------------------------------===//

namespace {

/// Promote memory to registers
class MemoryToRegisters {
  /// Lazily initialized map from DomTreeNode to DomTreeLevel.
  ///
  /// DomTreeLevelMap is a DenseMap implying that if we initialize it, we always
  /// will initialize a heap object with 64 objects. Thus by using an optional,
  /// computing this lazily, we only do this if we actually need to do so.
  std::optional<DomTreeLevelMap> domTreeLevels;

  /// The function that we are optimizing.
  SILFunction &f;

  /// Dominators.
  DominanceInfo *domInfo;

  NonLocalAccessBlockAnalysis *accessBlockAnalysis;

  BasicCalleeAnalysis *calleeAnalysis;

  /// The builder context used when creating new instructions during register
  /// promotion.
  SILBuilderContext ctx;

  InstructionDeleter deleter;
  SmallVector<SILInstruction *, 32> instructionsToDelete;

  /// Returns the dom tree levels for the current function. Computes these
  /// lazily.
  DomTreeLevelMap &getDomTreeLevels() {
    // If we already computed our levels, just return it.
    if (auto &levels = domTreeLevels) {
      return *levels;
    }

    // Otherwise, emplace the map and compute it.
    domTreeLevels.emplace();
    auto &levels = *domTreeLevels;
    SmallVector<DomTreeNode *, 32> worklist;
    DomTreeNode *rootNode = domInfo->getRootNode();
    levels[rootNode] = 0;
    worklist.push_back(rootNode);
    while (!worklist.empty()) {
      DomTreeNode *domNode = worklist.pop_back_val();
      unsigned childLevel = levels[domNode] + 1;
      for (auto *childNode : domNode->children()) {
        levels[childNode] = childLevel;
        worklist.push_back(childNode);
      }
    }
    return *domTreeLevels;
  }

  /// Promote the specified stack location whose uses are all within a single
  /// block.
  ///
  /// Note: Deletes all of the users of the alloc_stack, including the
  ///       dealloc_stack but it does not remove the alloc_stack itself.
  void removeSingleBlockAllocation(AllocStackInst *asi);

  /// Attempt to promote the specified stack allocation.  Its uses may be in a
  /// single block or in multiple blocks.
  ///
  /// Note: Populates instructionsToDelete with the instructions the caller is
  ///       responsible for deleting.
  bool promoteAllocation(AllocStackInst *asi,
                         BasicBlockSetVector &livePhiBlocks);

  /// Record all the values stored and store_borrow'd into the address so that
  /// they can be canonicalized if promotion succeeds.
  void collectStoredValues(AllocStackInst *asi, StackList<SILValue> &owned,
                           StackList<SILValue> &guaranteed);

  /// Canonicalize the lifetimes of the specified owned and guaranteed values.
  void canonicalizeValueLifetimes(StackList<SILValue> &owned,
                                  StackList<SILValue> &guaranteed,
                                  BasicBlockSetVector &livePhiBlocks);

public:
  /// C'tor
  MemoryToRegisters(SILFunction &inputFunc, DominanceInfo *inputDomInfo,
                    NonLocalAccessBlockAnalysis *accessBlockAnalysis,
                    BasicCalleeAnalysis *calleeAnalysis)
      : f(inputFunc), domInfo(inputDomInfo),
        accessBlockAnalysis(accessBlockAnalysis),
        calleeAnalysis(calleeAnalysis), ctx(inputFunc.getModule()) {}

  /// Promote memory to registers. Return True on change.
  bool run();
};

} // end anonymous namespace

void MemoryToRegisters::removeSingleBlockAllocation(AllocStackInst *asi) {
  LLVM_DEBUG(llvm::dbgs() << "*** Promoting in-block: " << *asi);

  SILBasicBlock *parentBlock = asi->getParent();
  // The default value of the AllocStack is NULL because we don't have
  // uninitialized variables in Swift.
  std::optional<StorageStateTracking<LiveValues>> runningVals;

  // For all instructions in the block.
  for (auto bbi = parentBlock->begin(), bbe = parentBlock->end(); bbi != bbe;) {
    SILInstruction *inst = &*bbi;
    ++bbi;

    // Remove instructions that we are loading from. Replace the loaded value
    // with our running value.
    if (isLoadFromStack(inst, asi)) {
      if (!runningVals) {
        // Loading from uninitialized memory is only acceptable if the type is
        // empty--an aggregate of types without storage.
        runningVals = {
            LiveValues::toReplace(asi,
                                  /*replacement=*/createEmptyAndUndefValue(
                                      asi->getElementType(), inst, ctx)),
            /*isStorageValid=*/true};
      }
      assert(runningVals && runningVals->isStorageValid);
      auto *loadInst = dyn_cast<LoadInst>(inst);
      if (loadInst &&
          loadInst->getOwnershipQualifier() == LoadOwnershipQualifier::Take) {
        if (lexicalLifetimeEnsured(asi)) {
          // End the lexical lifetime at a load [take].  The storage is no
          // longer keeping the value alive.
          endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/inst,
                                            ctx, runningVals->value.getOwned());
        }
        runningVals->isStorageValid = false;
      }
      replaceLoad(inst, runningVals->value.replacement(asi, inst), asi, ctx,
                  deleter, instructionsToDelete);
      ++NumInstRemoved;
      continue;
    }

    // Remove stores and record the value that we are saving as the running
    // value.
    if (auto *si = dyn_cast<StoreInst>(inst)) {
      if (si->getDest() != asi) {
        continue;
      }
      if (si->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
        assert(runningVals && runningVals->isStorageValid);
        SILBuilderWithScope(si, ctx).createDestroyValue(
            si->getLoc(), runningVals->value.replacement(asi, si));
      }
      auto oldRunningVals = runningVals;
      runningVals = {LiveValues::toReplace(asi, /*replacement=*/si->getSrc()),
                     /*isStorageValid=*/true};
      if (lexicalLifetimeEnsured(asi)) {
        if (oldRunningVals && oldRunningVals->isStorageValid) {
          endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/si, ctx,
                                            oldRunningVals->value.getOwned());
        }
        runningVals = beginOwnedLexicalLifetimeAfterStore(asi, si);
      }
      deleter.forceDelete(si);
      ++NumInstRemoved;
      continue;
    }

    if (auto *sbi = dyn_cast<StoreBorrowInst>(inst)) {
      if (sbi->getDest() != asi) {
        continue;
      }
      runningVals = {LiveValues::toReplace(asi, /*replacement=*/sbi->getSrc()),
                     /*isStorageValid=*/true};
      if (lexicalLifetimeEnsured(asi)) {
        runningVals = beginGuaranteedLexicalLifetimeAfterStore(asi, sbi);
      }
      continue;
    }

    if (auto *ebi = dyn_cast<EndBorrowInst>(inst)) {
      auto *sbi = dyn_cast<StoreBorrowInst>(ebi->getOperand());
      if (!sbi) {
        continue;
      }
      if (sbi->getDest() != asi) {
        continue;
      }
      if (!runningVals.has_value()) {
        continue;
      }
      if (!runningVals->value.isGuaranteed()) {
        continue;
      }
      if (sbi->getSrc() != runningVals->value.getGuaranteed().stored) {
        continue;
      }
      runningVals->isStorageValid = false;
      if (!canEndLexicalLifetime(runningVals->value)) {
        continue;
      }
      endGuaranteedLexicalLifetimeBeforeInst(
          asi, ebi->getNextInstruction(), ctx,
          runningVals->value.getGuaranteed());
      continue;
    }

    // Debug values will automatically be salvaged, we can ignore them.
    if (auto *dvi = DebugValueInst::hasAddrVal(inst)) {
      continue;
    }

    // Replace destroys with a release of the value.
    if (auto *dai = dyn_cast<DestroyAddrInst>(inst)) {
      if (dai->getOperand() == asi) {
        assert(runningVals && runningVals->isStorageValid);
        replaceDestroy(dai, runningVals->value.replacement(asi, dai), ctx,
                       deleter, instructionsToDelete);
        if (lexicalLifetimeEnsured(asi)) {
          endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/dai, ctx,
                                            runningVals->value.getOwned());
        }
        runningVals->isStorageValid = false;
      }
      continue;
    }

    // Remove deallocation.
    if (auto *dsi = dyn_cast<DeallocStackInst>(inst)) {
      if (dsi->getOperand() == asi) {
        deleter.forceDelete(dsi);
        NumInstRemoved++;
        // No need to continue scanning after deallocation.
        break;
      }
    }

    // Remove dead address instructions that may be uses of the allocation.
    auto *addrInst = dyn_cast<SingleValueInstruction>(inst);
    while (addrInst && addrInst->use_empty() &&
           (isa<StructElementAddrInst>(addrInst) ||
            isa<TupleElementAddrInst>(addrInst) ||
            isa<UncheckedAddrCastInst>(addrInst))) {
      SILValue op = addrInst->getOperand(0);
      deleter.forceDelete(addrInst);
      ++NumInstRemoved;
      addrInst = dyn_cast<SingleValueInstruction>(op);
    }
  }

  if (lexicalLifetimeEnsured(asi) && runningVals &&
      runningVals->isStorageValid &&
      runningVals->value.getStored()->getOwnershipKind().isCompatibleWith(
          OwnershipKind::Owned)) {
    // There is still valid storage after visiting all instructions in this
    // block which are the only instructions involving this alloc_stack.
    // This can only happen if all paths from this block end in unreachable.
    //
    // We need to end the lexical lifetime at the last possible location, at the
    // boundary blocks which are the predecessors of dominance frontier
    // dominated by the alloc_stack.
    SmallVector<SILBasicBlock *, 4> boundary;
    computeDominatedBoundaryBlocks(asi->getParent(), domInfo, boundary);
    for (auto *block : boundary) {
      auto *terminator = block->getTerminator();
      endOwnedLexicalLifetimeBeforeInst(asi, /*beforeInstruction=*/terminator,
                                        ctx, runningVals->value.getOwned());
    }
  }
}

void MemoryToRegisters::collectStoredValues(AllocStackInst *asi,
                                            StackList<SILValue> &owned,
                                            StackList<SILValue> &guaranteed) {
  if (!f.hasOwnership())
    return;
  for (auto *use : asi->getUses()) {
    auto *user = use->getUser();
    if (auto *si = dyn_cast<StoreInst>(user)) {
      owned.push_back(si->getSrc());
    } else if (auto *sbi = dyn_cast<StoreBorrowInst>(user)) {
      guaranteed.push_back(sbi->getSrc());
    }
  }
}

void MemoryToRegisters::canonicalizeValueLifetimes(
    StackList<SILValue> &owned, StackList<SILValue> &guaranteed,
    BasicBlockSetVector &livePhiBlocks) {
  if (!f.hasOwnership())
    return;
  if (Mem2RegDisableLifetimeCanonicalization)
    return;

  for (auto *block : livePhiBlocks) {
    // When a single alloc_stack is promoted, any block gains at most a single
    // new phi, which appears at the end of its argument list.  The collection
    // \p livePhiBlocks consists of exactly those blocks which gained such a
    // new phi.
    SILPhiArgument *argument =
        cast<SILPhiArgument>(block->getArgument(block->getNumArguments() - 1));
    switch (argument->getOwnershipKind()) {
    case OwnershipKind::Owned:
      owned.push_back(argument);
      break;
    case OwnershipKind::Guaranteed:
      guaranteed.push_back(argument);
      break;
    default:
      break;
    }
  }
  CanonicalizeOSSALifetime canonicalizer(
      PruneDebugInsts, MaximizeLifetime_t(!f.shouldOptimize()), &f,
      accessBlockAnalysis, domInfo, calleeAnalysis, deleter);
  for (auto value : owned) {
    if (isa<SILUndef>(value) || value->isMarkedAsDeleted())
      continue;
    auto root = CanonicalizeOSSALifetime::getCanonicalCopiedDef(value);
    if (auto *copy = dyn_cast<CopyValueInst>(root)) {
      if (SILValue borrowDef = CanonicalizeBorrowScope::getCanonicalBorrowedDef(
              copy->getOperand())) {
        guaranteed.push_back(copy);
        continue;
      }
    }
    canonicalizer.canonicalizeValueLifetime(root);
  }
  CanonicalizeBorrowScope borrowCanonicalizer(&f, deleter);
  for (auto value : guaranteed) {
    if (isa<SILUndef>(value) || value->isMarkedAsDeleted())
      continue;
    auto borrowee = CanonicalizeBorrowScope::getCanonicalBorrowedDef(value);
    if (!borrowee)
      continue;
    BorrowedValue borrow(borrowee);
    if (borrow.kind != BorrowedValueKind::SILFunctionArgument)
      continue;
    borrowCanonicalizer.canonicalizeBorrowScope(borrow);
  }
}

/// Attempt to promote the specified stack allocation, returning true if so
/// or false if not.  On success, this returns true and usually drops all of the
/// uses of the AllocStackInst, but never deletes the ASI itself.  Callers
/// should check to see if the ASI is dead after this and remove it if so.
bool MemoryToRegisters::promoteAllocation(AllocStackInst *alloc,
                                          BasicBlockSetVector &livePhiBlocks) {
  LLVM_DEBUG(llvm::dbgs() << "*** Memory to register looking at: " << *alloc);
  ++NumAllocStackFound;

  // In OSSA, don't do Mem2Reg on non-trivial alloc_stack with dynamic_lifetime.
  if (alloc->hasDynamicLifetime() && f.hasOwnership() &&
      !alloc->getType().isTrivial(f)) {
    return false;
  }

  // Don't handle captured AllocStacks.
  bool inSingleBlock = false;
  if (isCaptured(alloc, &inSingleBlock)) {
    ++NumAllocStackCaptured;
    return false;
  }

  // Remove write-only AllocStacks.
  if (isWriteOnlyAllocation(alloc) && !lexicalLifetimeEnsured(alloc)) {
    LLVM_DEBUG(llvm::dbgs() << "*** Deleting store-only AllocStack: "<< *alloc);
    deleter.forceDeleteWithUsers(alloc);
    return true;
  }

  // For AllocStacks that are only used within a single basic blocks, use
  // the linear sweep to remove the AllocStack.
  if (inSingleBlock) {
    removeSingleBlockAllocation(alloc);

    LLVM_DEBUG(llvm::dbgs() << "*** Deleting single block AllocStackInst: "
                            << *alloc);
    deleter.forceDeleteWithUsers(alloc);
    return true;
  }

  LLVM_DEBUG(llvm::dbgs() << "*** Need to insert BB arguments for " << *alloc);

  // Promote this allocation, lazily computing dom tree levels for this function
  // if we have not done so yet.
  auto &domTreeLevels = getDomTreeLevels();
  StackAllocationPromoter(alloc, domInfo, domTreeLevels, ctx, deleter,
                          instructionsToDelete)
      .run(livePhiBlocks);

  return true;
}

bool MemoryToRegisters::run() {
  bool madeChange = false;

  if (f.getModule().getOptions().VerifyAll)
    f.verifyCriticalEdges();

  for (auto &block : f) {
    // Don't waste time optimizing unreachable blocks.
    if (!domInfo->isReachableFromEntry(&block)) {
      continue;
    }
    for (SILInstruction &inst : block.reverseDeletableInstructions()) {
      auto *asi = dyn_cast<AllocStackInst>(&inst);
      if (!asi)
        continue;

      // Record stored values because promoting a store eliminates a consuming
      // use of the stored value. If promotion succeeds, these values'
      // lifetimes are canonicalized, eliminating unnecessary copies.
      StackList<SILValue> ownedValues(&f);
      StackList<SILValue> guaranteedValues(&f);
      collectStoredValues(asi, ownedValues, guaranteedValues);

      // The blocks which still have new phis after fixBranchesAndUses runs.
      // These are not necessarily the same as phiBlocks because
      // fixBranchesAndUses removes superfluous proactive phis.
      BasicBlockSetVector livePhiBlocks(asi->getFunction());
      if (promoteAllocation(asi, livePhiBlocks)) {
        for (auto *inst : instructionsToDelete) {
          deleter.forceDelete(inst);
        }
        instructionsToDelete.clear();
        ++NumInstRemoved;
        canonicalizeValueLifetimes(ownedValues, guaranteedValues,
                                   livePhiBlocks);
        madeChange = true;
      }
    }
  }
  return madeChange;
}

//===----------------------------------------------------------------------===//
//                            Top Level Entrypoint
//===----------------------------------------------------------------------===//

namespace {

class SILMem2Reg : public SILFunctionTransform {
  void run() override {
    SILFunction *f = getFunction();

    LLVM_DEBUG(llvm::dbgs()
               << "** Mem2Reg on function: " << f->getName() << " **\n");

    auto *da = getAnalysis<DominanceAnalysis>();
    auto *calleeAnalysis = getAnalysis<BasicCalleeAnalysis>();
    auto *accessBlockAnalysis = getAnalysis<NonLocalAccessBlockAnalysis>();

    bool madeChange =
        MemoryToRegisters(*f, da->get(f), accessBlockAnalysis, calleeAnalysis)
            .run();
    if (madeChange)
      invalidateAnalysis(SILAnalysis::InvalidationKind::Instructions);
  }
};

} // end anonymous namespace

SILTransform *swift::createMem2Reg() {
  return new SILMem2Reg();
}