1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
|
//===--- SimplifyCFG.cpp - Clean up the SIL CFG ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Note: Unreachable blocks must always be eliminated before simplifying
/// useless phis. Otherwise self-loops will result in invalid SIL:
///
/// bb1(%phi):
/// apply %use(%phi)
/// %def = apply %getValue()
/// br bb1(%def)
///
/// When bb1 is unreachable, %phi will be removed as useless:
/// bb1:
/// apply %use(%def)
/// %def = apply %getValue()
/// br bb1(%def)
///
/// This is considered invalid SIL because SIL has a special SSA dominance rule
/// that does not allow a use above a def in the same block.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-simplify-cfg"
#include "swift/SILOptimizer/Transforms/SimplifyCFG.h"
#include "swift/AST/Module.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TerminatorUtils.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/ProgramTerminationAnalysis.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/CastOptimizer.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
llvm::cl::opt<bool> EnableOSSACheckedCastBrJumpThreading(
"enable-ossa-checked-cast-br-jump-threading",
llvm::cl::desc("Enable OSSA checked cast branch jump threading "
"(staging)."),
llvm::cl::init(true));
llvm::cl::opt<bool> EnableOSSASimpleJumpThreading(
"enable-ossa-simple-jump-threading",
llvm::cl::desc("Enable OSSA simple jump threading (staging)."),
llvm::cl::init(true));
llvm::cl::opt<bool> EnableOSSADominatorBasedSimplify(
"enable-ossa-dominator-based-simplify",
llvm::cl::desc("Enable OSSA dominator based simplifications (staging)."),
llvm::cl::init(true));
llvm::cl::opt<bool> IsInfiniteJumpThreadingBudget(
"sil-infinite-jump-threading-budget",
llvm::cl::desc(
"Use infinite budget for jump threading. Useful for testing purposes"));
STATISTIC(NumBlocksDeleted, "Number of unreachable blocks removed");
STATISTIC(NumBlocksMerged, "Number of blocks merged together");
STATISTIC(NumJumpThreads, "Number of jumps threaded");
STATISTIC(NumTermBlockSimplified, "Number of programterm block simplified");
STATISTIC(NumConstantFolded, "Number of terminators constant folded");
STATISTIC(NumDeadArguments, "Number of unused arguments removed");
STATISTIC(NumSROAArguments, "Number of aggregate argument levels split by "
"SROA");
//===----------------------------------------------------------------------===//
// CFG Simplification
//===----------------------------------------------------------------------===//
/// dominatorBasedSimplify iterates between dominator based simplification of
/// terminator branch condition values and CFG simplification. This is the
/// maximum number of iterations we run. The number is the maximum number of
/// iterations encountered when compiling the stdlib on April 2 2015.
///
static unsigned MaxIterationsOfDominatorBasedSimplify = 10;
static SILValue getTerminatorCondition(TermInst *Term) {
if (auto *CondBr = dyn_cast<CondBranchInst>(Term))
return stripExpectIntrinsic(CondBr->getCondition());
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term))
return SEI->getOperand();
return nullptr;
}
/// Is this basic block jump threadable.
static bool isThreadableBlock(SILBasicBlock *BB,
SmallPtrSetImpl<SILBasicBlock *> &LoopHeaders) {
auto TI = BB->getTerminator();
// We know how to handle cond_br and switch_enum.
if (!isa<CondBranchInst>(TI) &&
!isa<SwitchEnumInst>(TI))
return false;
if (LoopHeaders.count(BB))
return false;
unsigned Cost = 0;
for (auto &Inst : *BB) {
if (!Inst.isTriviallyDuplicatable())
return false;
// Don't jumpthread function calls.
if (FullApplySite::isa(&Inst))
return false;
// Only thread 'small blocks'.
if (instructionInlineCost(Inst) != InlineCost::Free)
if (++Cost == 4)
return false;
}
return true;
}
/// A description of an edge leading to a conditionally branching (or switching)
/// block and the successor block to thread to.
///
/// Src:
/// br Dest
/// \
/// \ Edge
/// v
/// Dest:
/// ...
/// switch/cond_br
/// / \
/// ... v
/// EnumCase/ThreadedSuccessorIdx
struct ThreadInfo {
SILBasicBlock *Src;
SILBasicBlock *Dest;
EnumElementDecl *EnumCase;
unsigned ThreadedSuccessorIdx;
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest,
unsigned ThreadedBlockSuccessorIdx)
: Src(Src), Dest(Dest), EnumCase(nullptr),
ThreadedSuccessorIdx(ThreadedBlockSuccessorIdx) {}
ThreadInfo(SILBasicBlock *Src, SILBasicBlock *Dest, EnumElementDecl *EnumCase)
: Src(Src), Dest(Dest), EnumCase(EnumCase), ThreadedSuccessorIdx(0) {}
ThreadInfo() = default;
};
// FIXME: It would be far more efficient to clone the jump-threaded region using
// a single invocation of the RegionCloner (see ArrayPropertyOpt) instead of a
// BasicBlockCloner. Cloning a single block at a time forces the cloner to
// create four extra blocks that immediately become dead after the conditional
// branch and its clone is converted to an unconditional branch.
bool SimplifyCFG::threadEdge(const ThreadInfo &ti) {
LLVM_DEBUG(llvm::dbgs() << "thread edge from bb" << ti.Src->getDebugID()
<< " to bb" << ti.Dest->getDebugID() << '\n');
auto *SrcTerm = cast<BranchInst>(ti.Src->getTerminator());
BasicBlockCloner Cloner(SrcTerm->getDestBB());
if (!Cloner.canCloneBlock())
return false;
Cloner.cloneBranchTarget(SrcTerm);
// We have copied the threaded block into the edge.
auto *clonedSrc = Cloner.getNewBB();
SmallVector<SILBasicBlock *, 4> clonedSuccessors(
clonedSrc->getSuccessorBlocks().begin(),
clonedSrc->getSuccessorBlocks().end());
SILBasicBlock *ThreadedSuccessorBlock = nullptr;
// Rewrite the cloned branch to eliminate the non-taken path.
if (auto *CondTerm = dyn_cast<CondBranchInst>(clonedSrc->getTerminator())) {
// We know the direction this conditional branch is going to take thread
// it.
assert(clonedSrc->getSuccessors().size() > ti.ThreadedSuccessorIdx
&& "Threaded terminator does not have enough successors");
ThreadedSuccessorBlock =
clonedSrc->getSuccessors()[ti.ThreadedSuccessorIdx].getBB();
auto Args = ti.ThreadedSuccessorIdx == 0 ? CondTerm->getTrueArgs()
: CondTerm->getFalseArgs();
SILBuilderWithScope(CondTerm).createBranch(CondTerm->getLoc(),
ThreadedSuccessorBlock, Args);
CondTerm->eraseFromParent();
} else {
// Get the enum element and the destination block of the block we jump
// thread.
auto *SEI = cast<SwitchEnumInst>(clonedSrc->getTerminator());
ThreadedSuccessorBlock = SEI->getCaseDestination(ti.EnumCase);
// Instantiate the payload if necessary.
SILBuilderWithScope Builder(SEI);
if (!ThreadedSuccessorBlock->args_empty()) {
if (ti.EnumCase->hasAssociatedValues() &&
(!SEI->hasDefault() ||
ThreadedSuccessorBlock != SEI->getDefaultBB())) {
auto EnumVal = SEI->getOperand();
auto EnumTy = EnumVal->getType();
auto Loc = SEI->getLoc();
auto Ty = EnumTy.getEnumElementType(ti.EnumCase, SEI->getModule(),
Builder.getTypeExpansionContext());
SILValue UED(
Builder.createUncheckedEnumData(Loc, EnumVal, ti.EnumCase, Ty));
assert(UED->getType() ==
(*ThreadedSuccessorBlock->args_begin())->getType() &&
"Argument types must match");
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock, {UED});
} else {
assert(SEI->getDefaultBB() == ThreadedSuccessorBlock);
auto *OldBlockArg = ThreadedSuccessorBlock->getArgument(0);
OldBlockArg->replaceAllUsesWith(SEI->getOperand());
ThreadedSuccessorBlock->eraseArgument(0);
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock);
}
} else {
Builder.createBranch(SEI->getLoc(), ThreadedSuccessorBlock);
}
SEI->eraseFromParent();
}
// If the jump-threading target "Dest" had multiple predecessors, then the
// cloner will have created unconditional branch predecessors, which can
// now be removed or folded after converting the source block "Src" to an
// unconditional branch.
for (auto *succBB : clonedSuccessors) {
removeIfDead(succBB);
}
if (auto *branchInst =
dyn_cast<BranchInst>(ThreadedSuccessorBlock->getTerminator())) {
simplifyBranchBlock(branchInst);
}
Cloner.updateSSAAfterCloning();
return true;
}
/// Give a cond_br or switch_enum instruction and one successor block returns
/// true if we can infer the value of the condition/enum along the edge to these
/// successor blocks.
static bool isKnownEdgeValue(TermInst *Term, SILBasicBlock *SuccBB,
EnumElementDecl *&EnumCase) {
assert((isa<CondBranchInst>(Term) || isa<SwitchEnumInst>(Term)) &&
"Expect a cond_br or switch_enum");
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
if (auto Case = SEI->getUniqueCaseForDestination(SuccBB)) {
EnumCase = Case.get();
return SuccBB->getSinglePredecessorBlock() != nullptr;
}
return false;
}
return SuccBB->getSinglePredecessorBlock() != nullptr;
}
/// Create an enum element by extracting the operand of a switch_enum.
static SILValue createEnumElement(SILBuilder &Builder,
SwitchEnumInst *SEI,
EnumElementDecl *EnumElement) {
auto EnumVal = SEI->getOperand();
// Do we have a payload.
auto EnumTy = EnumVal->getType();
if (EnumElement->hasAssociatedValues()) {
auto Ty = EnumTy.getEnumElementType(EnumElement, SEI->getModule(),
Builder.getTypeExpansionContext());
SILValue UED(Builder.createUncheckedEnumData(SEI->getLoc(), EnumVal,
EnumElement, Ty));
return Builder.createEnum(SEI->getLoc(), UED, EnumElement, EnumTy);
}
return Builder.createEnum(SEI->getLoc(), SILValue(), EnumElement, EnumTy);
}
/// Create a value for the condition of the terminator that flows along the edge
/// with 'EdgeIdx'. Insert it before the 'UserInst'.
static SILValue createValueForEdge(SILInstruction *UserInst,
SILInstruction *DominatingTerminator,
unsigned EdgeIdx) {
SILBuilderWithScope Builder(UserInst);
if (auto *CBI = dyn_cast<CondBranchInst>(DominatingTerminator))
return Builder.createIntegerLiteral(
CBI->getLoc(), CBI->getCondition()->getType(), EdgeIdx == 0 ? -1 : 0);
auto *SEI = cast<SwitchEnumInst>(DominatingTerminator);
auto *DstBlock = SEI->getSuccessors()[EdgeIdx].getBB();
auto Case = SEI->getUniqueCaseForDestination(DstBlock);
assert(Case && "No unique case found for destination block");
return createEnumElement(Builder, SEI, Case.get());
}
/// Perform dominator based value simplifications and jump threading on all users
/// of the operand of 'DominatingBB's terminator.
static bool tryDominatorBasedSimplifications(
SILBasicBlock *DominatingBB, DominanceInfo *DT,
SmallPtrSetImpl<SILBasicBlock *> &LoopHeaders,
SmallVectorImpl<ThreadInfo> &JumpThreadableEdges,
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>>
&ThreadedEdgeSet,
bool TryJumpThreading,
BasicBlockFlag &isThreadable, BasicBlockFlag &threadableComputed) {
auto *DominatingTerminator = DominatingBB->getTerminator();
// We handle value propagation from cond_br and switch_enum terminators.
bool IsEnumValue = isa<SwitchEnumInst>(DominatingTerminator);
if (!isa<CondBranchInst>(DominatingTerminator) && !IsEnumValue)
return false;
auto DominatingCondition = getTerminatorCondition(DominatingTerminator);
if (!DominatingCondition)
return false;
if (isa<SILUndef>(DominatingCondition))
return false;
bool Changed = false;
// We will look at all the outgoing edges from the conditional branch to see
// whether any other uses of the condition or uses of the condition along an
// edge are dominated by said outgoing edges. The outgoing edge carries the
// value on which we switch/cond_branch.
auto Succs = DominatingBB->getSuccessors();
for (unsigned Idx = 0; Idx < Succs.size(); ++Idx) {
auto *DominatingSuccBB = Succs[Idx].getBB();
EnumElementDecl *EnumCase = nullptr;
if (!isKnownEdgeValue(DominatingTerminator, DominatingSuccBB, EnumCase))
continue;
// Look for other uses of DominatingCondition that are either:
// * dominated by the DominatingSuccBB
//
// cond_br %dominating_cond / switch_enum
// /
// /
// /
// DominatingSuccBB:
// ...
// use %dominating_cond
//
// * are a conditional branch that has an incoming edge that is
// dominated by DominatingSuccBB.
//
// cond_br %dominating_cond
// /
// /
// /
//
// DominatingSuccBB:
// ...
// br DestBB
//
// \
// \ E -> %dominating_cond = true
// \
// v
// DestBB
// cond_br %dominating_cond
SmallVector<SILInstruction *, 16> UsersToReplace;
for (auto *Op : ignore_expect_uses(DominatingCondition)) {
auto *CondUserInst = Op->getUser();
// Ignore the DominatingTerminator itself.
if (CondUserInst->getParent() == DominatingBB)
continue;
// For enum values we are only interested in switch_enum and select_enum
// users.
if (IsEnumValue && !isa<SwitchEnumInst>(CondUserInst) &&
!isa<SelectEnumInst>(CondUserInst))
continue;
// If the use is dominated we can replace this use by the value
// flowing to DominatingSuccBB.
if (DT->dominates(DominatingSuccBB, CondUserInst->getParent())) {
UsersToReplace.push_back(CondUserInst);
continue;
}
// Jump threading is expensive so we don't always do it.
if (!TryJumpThreading)
continue;
auto *DestBB = CondUserInst->getParent();
// The user must be the terminator we are trying to jump thread.
if (CondUserInst != DestBB->getTerminator())
continue;
// Check whether we have seen this destination block already.
if (!threadableComputed.testAndSet(DestBB))
isThreadable.set(DestBB, isThreadableBlock(DestBB, LoopHeaders));
// If the use is a conditional branch/switch then look for an incoming
// edge that is dominated by DominatingSuccBB.
if (isThreadable.get(DestBB)) {
auto Preds = DestBB->getPredecessorBlocks();
for (SILBasicBlock *PredBB : Preds) {
if (!isa<BranchInst>(PredBB->getTerminator()))
continue;
if (!DT->dominates(DominatingSuccBB, PredBB))
continue;
// Don't jumpthread the same edge twice.
if (!ThreadedEdgeSet.insert(std::make_pair(PredBB, DestBB)).second)
continue;
if (isa<CondBranchInst>(DestBB->getTerminator()))
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, Idx));
else
JumpThreadableEdges.push_back(ThreadInfo(PredBB, DestBB, EnumCase));
break;
}
}
}
// Replace dominated user instructions.
for (auto *UserInst : UsersToReplace) {
SILValue EdgeValue;
for (auto &Op : UserInst->getAllOperands()) {
if (stripExpectIntrinsic(Op.get()) == DominatingCondition) {
if (!EdgeValue)
EdgeValue = createValueForEdge(UserInst, DominatingTerminator, Idx);
LLVM_DEBUG(llvm::dbgs() << "replace dominated operand\n in "
<< *UserInst << " with " << EdgeValue);
Op.set(EdgeValue);
Changed = true;
}
}
}
}
return Changed;
}
/// Propagate values of branched upon values along the outgoing edges down the
/// dominator tree.
bool SimplifyCFG::dominatorBasedSimplifications(SILFunction &Fn,
DominanceInfo *DT) {
bool Changed = false;
// Collect jump threadable edges and propagate outgoing edge values of
// conditional branches/switches.
SmallVector<ThreadInfo, 8> JumpThreadableEdges;
BasicBlockFlag isThreadable(&Fn);
BasicBlockFlag threadableComputed(&Fn);
llvm::DenseSet<std::pair<SILBasicBlock *, SILBasicBlock *>> ThreadedEdgeSet;
for (auto &BB : Fn) {
if (DT->getNode(&BB)) {
if (!transform.continueWithNextSubpassRun(BB.getTerminator()))
return Changed;
// Only handle reachable blocks.
Changed |= tryDominatorBasedSimplifications(
&BB, DT, LoopHeaders, JumpThreadableEdges, ThreadedEdgeSet,
EnableJumpThread, isThreadable, threadableComputed);
}
}
// Nothing to jump thread?
if (JumpThreadableEdges.empty())
return Changed;
for (auto &ThreadInfo : JumpThreadableEdges) {
if (!transform.continueWithNextSubpassRun())
return Changed;
if (threadEdge(ThreadInfo)) {
Changed = true;
}
}
return Changed;
}
/// Simplify terminators that could have been simplified by threading.
bool SimplifyCFG::simplifyThreadedTerminators() {
bool HaveChangedCFG = false;
for (auto &BB : Fn) {
auto *Term = BB.getTerminator();
if (!transform.continueWithNextSubpassRun(Term))
return HaveChangedCFG;
// Simplify a switch_enum.
if (auto *SEI = dyn_cast<SwitchEnumInst>(Term)) {
if (auto *EI = dyn_cast<EnumInst>(SEI->getOperand())) {
LLVM_DEBUG(llvm::dbgs() << "simplify threaded " << *SEI);
auto *LiveBlock = SEI->getCaseDestination(EI->getElement());
if (!LiveBlock->args_empty()) {
auto *LiveBlockArg = LiveBlock->getArgument(0);
auto NewValue = EI->hasOperand() ? EI->getOperand() : EI;
LiveBlockArg->replaceAllUsesWith(NewValue);
LiveBlock->eraseArgument(0);
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), LiveBlock);
} else {
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), LiveBlock);
}
SEI->eraseFromParent();
if (EI->use_empty())
EI->eraseFromParent();
HaveChangedCFG = true;
}
continue;
} else if (auto *CondBr = dyn_cast<CondBranchInst>(Term)) {
// If the condition is an integer literal, we can constant fold the
// branch.
if (auto *IL = dyn_cast<IntegerLiteralInst>(CondBr->getCondition())) {
LLVM_DEBUG(llvm::dbgs() << "simplify threaded " << *CondBr);
SILBasicBlock *TrueSide = CondBr->getTrueBB();
SILBasicBlock *FalseSide = CondBr->getFalseBB();
auto TrueArgs = CondBr->getTrueArgs();
auto FalseArgs = CondBr->getFalseArgs();
bool isFalse = !IL->getValue();
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
SILBuilderWithScope(CondBr)
.createBranch(CondBr->getLoc(), LiveBlock, LiveArgs);
CondBr->eraseFromParent();
if (IL->use_empty())
IL->eraseFromParent();
HaveChangedCFG = true;
}
}
}
return HaveChangedCFG;
}
// Simplifications that walk the dominator tree to prove redundancy in
// conditional branching.
bool SimplifyCFG::dominatorBasedSimplify(DominanceAnalysis *DA) {
// Get the dominator tree.
DT = DA->get(&Fn);
if (!EnableOSSADominatorBasedSimplify && Fn.hasOwnership())
return false;
// Split all critical edges such that we can move code onto edges. This is
// also required for SSA construction in dominatorBasedSimplifications' jump
// threading. It only splits new critical edges it creates by jump threading.
bool Changed = false;
if (!Fn.hasOwnership() && EnableJumpThread) {
Changed = splitAllCriticalEdges(Fn, DT, nullptr);
}
unsigned MaxIter = MaxIterationsOfDominatorBasedSimplify;
SmallVector<SILBasicBlock *, 16> BlocksForWorklist;
bool HasChangedInCurrentIter;
do {
HasChangedInCurrentIter = false;
if (!transform.continueWithNextSubpassRun())
return Changed;
// Do dominator based simplification of terminator condition. This does not
// and MUST NOT change the CFG without updating the dominator tree to
// reflect such change.
if (tryCheckedCastBrJumpThreading(&Fn, DT, deBlocks, BlocksForWorklist,
EnableOSSACheckedCastBrJumpThreading)) {
for (auto BB: BlocksForWorklist)
addToWorklist(BB);
HasChangedInCurrentIter = true;
DT->recalculate(Fn);
}
BlocksForWorklist.clear();
if (ShouldVerify)
DT->verify();
// Simplify the block argument list. This is extremely subtle: simplifyArgs
// will not change the CFG iff the DT is null. Really we should move that
// one optimization out of simplifyArgs ... I am squinting at you
// simplifySwitchEnumToSelectEnum.
// simplifyArgs does use the dominator tree, though.
for (auto &BB : Fn) {
if (!transform.continueWithNextSubpassRun(BB.getTerminator()))
return Changed;
HasChangedInCurrentIter |= simplifyArgs(&BB);
}
if (ShouldVerify)
DT->verify();
// Jump thread.
if (dominatorBasedSimplifications(Fn, DT)) {
if (!transform.continueWithNextSubpassRun())
return true;
DominanceInfo *InvalidDT = DT;
DT = nullptr;
HasChangedInCurrentIter = true;
// Simplify terminators.
simplifyThreadedTerminators();
DT = InvalidDT;
DT->recalculate(Fn);
}
Changed |= HasChangedInCurrentIter;
} while (HasChangedInCurrentIter && --MaxIter);
// Do the simplification that requires both the dom and postdom tree.
for (auto &BB : Fn)
Changed |= simplifyArgs(&BB);
if (ShouldVerify)
DT->verify();
// The functions we used to simplify the CFG put things in the worklist. Clear
// it here.
clearWorklist();
return Changed;
}
// If BB is trivially unreachable, remove it from the worklist, add its
// successors to the worklist, and then remove the block.
bool SimplifyCFG::removeIfDead(SILBasicBlock *BB) {
if (!BB->pred_empty() || BB == &*Fn.begin())
return false;
removeFromWorklist(BB);
// Add successor blocks to the worklist since their predecessor list is about
// to change.
for (auto &S : BB->getSuccessors())
addToWorklist(S);
LLVM_DEBUG(llvm::dbgs() << "remove dead bb" << BB->getDebugID() << '\n');
removeDeadBlock(BB);
++NumBlocksDeleted;
return true;
}
/// This is called when a predecessor of a block is dropped, to simplify the
/// block and add it to the worklist.
bool SimplifyCFG::simplifyAfterDroppingPredecessor(SILBasicBlock *BB) {
// TODO: If BB has only one predecessor and has bb args, fold them away, then
// use instsimplify on all the users of those values - even ones outside that
// block.
// Make sure that DestBB is in the worklist, as well as its remaining
// predecessors, since they may not be able to be simplified.
addToWorklist(BB);
for (auto *P : BB->getPredecessorBlocks())
addToWorklist(P);
return false;
}
/// This is called after \p BB has been cloned during jump-threading
/// (tail-duplication) and the new critical edge on its successor has been
/// split. This is necessary to continue jump-threading through the split
/// critical edge (since we only jump-thread one block at a time).
bool SimplifyCFG::addToWorklistAfterSplittingEdges(SILBasicBlock *BB) {
addToWorklist(BB);
for (auto *succBB : BB->getSuccessorBlocks()) {
addToWorklist(succBB);
}
return false;
}
static NullablePtr<EnumElementDecl>
getEnumCaseRecursive(SILValue Val, SILBasicBlock *UsedInBB, int RecursionDepth,
llvm::SmallPtrSetImpl<SILArgument *> &HandledArgs) {
// Limit the number of recursions. This is an easy way to cope with cycles
// in the SSA graph.
if (RecursionDepth > 3)
return nullptr;
// Handle the obvious case.
if (auto *EI = dyn_cast<EnumInst>(Val))
return EI->getElement();
// Check if the value is dominated by a switch_enum, e.g.
// switch_enum %val, case A: bb1, case B: bb2
// bb1:
// use %val // We know that %val has case A
SILBasicBlock *Pred = UsedInBB->getSinglePredecessorBlock();
int Limit = 3;
// A very simple dominator check: just walk up the single predecessor chain.
// The limit is just there to not run into an infinite loop in case of an
// unreachable CFG cycle.
while (Pred && --Limit > 0) {
if (auto *PredSEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator())) {
if (PredSEI->getOperand() == Val)
return PredSEI->getUniqueCaseForDestination(UsedInBB);
}
UsedInBB = Pred;
Pred = UsedInBB->getSinglePredecessorBlock();
}
// In case of a phi, recursively check the enum cases of all
// incoming predecessors.
if (auto *Arg = dyn_cast<SILArgument>(Val)) {
HandledArgs.insert(Arg);
llvm::SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> IncomingVals;
if (!Arg->getIncomingPhiValues(IncomingVals))
return nullptr;
EnumElementDecl *CommonCase = nullptr;
for (std::pair<SILBasicBlock *, SILValue> Incoming : IncomingVals) {
SILBasicBlock *IncomingBlock = Incoming.first;
SILValue IncomingVal = Incoming.second;
auto *IncomingArg = dyn_cast<SILArgument>(IncomingVal);
if (IncomingArg && HandledArgs.count(IncomingArg) != 0)
continue;
NullablePtr<EnumElementDecl> IncomingCase =
getEnumCaseRecursive(Incoming.second, IncomingBlock, RecursionDepth + 1,
HandledArgs);
if (!IncomingCase)
return nullptr;
if (IncomingCase.get() != CommonCase) {
if (CommonCase)
return nullptr;
CommonCase = IncomingCase.get();
}
}
return CommonCase;
}
return nullptr;
}
/// Tries to figure out the enum case of an enum value \p Val which is used in
/// block \p UsedInBB.
static NullablePtr<EnumElementDecl> getEnumCase(SILValue Val,
SILBasicBlock *UsedInBB) {
llvm::SmallPtrSet<SILArgument *, 8> HandledArgs;
return getEnumCaseRecursive(Val, UsedInBB, /*RecursionDepth*/ 0, HandledArgs);
}
static int getThreadingCost(SILInstruction *I) {
if (!I->isTriviallyDuplicatable())
return 1000;
// Don't jumpthread function calls.
if (isa<ApplyInst>(I))
return 1000;
// This is a really trivial cost model, which is only intended as a starting
// point.
if (instructionInlineCost(*I) != InlineCost::Free)
return 1;
return 0;
}
static int maxBranchRecursionDepth = 6;
/// couldSimplifyUsers - Check to see if any simplifications are possible if
/// "Val" is substituted for BBArg. If so, return true, if nothing obvious
/// is possible, return false.
static bool couldSimplifyEnumUsers(SILArgument *BBArg, int Budget,
int recursionDepth = 0) {
SILBasicBlock *BB = BBArg->getParent();
int BudgetForBranch = 100;
for (Operand *UI : BBArg->getUses()) {
auto *User = UI->getUser();
if (User->getParent() != BB)
continue;
// We only know we can simplify if the switch_enum user is in the block we
// are trying to jump thread.
// The value must not be define in the same basic block as the switch enum
// user. If this is the case we have a single block switch_enum loop.
if (isa<SwitchEnumInst>(User) || isa<SelectEnumInst>(User))
return true;
// Also allow enum of enum, which usually can be combined to a single
// instruction. This helps to simplify the creation of an enum from an
// integer raw value.
if (isa<EnumInst>(User))
return true;
if (auto *SWI = dyn_cast<SwitchValueInst>(User)) {
if (SWI->getOperand() == BBArg)
return true;
}
if (auto *BI = dyn_cast<BranchInst>(User)) {
if (recursionDepth >= maxBranchRecursionDepth) {
return false;
}
if (BudgetForBranch > Budget) {
BudgetForBranch = Budget;
for (SILInstruction &I : *BB) {
BudgetForBranch -= getThreadingCost(&I);
if (BudgetForBranch < 0)
break;
}
}
if (BudgetForBranch > 0) {
SILBasicBlock *DestBB = BI->getDestBB();
unsigned OpIdx = UI->getOperandNumber();
if (couldSimplifyEnumUsers(DestBB->getArgument(OpIdx), BudgetForBranch,
recursionDepth + 1))
return true;
}
}
}
return false;
}
void SimplifyCFG::findLoopHeaders() {
/// Find back edges in the CFG. This performs a dfs search and identifies
/// back edges as edges going to an ancestor in the dfs search. If a basic
/// block is the target of such a back edge we will identify it as a header.
LoopHeaders.clear();
BasicBlockSet Visited(&Fn);
BasicBlockSet InDFSStack(&Fn);
SmallVector<std::pair<SILBasicBlock *, SILBasicBlock::succ_iterator>, 16>
DFSStack;
auto EntryBB = &Fn.front();
DFSStack.push_back(std::make_pair(EntryBB, EntryBB->succ_begin()));
Visited.insert(EntryBB);
InDFSStack.insert(EntryBB);
while (!DFSStack.empty()) {
auto &D = DFSStack.back();
// No successors.
if (D.second == D.first->succ_end()) {
// Retreat the dfs search.
DFSStack.pop_back();
InDFSStack.erase(D.first);
} else {
// Visit the next successor.
SILBasicBlock *NextSucc = *(D.second);
++D.second;
if (Visited.insert(NextSucc)) {
InDFSStack.insert(NextSucc);
DFSStack.push_back(std::make_pair(NextSucc, NextSucc->succ_begin()));
} else if (InDFSStack.contains(NextSucc)) {
// We have already visited this node and it is in our dfs search. This
// is a back-edge.
LoopHeaders.insert(NextSucc);
}
}
}
}
static bool couldRemoveRelease(SILBasicBlock *SrcBB, SILValue SrcV,
SILBasicBlock *DestBB, SILValue DestV) {
bool IsRetainOfSrc = false;
for (auto *U: SrcV->getUses())
if (U->getUser()->getParent() == SrcBB &&
(isa<StrongRetainInst>(U->getUser()) ||
isa<RetainValueInst>(U->getUser()))) {
IsRetainOfSrc = true;
break;
}
if (!IsRetainOfSrc)
return false;
bool IsReleaseOfDest = false;
for (auto *U: DestV->getUses())
if (U->getUser()->getParent() == DestBB &&
(isa<StrongReleaseInst>(U->getUser()) ||
isa<ReleaseValueInst>(U->getUser()))) {
IsReleaseOfDest = true;
break;
}
return IsReleaseOfDest;
}
/// Returns true if any instruction in \p block may write memory.
static bool blockMayWriteMemory(SILBasicBlock *block) {
for (auto instAndIdx : llvm::enumerate(*block)) {
if (instAndIdx.value().mayWriteToMemory())
return true;
// Only look at the first 20 instructions to avoid compile time problems for
// corner cases of very large blocks without memory writes.
// 20 instructions is more than enough.
if (instAndIdx.index() > 50)
return true;
}
return false;
}
// Returns true if \p block contains an injected an enum case into \p enumAddr
// which is valid at the end of the block.
static bool hasInjectedEnumAtEndOfBlock(SILBasicBlock *block, SILValue enumAddr) {
for (auto instAndIdx : llvm::enumerate(llvm::reverse(*block))) {
SILInstruction &inst = instAndIdx.value();
if (auto *injectInst = dyn_cast<InjectEnumAddrInst>(&inst)) {
return injectInst->getOperand() == enumAddr;
}
if (inst.mayWriteToMemory())
return false;
// Only look at the first 20 instructions to avoid compile time problems for
// corner cases of very large blocks without memory writes.
// 20 instructions is more than enough.
if (instAndIdx.index() > 50)
return false;
}
return false;
}
/// tryJumpThreading - Check to see if it looks profitable to duplicate the
/// destination of an unconditional jump into the bottom of this block.
bool SimplifyCFG::tryJumpThreading(BranchInst *BI) {
if (!EnableOSSASimpleJumpThreading && Fn.hasOwnership())
return false;
auto *DestBB = BI->getDestBB();
auto *SrcBB = BI->getParent();
TermInst *destTerminator = DestBB->getTerminator();
// If the destination block ends with a return, we don't want to duplicate it.
// We want to maintain the canonical form of a single return where possible.
if (destTerminator->isFunctionExiting())
return false;
// There is no benefit duplicating such a destination.
if (DestBB->getSinglePredecessorBlock() != nullptr) {
return false;
}
// Jump threading only makes sense if there is an argument on the branch
// (which is reacted on in the DestBB), or if this goes through a memory
// location (switch_enum_addr is the only address-instruction which we
// currently handle).
if (BI->getArgs().empty() && !isa<SwitchEnumAddrInst>(destTerminator))
return false;
// We don't have a great cost model at the SIL level, so we don't want to
// blissly duplicate tons of code with a goal of improved performance (we'll
// leave that to LLVM). However, doing limited code duplication can lead to
// major second order simplifications. Here we only do it if there are
// "constant" arguments to the branch or if we know how to fold something
// given the duplication.
int ThreadingBudget = IsInfiniteJumpThreadingBudget ? INT_MAX : 0;
for (unsigned i : indices(BI->getArgs())) {
SILValue Arg = BI->getArg(i);
// If the value being substituted on is release there is a chance we could
// remove the release after jump threading.
// In ossa, copy propagation can do this, avoid jump threading.
if (!Fn.hasOwnership() && !Arg->getType().isTrivial(*SrcBB->getParent()) &&
couldRemoveRelease(SrcBB, Arg, DestBB, DestBB->getArgument(i))) {
ThreadingBudget = 8;
break;
}
// If the value being substituted is an enum, check to see if there are any
// switches on it.
if (!getEnumCase(Arg, BI->getParent()) &&
!isa<IntegerLiteralInst>(Arg))
continue;
if (couldSimplifyEnumUsers(DestBB->getArgument(i), 8)) {
ThreadingBudget = 8;
break;
}
}
if (ThreadingBudget == 0) {
if (isa<CondBranchInst>(destTerminator)) {
for (auto V : BI->getArgs()) {
if (isa<IntegerLiteralInst>(V) || isa<FloatLiteralInst>(V)) {
ThreadingBudget = 4;
break;
}
}
} else if (auto *SEA = dyn_cast<SwitchEnumAddrInst>(destTerminator)) {
// If the branch-block injects a certain enum case and the destination
// switches on that enum, it's worth jump threading. E.g.
//
// inject_enum_addr %enum : $*Optional<T>, #Optional.some
// ... // no memory writes here
// br DestBB
// DestBB:
// ... // no memory writes here
// switch_enum_addr %enum : $*Optional<T>, case #Optional.some ...
//
SILValue enumAddr = SEA->getOperand();
if (!blockMayWriteMemory(DestBB) &&
hasInjectedEnumAtEndOfBlock(SrcBB, enumAddr)) {
ThreadingBudget = 4;
}
}
}
ThreadingBudget -= JumpThreadingCost[SrcBB];
ThreadingBudget -= JumpThreadingCost[DestBB];
// If we don't have anything that we can simplify, don't do it.
if (ThreadingBudget <= 0)
return false;
// Don't jump thread through a potential header - this can produce irreducible
// control flow and lead to infinite loop peeling.
bool DestIsLoopHeader = (LoopHeaders.count(DestBB) != 0);
if (DestIsLoopHeader) {
// Make an exception for switch_enum, but only if it's block was not already
// peeled out of it's original loop. In that case, further jump threading
// can accomplish nothing, and the loop will be infinitely peeled.
if (!isa<SwitchEnumInst>(destTerminator) || ClonedLoopHeaders.count(DestBB))
return false;
}
// If it looks potentially interesting, decide whether we *can* do the
// operation and whether the block is small enough to be worth duplicating.
int copyCosts = 0;
BasicBlockCloner Cloner(DestBB);
for (auto &inst : *DestBB) {
copyCosts += getThreadingCost(&inst);
if (ThreadingBudget <= copyCosts)
return false;
// If this is an address projection with outside uses, sink it before
// checking for SSA update.
if (!Cloner.canCloneInstruction(&inst))
return false;
}
LLVM_DEBUG(llvm::dbgs() << "jump thread from bb" << SrcBB->getDebugID()
<< " to bb" << DestBB->getDebugID() << '\n');
JumpThreadingCost[DestBB] += copyCosts;
// Duplicate the destination block into this one, rewriting uses of the BBArgs
// to use the branch arguments as we go.
Cloner.cloneBranchTarget(BI);
Cloner.updateSSAAfterCloning();
// Once all the instructions are copied, we can nuke BI itself. We also add
// the threaded and edge block to the worklist now that they (likely) can be
// simplified.
addToWorklist(SrcBB);
// Simplify the cloned block and continue jump-threading through its new
// successors edges.
addToWorklistAfterSplittingEdges(Cloner.getNewBB());
// We may be able to simplify DestBB now that it has one fewer predecessor.
simplifyAfterDroppingPredecessor(DestBB);
// If we jump-thread a switch_enum in the loop header, we have to recalculate
// the loop header info.
//
// FIXME: findLoopHeaders should not be called repeatedly during simplify-cfg
// iteration. It is a whole-function analysis! It also does no nothing help to
// avoid infinite loop peeling.
if (DestIsLoopHeader) {
ClonedLoopHeaders.insert(Cloner.getNewBB());
findLoopHeaders();
}
++NumJumpThreads;
return true;
}
namespace swift::test {
/// Arguments:
/// - BranchInst - the branch whose destination might be merged into its parent
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGTryJumpThreading(
"simplify-cfg-try-jump-threading",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.tryJumpThreading(cast<BranchInst>(arguments.takeInstruction()));
});
} // end namespace swift::test
/// simplifyBranchOperands - Simplify operands of branches, since it can
/// result in exposing opportunities for CFG simplification.
bool SimplifyCFG::simplifyBranchOperands(OperandValueArrayRef Operands) {
InstModCallbacks callbacks;
#ifndef NDEBUG
callbacks = callbacks.onDelete(
[](SILInstruction *instToKill) {
LLVM_DEBUG(llvm::dbgs() << "simplify and erase " << *instToKill);
instToKill->eraseFromParent();
});
#endif
for (auto O = Operands.begin(), E = Operands.end(); O != E; ++O) {
// All of our interesting simplifications are on single-value instructions
// for now.
if (auto *I = dyn_cast<SingleValueInstruction>(*O)) {
simplifyAndReplaceAllSimplifiedUsesAndErase(I, callbacks, deBlocks);
}
}
return callbacks.hadCallbackInvocation();
}
static bool onlyHasTerminatorAndDebugInsts(SILBasicBlock *BB) {
TermInst *Terminator = BB->getTerminator();
SILBasicBlock::iterator Iter = BB->begin();
while (&*Iter != Terminator) {
if (!(&*Iter)->isDebugInstruction())
return false;
++Iter;
}
return true;
}
namespace {
/// Will be valid if the constructor's targetBB has a a single branch and all
/// its block arguments are only used by that branch.
struct TrampolineDest {
SILBasicBlock *destBB = nullptr;
// Source block's branch args after bypassing targetBB.
SmallVector<SILValue, 4> newSourceBranchArgs;
TrampolineDest() {}
TrampolineDest(SILBasicBlock *sourceBB, SILBasicBlock *targetBB);
TrampolineDest(const TrampolineDest &) = delete;
TrampolineDest &operator=(const TrampolineDest &) = delete;
TrampolineDest(TrampolineDest &&) = default;
TrampolineDest &operator=(TrampolineDest &&) = default;
bool operator==(const TrampolineDest &rhs) const {
return destBB == rhs.destBB
&& newSourceBranchArgs == rhs.newSourceBranchArgs;
}
bool operator!=(const TrampolineDest &rhs) const {
return !(*this == rhs);
}
operator bool() const { return destBB != nullptr; }
};
} // end anonymous namespace
TrampolineDest::TrampolineDest(SILBasicBlock *sourceBB,
SILBasicBlock *targetBB) {
// Ignore blocks with more than one instruction.
if (!onlyHasTerminatorAndDebugInsts(targetBB))
return;
auto *targetBranch = dyn_cast<BranchInst>(targetBB->getTerminator());
if (!targetBranch)
return;
// Disallow infinite loops through targetBB.
BasicBlockSet VisitedBBs(sourceBB->getParent());
BranchInst *nextBI = targetBranch;
do {
SILBasicBlock *nextBB = nextBI->getDestBB();
// We don't care about infinite loops after SBB.
if (!VisitedBBs.insert(nextBB))
break;
// Only if the infinite loop goes through SBB directly we bail.
if (nextBB == targetBB)
return;
nextBI = dyn_cast<BranchInst>(nextBB->getTerminator());
} while (nextBI);
// Check that all the target block arguments are only used by the branch.
//
// TODO: OSSA; also handle dead block args that are trivial or destroyed in
// the same block.
for (SILValue blockArg : targetBB->getArguments()) {
Operand *operand = blockArg->getSingleUse();
if (!operand || operand->getUser() != targetBranch) {
return;
}
}
SILBasicBlock *destBlock = targetBranch->getDestBB();
newSourceBranchArgs.reserve(targetBranch->getArgs().size());
for (SILValue branchArg : targetBranch->getArgs()) {
if (branchArg->getParentBlock() == destBlock) {
// This can happen if the involved blocks are part of an unreachable CFG
// cycle (dominance is not meaningful in such a case).
return;
}
if (branchArg->getParentBlock() == targetBB) {
auto *phi = dyn_cast<SILPhiArgument>(branchArg);
if (!phi || !phi->isPhi()) {
return;
}
branchArg = phi->getIncomingPhiValue(sourceBB);
}
newSourceBranchArgs.push_back(branchArg);
}
// Setting destBB constructs a valid TrampolineDest.
destBB = destBlock;
}
#ifndef NDEBUG
/// Is the block reachable from the entry.
static bool isReachable(SILBasicBlock *Block) {
BasicBlockWorklist Worklist(Block->getParent()->getEntryBlock());
while (SILBasicBlock *CurBB = Worklist.pop()) {
if (CurBB == Block)
return true;
for (SILBasicBlock *Succ : CurBB->getSuccessors()) {
Worklist.pushIfNotVisited(Succ);
}
}
return false;
}
#endif
static llvm::cl::opt<bool> SimplifyUnconditionalBranches(
"simplify-cfg-simplify-unconditional-branches", llvm::cl::init(true));
/// Returns true if \p block has less instructions than \p other.
static bool hasLessInstructions(SILBasicBlock *block, SILBasicBlock *other) {
auto blockIter = block->begin();
auto blockEnd = block->end();
auto otherIter = other->begin();
auto otherEnd = other->end();
while (true) {
if (otherIter == otherEnd)
return false;
if (blockIter == blockEnd)
return true;
++blockIter;
++otherIter;
}
}
/// simplifyBranchBlock - Simplify a basic block that ends with an unconditional
/// branch.
///
/// Performs trivial trampoline removal. May be called as a utility to cleanup
/// successors after removing conditional branches or predecessors after
/// deleting unreachable blocks.
bool SimplifyCFG::simplifyBranchBlock(BranchInst *BI) {
// If we are asked to not simplify unconditional branches (for testing
// purposes), exit early.
if (!SimplifyUnconditionalBranches)
return false;
// First simplify instructions generating branch operands since that
// can expose CFG simplifications.
bool Simplified = simplifyBranchOperands(BI->getArgs());
auto *BB = BI->getParent(), *DestBB = BI->getDestBB();
// If this block branches to a block with a single predecessor, then
// merge the DestBB into this BB.
if (BB != DestBB && DestBB->getSinglePredecessorBlock()) {
LLVM_DEBUG(llvm::dbgs() << "merge bb" << BB->getDebugID() << " with bb"
<< DestBB->getDebugID() << '\n');
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i) {
if (DestBB->getArgument(i) == BI->getArg(i)) {
// We must be processing an unreachable part of the cfg with a cycle.
// bb1(arg1): // preds: bb3
// br bb2
//
// bb2: // preds: bb1
// br bb3
//
// bb3: // preds: bb2
// br bb1(arg1)
assert(!isReachable(BB) && "Should only occur in unreachable block");
return Simplified;
}
}
// If there are any BB arguments in the destination, replace them with the
// branch operands, since they must dominate the dest block.
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i) {
assert(DestBB->getArgument(i) != BI->getArg(i));
SILValue Val = BI->getArg(i);
DestBB->getArgument(i)->replaceAllUsesWith(Val);
if (!isVeryLargeFunction) {
if (auto *I = dyn_cast<SingleValueInstruction>(Val)) {
// Replacing operands may trigger constant folding which then could
// trigger other simplify-CFG optimizations.
ConstFolder.addToWorklist(I);
ConstFolder.processWorkList();
}
}
}
BI->eraseFromParent();
// Move instruction from the smaller block to the larger block.
// The order is essential because if many blocks are merged and this is done
// in the wrong order, we end up with quadratic complexity.
//
SILBasicBlock *remainingBlock = nullptr, *deletedBlock = nullptr;
if (BB != Fn.getEntryBlock() && hasLessInstructions(BB, DestBB)) {
DestBB->spliceAtBegin(BB);
DestBB->dropAllArguments();
DestBB->moveArgumentList(BB);
while (!BB->pred_empty()) {
SILBasicBlock *pred = *BB->pred_begin();
pred->getTerminator()->replaceBranchTarget(BB, DestBB);
}
remainingBlock = DestBB;
deletedBlock = BB;
} else {
BB->spliceAtEnd(DestBB);
remainingBlock = BB;
deletedBlock = DestBB;
}
// Revisit this block now that we've changed it.
addToWorklist(remainingBlock);
// This can also expose opportunities in the successors of
// the merged block.
for (auto &Succ : remainingBlock->getSuccessors())
addToWorklist(Succ);
substitutedBlockPreds(deletedBlock, remainingBlock);
auto Iter = JumpThreadingCost.find(deletedBlock);
if (Iter != JumpThreadingCost.end()) {
int costs = Iter->second;
JumpThreadingCost[remainingBlock] += costs;
}
removeFromWorklist(deletedBlock);
deletedBlock->eraseFromParent();
++NumBlocksMerged;
return true;
}
// If the destination block is a simple trampoline (jump to another block)
// then jump directly.
if (auto trampolineDest = TrampolineDest(BB, DestBB)) {
LLVM_DEBUG(llvm::dbgs()
<< "jump to trampoline from bb" << BB->getDebugID() << " to bb"
<< trampolineDest.destBB->getDebugID() << '\n');
SILBuilderWithScope(BI).createBranch(BI->getLoc(), trampolineDest.destBB,
trampolineDest.newSourceBranchArgs);
// Eliminating the trampoline can expose opportunities to improve the
// new block we branch to.
substitutedBlockPreds(DestBB, trampolineDest.destBB);
addToWorklist(trampolineDest.destBB);
BI->eraseFromParent();
removeIfDead(DestBB);
addToWorklist(BB);
return true;
}
return Simplified;
}
/// Returns the original boolean value, looking through possible invert
/// builtins. The parameter \p Inverted is inverted if the returned original
/// value is the inverted value of the passed \p Cond.
/// If \p onlyAcceptSingleUse is true and the operand of an invert builtin has
/// more than one use, an invalid SILValue() is returned.
static SILValue skipInvert(SILValue Cond, bool &Inverted,
bool onlyAcceptSingleUse) {
while (auto *BI = dyn_cast<BuiltinInst>(Cond)) {
if (onlyAcceptSingleUse && !BI->hasOneUse())
return SILValue();
OperandValueArrayRef Args = BI->getArguments();
if (BI->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
// Check if it's a boolean inversion of the condition.
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
if (IL->getValue().isAllOnes()) {
Cond = Args[0];
Inverted = !Inverted;
continue;
}
} else if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[0])) {
if (IL->getValue().isAllOnes()) {
Cond = Args[1];
Inverted = !Inverted;
continue;
}
}
}
break;
}
return Cond;
}
/// Returns the first cond_fail if it is the first side-effect
/// instruction in this block.
static CondFailInst *getFirstCondFail(SILBasicBlock *BB) {
CondFailInst *CondFail = nullptr;
// Skip instructions that don't have side-effects.
auto It = BB->begin();
while (It != BB->end() && !(CondFail = dyn_cast<CondFailInst>(It))) {
if (It->mayHaveSideEffects())
return nullptr;
++It;
}
return CondFail;
}
/// If the first side-effect instruction in this block is a cond_fail that
/// is guaranteed to fail, it is returned.
///
/// The returned CondFailInst may be in a successor of \p BB.
///
/// The \p Cond is the condition from a cond_br in the predecessor block. The
/// cond_fail must only fail if \p BB is entered through this predecessor block.
/// If \p Inverted is true, \p BB is on the false-edge of the cond_br.
static CondFailInst *getUnConditionalFail(SILBasicBlock *BB, SILValue Cond,
bool Inverted) {
// Handle a CFG edge to the cond_fail block with no side effects.
auto *condfailBB = BB;
if (isa<BranchInst>(BB->getTerminator())) {
for (auto It = BB->begin(); It != BB->end(); ++It) {
if (It->mayHaveSideEffects())
return nullptr;
}
condfailBB = BB->getSingleSuccessorBlock();
}
CondFailInst *CondFail = getFirstCondFail(condfailBB);
if (!CondFail)
return nullptr;
// The simple case: check if it is a "cond_fail 1".
auto *IL = dyn_cast<IntegerLiteralInst>(CondFail->getOperand());
if (IL && IL->getValue() != 0)
return CondFail;
// Check if the cond_fail has the same condition as the cond_br in the
// predecessor block.
Cond = skipInvert(Cond, Inverted, false);
SILValue CondFailCond = skipInvert(CondFail->getOperand(), Inverted, false);
if (Cond == CondFailCond && !Inverted)
return CondFail;
return nullptr;
}
/// Creates a new cond_fail instruction, optionally with an xor inverted
/// condition.
static void createCondFail(CondFailInst *Orig, SILValue Cond, StringRef Message,
bool inverted, SILBuilder &Builder) {
Builder.createCondFail(Orig->getLoc(), Cond, Message, inverted);
}
/// Inverts the expected value of 'PotentialExpect' (if it is an expect
/// intrinsic) and returns this expected value apply to 'V'.
static SILValue invertExpectAndApplyTo(SILBuilder &Builder,
SILValue PotentialExpect, SILValue V) {
auto *BI = dyn_cast<BuiltinInst>(PotentialExpect);
if (!BI)
return V;
if (BI->getIntrinsicInfo().ID != llvm::Intrinsic::expect)
return V;
auto Args = BI->getArguments();
auto *IL = dyn_cast<IntegerLiteralInst>(Args[1]);
if (!IL)
return V;
SILValue NegatedExpectedValue = Builder.createIntegerLiteral(
IL->getLoc(), Args[1]->getType(), IL->getValue() == 0 ? -1 : 0);
return Builder.createBuiltin(BI->getLoc(), BI->getName(), BI->getType(), {},
{V, NegatedExpectedValue});
}
/// simplifyCondBrBlock - Simplify a basic block that ends with a conditional
/// branch.
bool SimplifyCFG::simplifyCondBrBlock(CondBranchInst *BI) {
// First simplify instructions generating branch operands since that
// can expose CFG simplifications.
simplifyBranchOperands(OperandValueArrayRef(BI->getAllOperands()));
auto *ThisBB = BI->getParent();
SILBasicBlock *TrueSide = BI->getTrueBB();
SILBasicBlock *FalseSide = BI->getFalseBB();
auto TrueArgs = BI->getTrueArgs();
auto FalseArgs = BI->getFalseArgs();
// If the condition is an integer literal, we can constant fold the branch.
if (auto *IL = dyn_cast<IntegerLiteralInst>(BI->getCondition())) {
bool isFalse = !IL->getValue();
auto LiveArgs = isFalse ? FalseArgs : TrueArgs;
auto *LiveBlock = isFalse ? FalseSide : TrueSide;
auto *DeadBlock = !isFalse ? FalseSide : TrueSide;
LLVM_DEBUG(llvm::dbgs() << "replace cond_br with br: " << *BI);
SILBuilderWithScope(BI).createBranch(BI->getLoc(), LiveBlock, LiveArgs);
BI->eraseFromParent();
if (IL->use_empty()) IL->eraseFromParent();
addToWorklist(ThisBB);
simplifyAfterDroppingPredecessor(DeadBlock);
addToWorklist(LiveBlock);
++NumConstantFolded;
return true;
}
// Canonicalize "cond_br (not %cond), BB1, BB2" to "cond_br %cond, BB2, BB1".
// This looks through expect intrinsic calls and applies the ultimate expect
// call inverted to the condition.
if (auto *Xor =
dyn_cast<BuiltinInst>(stripExpectIntrinsic(BI->getCondition()))) {
if (Xor->getBuiltinInfo().ID == BuiltinValueKind::Xor) {
// Check if it's a boolean inversion of the condition.
OperandValueArrayRef Args = Xor->getArguments();
if (auto *IL = dyn_cast<IntegerLiteralInst>(Args[1])) {
if (IL->getValue().isAllOnes()) {
LLVM_DEBUG(llvm::dbgs() << "canonicalize cond_br: " << *BI);
auto Cond = Args[0];
SILBuilderWithScope Builder(BI);
Builder.createCondBranch(
BI->getLoc(),
invertExpectAndApplyTo(Builder, BI->getCondition(), Cond),
FalseSide, FalseArgs, TrueSide, TrueArgs, BI->getFalseBBCount(),
BI->getTrueBBCount());
BI->eraseFromParent();
addToWorklist(ThisBB);
return true;
}
}
}
}
// For a valid TrampolineDest, the destBB has no other predecessors, so remove
// all the branch arguments--they are no longer phis once their predecessor
// block is a cond_br instead of a br.
auto eraseTrampolineDestArgs = [](TrampolineDest &trampolineDest) {
SILBasicBlock *destBB = trampolineDest.destBB;
assert(trampolineDest.newSourceBranchArgs.size()
== destBB->getArguments().size());
// Erase in reverse order to pop each element as we go.
for (unsigned i = destBB->getArguments().size(); i != 0;) {
--i;
destBB->getArgument(i)->replaceAllUsesWith(
trampolineDest.newSourceBranchArgs[i]);
destBB->eraseArgument(i);
}
};
// If the destination block is a simple trampoline (jump to another block)
// then jump directly.
//
// Avoid creating self-loops on a cond_br. The loop block requires blocks
// arguments for loop-carried values without breaking dominance--we can't have
// an earlier instruction depending on a value defined later in the block.
auto trueTrampolineDest = TrampolineDest(ThisBB, TrueSide);
if (trueTrampolineDest
&& trueTrampolineDest.destBB->getSinglePredecessorBlock()
&& trueTrampolineDest.destBB != ThisBB) {
LLVM_DEBUG(llvm::dbgs()
<< "true-trampoline from bb" << ThisBB->getDebugID() << " to bb"
<< trueTrampolineDest.destBB->getDebugID() << '\n');
SmallVector<SILValue, 4> falseArgsCopy(FalseArgs.begin(), FalseArgs.end());
eraseTrampolineDestArgs(trueTrampolineDest);
SILBuilderWithScope(BI).createCondBranch(
BI->getLoc(), BI->getCondition(), trueTrampolineDest.destBB,
{}, FalseSide, falseArgsCopy,
BI->getTrueBBCount(), BI->getFalseBBCount());
BI->eraseFromParent();
substitutedBlockPreds(TrueSide, ThisBB);
removeIfDead(TrueSide);
addToWorklist(ThisBB);
return true;
}
auto falseTrampolineDest = TrampolineDest(ThisBB, FalseSide);
if (falseTrampolineDest
&& falseTrampolineDest.destBB->getSinglePredecessorBlock()
&& falseTrampolineDest.destBB != ThisBB) {
LLVM_DEBUG(llvm::dbgs()
<< "false-trampoline from bb" << ThisBB->getDebugID() << " to bb"
<< falseTrampolineDest.destBB->getDebugID() << '\n');
SmallVector<SILValue, 4> trueArgsCopy(TrueArgs.begin(), TrueArgs.end());
eraseTrampolineDestArgs(falseTrampolineDest);
SILBuilderWithScope(BI).createCondBranch(
BI->getLoc(), BI->getCondition(), TrueSide, trueArgsCopy,
falseTrampolineDest.destBB, {}, BI->getTrueBBCount(),
BI->getFalseBBCount());
BI->eraseFromParent();
substitutedBlockPreds(FalseSide, ThisBB);
removeIfDead(FalseSide);
addToWorklist(ThisBB);
return true;
}
// Simplify cond_br where both sides jump to the same blocks with the same
// args.
auto condBrToBr = [&](ArrayRef<SILValue> branchArgs, SILBasicBlock *newDest) {
LLVM_DEBUG(llvm::dbgs()
<< "replace cond_br with same dests with br: " << *BI);
SILBuilderWithScope(BI).createBranch(BI->getLoc(), newDest, branchArgs);
BI->eraseFromParent();
addToWorklist(ThisBB);
++NumConstantFolded;
};
if (trueTrampolineDest.destBB == FalseSide
&& trueTrampolineDest.newSourceBranchArgs == FalseArgs) {
condBrToBr(trueTrampolineDest.newSourceBranchArgs, FalseSide);
removeIfDead(TrueSide);
return true;
}
if (falseTrampolineDest.destBB == TrueSide) {
condBrToBr(falseTrampolineDest.newSourceBranchArgs, TrueSide);
removeIfDead(FalseSide);
return true;
}
if (trueTrampolineDest && (trueTrampolineDest == falseTrampolineDest)) {
condBrToBr(trueTrampolineDest.newSourceBranchArgs,
trueTrampolineDest.destBB);
removeIfDead(TrueSide);
removeIfDead(FalseSide);
return true;
}
// If we have a (cond (select_enum)) on a two element enum, always have the
// first case as our checked tag. If we have the second, create a new
// select_enum with the first case and swap our operands. This simplifies
// later dominance based processing.
if (auto *SEI = dyn_cast<SelectEnumInst>(BI->getCondition())) {
EnumDecl *E = SEI->getEnumOperand()->getType().getEnumOrBoundGenericEnum();
auto AllElts = E->getAllElements();
auto Iter = AllElts.begin();
EnumElementDecl *FirstElt = *Iter;
// We can't do this optimization on non-exhaustive enums.
bool IsExhaustive =
E->isEffectivelyExhaustive(Fn.getModule().getSwiftModule(),
Fn.getResilienceExpansion());
if (IsExhaustive
&& SEI->getNumCases() >= 1
&& SEI->getCase(0).first != FirstElt) {
++Iter;
if (Iter != AllElts.end() &&
std::next(Iter) == AllElts.end() &&
*Iter == SEI->getCase(0).first) {
EnumElementDecl *SecondElt = *Iter;
SILValue FirstValue;
// SelectEnum must be exhaustive, so the second case must be handled
// either by a case or the default.
if (SEI->getNumCases() >= 2) {
assert(FirstElt == SEI->getCase(1).first
&& "select_enum missing a case?!");
FirstValue = SEI->getCase(1).second;
} else {
FirstValue = SEI->getDefaultResult();
}
std::pair<EnumElementDecl*, SILValue> SwappedCases[2] = {
{FirstElt, SEI->getCase(0).second},
{SecondElt, FirstValue},
};
LLVM_DEBUG(llvm::dbgs() << "canonicalize " << *SEI);
auto *NewSEI = SILBuilderWithScope(SEI)
.createSelectEnum(SEI->getLoc(),
SEI->getEnumOperand(),
SEI->getType(),
SILValue(),
SwappedCases);
// We only change the condition to be NewEITI instead of all uses since
// EITI may have other uses besides this one that need to be updated.
BI->setCondition(NewSEI);
BI->swapSuccessors();
addToWorklist(BI->getParent());
addToWorklist(TrueSide);
addToWorklist(FalseSide);
return true;
}
}
}
// Simplify a condition branch to a block starting with "cond_fail 1".
//
// cond_br %cond, TrueSide, FalseSide
// TrueSide:
// cond_fail 1
//
auto CFCondition = BI->getCondition();
if (auto *TrueCFI = getUnConditionalFail(TrueSide, CFCondition, false)) {
LLVM_DEBUG(llvm::dbgs() << "replace with cond_fail:" << *BI);
SILBuilderWithScope Builder(BI);
createCondFail(TrueCFI, CFCondition, TrueCFI->getMessage(), false, Builder);
SILBuilderWithScope(BI).createBranch(BI->getLoc(), FalseSide, FalseArgs);
BI->eraseFromParent();
addToWorklist(ThisBB);
simplifyAfterDroppingPredecessor(TrueSide);
addToWorklist(FalseSide);
return true;
}
if (auto *FalseCFI = getUnConditionalFail(FalseSide, CFCondition, true)) {
LLVM_DEBUG(llvm::dbgs() << "replace with inverted cond_fail:" << *BI);
SILBuilderWithScope Builder(BI);
createCondFail(FalseCFI, CFCondition, FalseCFI->getMessage(), true, Builder);
SILBuilderWithScope(BI).createBranch(BI->getLoc(), TrueSide, TrueArgs);
BI->eraseFromParent();
addToWorklist(ThisBB);
simplifyAfterDroppingPredecessor(FalseSide);
addToWorklist(TrueSide);
return true;
}
return false;
}
// Does this basic block consist of only an "unreachable" instruction?
static bool isOnlyUnreachable(SILBasicBlock *BB) {
auto *Term = BB->getTerminator();
if (!isa<UnreachableInst>(Term))
return false;
return (&*BB->begin() == BB->getTerminator());
}
/// simplifySwitchEnumUnreachableBlocks - Attempt to replace a
/// switch_enum where all but one block consists of just an
/// "unreachable" with an unchecked_enum_data and branch.
bool SimplifyCFG::simplifySwitchEnumUnreachableBlocks(SwitchEnumInst *SEI) {
auto Count = SEI->getNumCases();
SILBasicBlock *Dest = nullptr;
EnumElementDecl *Element = nullptr;
if (SEI->hasDefault())
if (!isOnlyUnreachable(SEI->getDefaultBB()))
Dest = SEI->getDefaultBB();
for (unsigned i = 0; i < Count; ++i) {
auto EnumCase = SEI->getCase(i);
if (isOnlyUnreachable(EnumCase.second))
continue;
if (Dest)
return false;
assert(!Element && "Did not expect to have an element without a block!");
Element = EnumCase.first;
Dest = EnumCase.second;
}
LLVM_DEBUG(llvm::dbgs() << "remove unreachable case " << *SEI);
if (!Dest) {
addToWorklist(SEI->getParent());
SILBuilderWithScope(SEI).createUnreachable(SEI->getLoc());
for (auto &succ : SEI->getSuccessors()) {
removeDeadBlock(succ.getBB());
}
SEI->eraseFromParent();
return true;
}
if (!Element || !Element->hasAssociatedValues() || Dest->args_empty()) {
assert(Dest->args_empty() && "Unexpected argument at destination!");
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), Dest);
addToWorklist(SEI->getParent());
addToWorklist(Dest);
SEI->eraseFromParent();
return true;
}
auto &Mod = SEI->getModule();
auto OpndTy = SEI->getOperand()->getType();
auto Ty = OpndTy.getEnumElementType(
Element, Mod, TypeExpansionContext(*SEI->getFunction()));
auto *UED = SILBuilderWithScope(SEI)
.createUncheckedEnumData(SEI->getLoc(), SEI->getOperand(), Element, Ty);
assert(Dest->args_size() == 1 && "Expected only one argument!");
auto *DestArg = Dest->getArgument(0);
DestArg->replaceAllUsesWith(UED);
Dest->eraseArgument(0);
SILBuilderWithScope(SEI).createBranch(SEI->getLoc(), Dest);
addToWorklist(SEI->getParent());
addToWorklist(Dest);
SEI->eraseFromParent();
return true;
}
namespace swift::test {
/// Arguments:
/// - SwitchEnumInst - the instruction to to simplify
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGSimplifySwitchEnumUnreachableBlocks(
"simplify-cfg-simplify-switch-enum-unreachable-blocks",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.simplifySwitchEnumUnreachableBlocks(
cast<SwitchEnumInst>(arguments.takeInstruction()));
});
} // end namespace swift::test
/// Checks that the someBB only contains obj_method calls (possibly chained) on
/// the optional value.
///
/// switch_enum %optionalValue, case #Optional.some!enumelt: someBB
///
/// someBB(%optionalPayload):
/// %1 = objc_method %optionalPayload
/// %2 = apply %1(..., %optionalPayload) // self position
/// %3 = unchecked_ref_cast %2
/// %4 = objc_method %3
/// %... = apply %4(..., %3)
/// br mergeBB(%...)
static bool containsOnlyObjMethodCallOnOptional(SILValue optionalValue,
SILBasicBlock *someBB,
SILValue &outBranchArg,
SILValue &outOptionalPayload) {
SILValue optionalPayload;
SmallVector<SILValue, 4> optionalPayloads;
if (someBB->getNumArguments() == 1) {
optionalPayload = someBB->getArgument(0);
optionalPayloads.push_back(optionalPayload);
} else if (someBB->getNumArguments() != 0)
return false;
SmallVector<SILValue, 4> objCApplies;
for (auto &i : *someBB) {
SILInstruction *inst = &i;
if (onlyAffectsRefCount(inst))
continue;
if (inst->isDebugInstruction())
continue;
// An objc_method has no sideeffects.
if (isa<ObjCMethodInst>(inst))
continue;
// An uncheckedEnumData has no sideeffects.
if (auto *uncheckedEnumData = dyn_cast<UncheckedEnumDataInst>(inst)) {
if (uncheckedEnumData->getOperand() != optionalValue)
continue;
optionalPayload = uncheckedEnumData;
optionalPayloads.push_back(uncheckedEnumData);
continue;
}
// An unchecked_ref_cast is safe.
if (auto *refCast = dyn_cast<UncheckedRefCastInst>(inst)) {
// An unchecked_ref_cast on a safe objc_method apply behaves like the
// optional (it is null if the optional was null).
if (refCast->getType().getClassOrBoundGenericClass() &&
std::find(objCApplies.begin(), objCApplies.end(),
refCast->getOperand()) != objCApplies.end())
optionalPayloads.push_back(refCast);
continue;
}
// Applies on objc_methods where self is either the optional payload or the
// result of another 'safe' apply are safe.
if (auto *objcMethod = dyn_cast<ApplyInst>(inst)) {
if (!isa<ObjCMethodInst>(objcMethod->getCallee()))
return false;
if (std::find(optionalPayloads.begin(), optionalPayloads.end(),
objcMethod->getSelfArgument()) == optionalPayloads.end())
return false;
objCApplies.push_back(objcMethod);
continue;
}
// The branch should forward one of the objc_method call.
if (auto *br = dyn_cast<BranchInst>(inst)) {
if (br->getNumArgs() == 0)
continue;
if (br->getNumArgs() > 1)
return false;
auto branchArg = br->getArg(0);
if (std::find(objCApplies.begin(), objCApplies.end(), branchArg) ==
objCApplies.end())
return false;
outBranchArg = branchArg;
continue;
}
// Unexpected instruction.
return false;
}
if (!optionalPayload)
return false;
outOptionalPayload = optionalPayload;
return true;
}
/// Check that all that noneBB does is forwarding none.
/// The only other allowed operations are ref count operations.
static bool onlyForwardsNone(SILBasicBlock *noneBB, SILBasicBlock *someBB,
SwitchEnumInst *SEI) {
// It all the basic blocks leading up to the ultimate block we only expect
// reference count instructions.
while (noneBB->getSingleSuccessorBlock() != someBB->getSingleSuccessorBlock()) {
for (auto &i : *noneBB) {
auto *inst = &i;
if (isa<BranchInst>(inst) || onlyAffectsRefCount(inst) ||
inst->isDebugInstruction())
continue;
return false;
}
noneBB = noneBB->getSingleSuccessorBlock();
}
// The ultimate block forwards the Optional<...>.none value.
SILValue optionalNone;
for (auto &i : *noneBB) {
auto *inst = &i;
if (onlyAffectsRefCount(inst) || inst->isDebugInstruction())
continue;
if (auto *none = dyn_cast<EnumInst>(inst)) {
if (none->getElement() !=
SEI->getModule().getASTContext().getOptionalNoneDecl())
return false;
optionalNone = none;
continue;
}
if (auto *noneBranch = dyn_cast<BranchInst>(inst)) {
if (noneBranch->getNumArgs() == 0) {
continue;
}
if (noneBranch->getNumArgs() != 1 ||
(noneBranch->getArg(0) != SEI->getOperand() &&
noneBranch->getArg(0) != optionalNone))
return false;
continue;
}
return false;
}
return true;
}
/// Check whether the \p someBB has only one single successor and that successor
/// post-dominates \p noneBB.
///
/// (maybe otherNoneBB)
/// someBB noneBB /
/// \ | v
/// \ ... more bbs? (A)
/// \ /
/// ultimateBB
///
/// This routine does not support diverging control flow in (A). This means that
/// there must not be any loops or diamonds beginning in that region. We do
/// support side-entrances from blocks not reachable from noneBB in order to
/// ensure that we properly handle other failure cases where the failure case
/// merges into .noneBB before ultimate BB.
///
/// DISCUSSION: We allow this side-entrance pattern to handle iterative
/// conditional checks which all feed the failing case through the .none
/// path. This is a common pattern in swift code. As an example consider a
/// switch statement with multiple pattern binding matching that use the same
/// cleanup code upon failure.
static bool hasSameUltimateSuccessor(SILBasicBlock *noneBB, SILBasicBlock *someBB) {
// Make sure that both our some, none blocks both have single successors that
// are not themselves (which can happen due to single block loops).
auto *someSuccessorBB = someBB->getSingleSuccessorBlock();
if (!someSuccessorBB || someSuccessorBB == someBB)
return false;
auto *noneSuccessorBB = noneBB->getSingleSuccessorBlock();
if (!noneSuccessorBB || noneSuccessorBB == noneBB)
return false;
// If we immediately find a simple diamond, return true. We are done.
if (noneSuccessorBB == someSuccessorBB)
return true;
// Otherwise, lets begin a traversal along the successors of noneSuccessorBB,
// searching for someSuccessorBB, being careful to only allow for blocks to be
// visited once. This enables us to guarantee that there no loops or
// any sub-diamonds in the part of the CFG we are traversing. This /does/
// allow for side-entrances to the region from blocks not reachable from
// noneSuccessorBB. See function level comment above.
SILBasicBlock *iter = noneSuccessorBB;
BasicBlockSet visitedBlocks(someBB->getParent());
visitedBlocks.insert(iter);
do {
// First try to grab our single successor if we have only one. If we have no
// successor or more than one successor, bail and do not optimize.
//
// DISCUSSION: Trivially, if we do not have a successor, then we have
// reached either a return/unreachable and this path will never merge with
// the ultimate block. If we have more than one successor, then for our
// condition to pass, we must have that both successors eventually join into
// someSuccessorBB. But this would imply that either someSuccessorBB has
// more than two predecessors and or that we merge the two paths before we
// visit someSuccessorBB.
auto *succBlock = iter->getSingleSuccessorBlock();
if (!succBlock)
return false;
// Then check if our single successor block has been visited already. If so,
// we have some sort of loop or have some sort of merge point that is not
// the final merge point.
//
// NOTE: We do not need to worry about someSuccessorBB being in
// visitedBlocks since before we begin the loop, we check that
// someSuccessorBB != iter and also check that in the do-while condition. So
// we can never have visited someSuccessorBB on any previous iteration
// meaning that the only time we can have succBlock equal to someSuccessorBB
// is on the last iteration before we exit the loop.
if (!visitedBlocks.insert(succBlock))
return false;
// Otherwise, set iter to succBlock.
iter = succBlock;
// And then check if this new successor block is someSuccessorBB. If so, we
// break and then return true since we have found our target. Otherwise, we
// need to visit further successors, so go back around the loop.
} while (iter != someSuccessorBB);
return true;
}
/// Simplify switch_enums on class enums that branch to objc_method calls on
/// that optional on the #Optional.some side to always branch to the some side.
///
/// switch_enum %optionalValue, case #Optional.some!enumelt: someBB,
/// case #Optional.none: noneBB
///
/// someBB(%optionalPayload):
/// %1 = objc_method %optionalPayload
/// %2 = apply %1(..., %optionalPayload) // self position
/// br mergeBB(%2)
///
/// noneBB:
/// %4 = enum #Optional.none
/// br mergeBB(%4)
bool SimplifyCFG::simplifySwitchEnumOnObjcClassOptional(SwitchEnumInst *SEI) {
auto optional = SEI->getOperand();
auto optionalPayloadType = optional->getType().getOptionalObjectType();
if (!optionalPayloadType ||
!optionalPayloadType.getClassOrBoundGenericClass())
return false;
if (SEI->getNumCases() != 2)
return false;
auto *noneBB = SEI->getCase(0).second;
auto *someBB = SEI->getCase(1).second;
if (noneBB == someBB)
return false;
auto someDecl = SEI->getModule().getASTContext().getOptionalSomeDecl();
if (SEI->getCaseDestination(someDecl) != someBB)
std::swap(someBB, noneBB);
if (!hasSameUltimateSuccessor(noneBB, someBB))
return false;
if (!onlyForwardsNone(noneBB, someBB, SEI))
return false;
SILValue branchArg;
SILValue optionalPayload;
if (!containsOnlyObjMethodCallOnOptional(optional, someBB, branchArg,
optionalPayload))
return false;
LLVM_DEBUG(llvm::dbgs() << "simplify switch_enum on ObjC Class Optional\n");
SILBuilderWithScope Builder(SEI);
auto *payloadCast = Builder.createUncheckedRefCast(SEI->getLoc(), optional,
optionalPayloadType);
optionalPayload->replaceAllUsesWith(payloadCast);
auto *switchBB = SEI->getParent();
if (!someBB->args_empty()) {
assert(someBB->getNumArguments() == 1);
auto *someBBArg = someBB->getArgument(0);
if (!someBBArg->use_empty()) {
assert(optionalPayload != someBBArg);
someBBArg->replaceAllUsesWith(payloadCast);
}
someBB->eraseArgument(0);
Builder.createBranch(SEI->getLoc(), someBB);
} else {
assert(!Fn.hasOwnership());
Builder.createBranch(SEI->getLoc(), someBB);
}
SEI->eraseFromParent();
addToWorklist(switchBB);
simplifyAfterDroppingPredecessor(noneBB);
addToWorklist(someBB);
++NumConstantFolded;
return true;
}
namespace swift::test {
/// Arguments:
/// - SwitchEnumInst - the instruction to to simplify
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGSwitchEnumOnObjcClassOptional(
"simplify-cfg-simplify-switch-enum-on-objc-class-optional",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.simplifySwitchEnumOnObjcClassOptional(
cast<SwitchEnumInst>(arguments.takeInstruction()));
});
} // end namespace swift::test
/// simplifySwitchEnumBlock - Simplify a basic block that ends with a
/// switch_enum instruction that gets its operand from an enum
/// instruction.
bool SimplifyCFG::simplifySwitchEnumBlock(SwitchEnumInst *SEI) {
auto EnumCase = getEnumCase(SEI->getOperand(), SEI->getParent());
if (!EnumCase)
return false;
auto *LiveBlock = SEI->getCaseDestination(EnumCase.get());
auto *ThisBB = SEI->getParent();
bool DroppedLiveBlock = false;
// Copy the successors into a vector, dropping one entry for the liveblock.
SmallVector<SILBasicBlock*, 4> Dests;
for (auto &S : SEI->getSuccessors()) {
if (S == LiveBlock && !DroppedLiveBlock) {
DroppedLiveBlock = true;
continue;
}
Dests.push_back(S);
}
LLVM_DEBUG(llvm::dbgs() << "fold switch " << *SEI);
auto *EI = dyn_cast<EnumInst>(SEI->getOperand());
auto loc = SEI->getLoc();
SILBuilderWithScope Builder(SEI);
if (!LiveBlock->args_empty()) {
SILValue PayLoad;
if (SEI->hasDefault() && LiveBlock == SEI->getDefaultBB()) {
assert(Fn.hasOwnership() && "Only OSSA default case has an argument");
PayLoad = SEI->getOperand();
} else {
PayLoad = Builder.createUncheckedEnumData(loc, SEI->getOperand(),
EnumCase.get());
}
Builder.createBranch(loc, LiveBlock, PayLoad);
} else {
Builder.createBranch(loc, LiveBlock);
}
SEI->eraseFromParent();
if (EI && isInstructionTriviallyDead(EI)) {
EI->replaceAllUsesOfAllResultsWithUndef();
EI->eraseFromParent();
}
addToWorklist(ThisBB);
for (auto B : Dests)
simplifyAfterDroppingPredecessor(B);
addToWorklist(LiveBlock);
++NumConstantFolded;
return true;
}
namespace swift::test {
/// Arguments:
/// - SwitchEnumInst - the instruction to to simplify
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGSimplifySwitchEnumBlock(
"simplify-cfg-simplify-switch-enum-block",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.simplifySwitchEnumBlock(
cast<SwitchEnumInst>(arguments.takeInstruction()));
});
} // end namespace swift::test
/// simplifySwitchValueBlock - Simplify a basic block that ends with a
/// switch_value instruction that gets its operand from an integer
/// literal instruction.
bool SimplifyCFG::simplifySwitchValueBlock(SwitchValueInst *SVI) {
auto *ThisBB = SVI->getParent();
if (auto *ILI = dyn_cast<IntegerLiteralInst>(SVI->getOperand())) {
SILBasicBlock *LiveBlock = nullptr;
auto Value = ILI->getValue();
// Find a case corresponding to this value
int i, e;
for (i = 0, e = SVI->getNumCases(); i < e; ++i) {
auto Pair = SVI->getCase(i);
auto *CaseIL = dyn_cast<IntegerLiteralInst>(Pair.first);
if (!CaseIL)
break;
auto CaseValue = CaseIL->getValue();
if (Value == CaseValue) {
LiveBlock = Pair.second;
break;
}
}
if (i == e && !LiveBlock) {
if (SVI->hasDefault()) {
LiveBlock = SVI->getDefaultBB();
}
}
if (LiveBlock) {
bool DroppedLiveBlock = false;
// Copy the successors into a vector, dropping one entry for the
// liveblock.
SmallVector<SILBasicBlock *, 4> Dests;
for (auto &S : SVI->getSuccessors()) {
if (S == LiveBlock && !DroppedLiveBlock) {
DroppedLiveBlock = true;
continue;
}
Dests.push_back(S);
}
LLVM_DEBUG(llvm::dbgs() << "fold select " << *SVI);
SILBuilderWithScope(SVI).createBranch(SVI->getLoc(), LiveBlock);
SVI->eraseFromParent();
if (ILI->use_empty())
ILI->eraseFromParent();
addToWorklist(ThisBB);
for (auto B : Dests)
simplifyAfterDroppingPredecessor(B);
addToWorklist(LiveBlock);
++NumConstantFolded;
return true;
}
}
return simplifyTermWithIdenticalDestBlocks(ThisBB);
}
bool onlyContainsRefcountAndDeallocStackInst(
SILBasicBlock::reverse_iterator I, SILBasicBlock::reverse_iterator End) {
while (I != End) {
auto MaybeDead = I++;
switch (MaybeDead->getKind()) {
// These technically have side effects, but not ones that matter
// in a block that we shouldn't really reach...
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DeallocStackInst:
break;
default:
return false;
}
}
return true;
}
/// simplifyUnreachableBlock - Simplify blocks ending with unreachable by
/// removing instructions that are safe to delete backwards until we
/// hit an instruction we cannot delete.
bool SimplifyCFG::simplifyUnreachableBlock(UnreachableInst *UI) {
bool Changed = false;
auto BB = UI->getParent();
auto I = std::next(BB->rbegin());
auto End = BB->rend();
SmallVector<SILInstruction *, 8> DeadInstrs;
bool canIgnoreRestOfBlock = false;
// Walk backwards deleting instructions that should be safe to delete
// in a block that ends with unreachable.
while (I != End) {
auto MaybeDead = I++;
switch (MaybeDead->getKind()) {
// These technically have side effects, but not ones that matter
// in a block that we shouldn't really reach...
case SILInstructionKind::StrongRetainInst:
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::RetainValueInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::EndBorrowInst:
break;
// We can only ignore a dealloc_stack instruction if we can ignore all
// instructions in the block.
case SILInstructionKind::DeallocStackInst: {
if (canIgnoreRestOfBlock ||
onlyContainsRefcountAndDeallocStackInst(MaybeDead, End)) {
canIgnoreRestOfBlock = true;
break;
}
LLVM_FALLTHROUGH;
}
default:
if (MaybeDead->mayHaveSideEffects()) {
if (Changed)
for (auto Dead : DeadInstrs)
Dead->eraseFromParent();
return Changed;
}
}
MaybeDead->replaceAllUsesOfAllResultsWithUndef();
DeadInstrs.push_back(&*MaybeDead);
Changed = true;
}
// If this block was changed and it now consists of only the unreachable,
// make sure we process its predecessors.
if (Changed) {
LLVM_DEBUG(llvm::dbgs() << "remove dead insts in unreachable bb"
<< BB->getDebugID() << '\n');
for (auto Dead : DeadInstrs)
Dead->eraseFromParent();
if (isOnlyUnreachable(BB))
for (auto *P : BB->getPredecessorBlocks())
addToWorklist(P);
}
return Changed;
}
bool SimplifyCFG::simplifyCheckedCastBranchBlock(CheckedCastBranchInst *CCBI) {
auto SuccessBB = CCBI->getSuccessBB();
auto FailureBB = CCBI->getFailureBB();
auto ThisBB = CCBI->getParent();
bool MadeChange = false;
CastOptimizer CastOpt(
FuncBuilder, nullptr /*SILBuilderContext*/,
/* replaceValueUsesAction */
[&MadeChange](SILValue oldValue, SILValue newValue) {
MadeChange = true;
},
/* replaceInstUsesAction */
[&MadeChange](SILInstruction *I, ValueBase *V) { MadeChange = true; },
/* eraseInstAction */
[&MadeChange](SILInstruction *I) {
MadeChange = true;
I->eraseFromParent();
},
/* willSucceedAction */
[&]() {
MadeChange |= removeIfDead(FailureBB);
addToWorklist(ThisBB);
},
/* willFailAction */
[&]() {
MadeChange |= removeIfDead(SuccessBB);
addToWorklist(ThisBB);
});
MadeChange |= bool(CastOpt.simplifyCheckedCastBranchInst(CCBI));
LLVM_DEBUG(if (MadeChange)
llvm::dbgs() << "simplify checked_cast_br block\n");
return MadeChange;
}
bool
SimplifyCFG::
simplifyCheckedCastAddrBranchBlock(CheckedCastAddrBranchInst *CCABI) {
auto SuccessBB = CCABI->getSuccessBB();
auto FailureBB = CCABI->getFailureBB();
auto ThisBB = CCABI->getParent();
bool MadeChange = false;
CastOptimizer CastOpt(
FuncBuilder, nullptr /*SILBuilderContext*/,
/* replaceValueUsesAction */
[&MadeChange](SILValue, SILValue) { MadeChange = true; },
/* replaceInstUsesAction */
[&MadeChange](SILInstruction *I, ValueBase *V) { MadeChange = true; },
/* eraseInstAction */
[&MadeChange](SILInstruction *I) {
MadeChange = true;
I->eraseFromParent();
},
/* willSucceedAction */
[&]() {
MadeChange |= removeIfDead(FailureBB);
addToWorklist(ThisBB);
},
/* willFailAction */
[&]() {
MadeChange |= removeIfDead(SuccessBB);
addToWorklist(ThisBB);
});
MadeChange |= bool(CastOpt.simplifyCheckedCastAddrBranchInst(CCABI));
LLVM_DEBUG(if (MadeChange)
llvm::dbgs() << "simplify checked_cast_addr block\n");
return MadeChange;
}
static SILValue getActualCallee(SILValue Callee) {
while (!isa<FunctionRefInst>(Callee)) {
if (auto *CFI = dyn_cast<ConvertFunctionInst>(Callee)) {
Callee = CFI->getOperand();
continue;
}
if (auto *Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(Callee)) {
Callee = Cvt->getOperand();
continue;
}
if (auto *TTI = dyn_cast<ThinToThickFunctionInst>(Callee)) {
Callee = TTI->getOperand();
continue;
}
break;
}
return Callee;
}
/// Checks if the callee of \p TAI is a convert from a function without
/// error result.
///
/// The new \p Callee must be reachable from \p TAI's callee operand by
/// following the chain of OwnershipForwardingConversionInsts.
static bool isTryApplyOfConvertFunction(TryApplyInst *TAI,
SILValue &Callee,
SILType &CalleeType) {
auto CalleeOperand = TAI->getCallee();
// Look through a @noescape conversion.
auto *Cvt = dyn_cast<ConvertEscapeToNoEscapeInst>(CalleeOperand);
if (Cvt)
CalleeOperand = Cvt->getOperand();
auto *CFI = dyn_cast<ConvertFunctionInst>(CalleeOperand);
if (!CFI)
return false;
// Check if it is a conversion of a non-throwing function into
// a throwing function. If this is the case, replace by a
// simple apply.
auto OrigFnTy = CFI->getOperand()->getType().getAs<SILFunctionType>();
if (!OrigFnTy || OrigFnTy->hasErrorResult())
return false;
auto TargetFnTy = CFI->getType().getAs<SILFunctionType>();
if (!TargetFnTy || !TargetFnTy->hasErrorResult())
return false;
// Look through the conversions and find the real callee.
Callee = getActualCallee(CFI->getOperand());
CalleeType = Callee->getType();
// If it a call of a throwing callee, bail.
auto CalleeFnTy = CalleeType.getAs<SILFunctionType>();
if (!CalleeFnTy || CalleeFnTy->hasErrorResult())
return false;
return true;
}
/// Checks if the error block of \p TAI has just an unreachable instruction.
/// In this case we know that the callee cannot throw.
static bool isTryApplyWithUnreachableError(TryApplyInst *TAI,
SILValue &Callee,
SILType &CalleeType) {
SILBasicBlock *ErrorBlock = TAI->getErrorBB();
TermInst *Term = ErrorBlock->getTerminator();
if (!isa<UnreachableInst>(Term))
return false;
if (&*ErrorBlock->begin() != Term)
return false;
Callee = TAI->getCallee();
CalleeType = TAI->getSubstCalleeSILType();
return true;
}
bool SimplifyCFG::simplifyTryApplyBlock(TryApplyInst *TAI) {
SILValue Callee;
SILType CalleeType;
// Two reasons for converting a try_apply to an apply.
if (isTryApplyOfConvertFunction(TAI, Callee, CalleeType) ||
isTryApplyWithUnreachableError(TAI, Callee, CalleeType)) {
LLVM_DEBUG(llvm::dbgs() << "simplify try_apply block\n");
auto CalleeFnTy = CalleeType.castTo<SILFunctionType>();
SILFunctionConventions calleeConv(CalleeFnTy, TAI->getModule());
auto ResultTy = calleeConv.getSILResultType(
TAI->getFunction()->getTypeExpansionContext());
auto OrigResultTy = TAI->getNormalBB()->getArgument(0)->getType();
SILBuilderWithScope Builder(TAI);
auto TargetFnTy = CalleeFnTy;
if (TargetFnTy->isPolymorphic()) {
TargetFnTy = TargetFnTy->substGenericArgs(
TAI->getModule(), TAI->getSubstitutionMap(),
Builder.getTypeExpansionContext());
}
SILFunctionConventions targetConv(TargetFnTy, TAI->getModule());
auto OrigFnTy = TAI->getCallee()->getType().getAs<SILFunctionType>();
if (OrigFnTy->isPolymorphic()) {
OrigFnTy = OrigFnTy->substGenericArgs(TAI->getModule(),
TAI->getSubstitutionMap(),
Builder.getTypeExpansionContext());
}
SILFunctionConventions origConv(OrigFnTy, TAI->getModule());
auto context = TAI->getFunction()->getTypeExpansionContext();
SmallVector<SILValue, 8> Args;
unsigned numArgs = TAI->getNumArguments();
unsigned calleeArgIdx = 0;
for (unsigned i = 0; i < numArgs; ++i) {
auto Arg = TAI->getArgument(i);
if (origConv.isArgumentIndexOfIndirectErrorResult(i) &&
!targetConv.isArgumentIndexOfIndirectErrorResult(i)) {
continue;
}
// Cast argument if required.
std::tie(Arg, std::ignore) = castValueToABICompatibleType(
&Builder, TAI->getLoc(), Arg, origConv.getSILArgumentType(i, context),
targetConv.getSILArgumentType(calleeArgIdx, context), {TAI});
Args.push_back(Arg);
calleeArgIdx += 1;
}
LLVM_DEBUG(llvm::dbgs() << "replace with apply: " << *TAI);
// If the new callee is owned, copy it to extend the lifetime
//
// TODO: The original convert_function will likely be dead after
// replacement. It could be deleted on-the-fly with a utility to avoid
// creating a new copy.
auto calleeLoc = RegularLocation::getAutoGeneratedLocation();
auto newCallee = Callee;
if (requiresOSSACleanup(newCallee)) {
newCallee = SILBuilderWithScope(newCallee->getNextInstruction())
.createCopyValue(calleeLoc, newCallee);
newCallee = makeValueAvailable(newCallee, TAI->getParent());
}
ApplyOptions Options = TAI->getApplyOptions();
if (CalleeFnTy->hasErrorResult())
Options |= ApplyFlags::DoesNotThrow;
ApplyInst *NewAI = Builder.createApply(TAI->getLoc(), newCallee,
TAI->getSubstitutionMap(),
Args, Options);
auto Loc = TAI->getLoc();
auto *NormalBB = TAI->getNormalBB();
assert(NewAI->getOwnershipKind() != OwnershipKind::Guaranteed);
// Non-guaranteed values don't need use points when casting.
SILValue CastedResult;
std::tie(CastedResult, std::ignore) = castValueToABICompatibleType(
&Builder, Loc, NewAI, ResultTy, OrigResultTy, /*usePoints*/ {});
BranchInst *branch = Builder.createBranch(Loc, NormalBB, { CastedResult });
auto *oldCalleeOper = TAI->getCalleeOperand();
if (oldCalleeOper->getOwnershipConstraint().isConsuming()) {
// Destroy the oldCallee before the new call.
SILBuilderWithScope(NewAI).createDestroyValue(
TAI->getLoc(), oldCalleeOper->get());
} else if (newCallee != Callee) {
// Destroy the copied newCallee after the call.
SILBuilderWithScope(branch).createDestroyValue(TAI->getLoc(), newCallee);
}
TAI->eraseFromParent();
return true;
}
return false;
}
// Replace the terminator of BB with a simple branch if all successors go
// to trampoline jumps to the same destination block. The successor blocks
// and the destination blocks may have no arguments.
bool SimplifyCFG::simplifyTermWithIdenticalDestBlocks(SILBasicBlock *BB) {
TrampolineDest commonDest;
for (auto *SuccBlock : BB->getSuccessorBlocks()) {
auto trampolineDest = TrampolineDest(BB, SuccBlock);
if (!trampolineDest) {
return false;
}
// The branch must have the same destination and same branch arguments.
if (!commonDest) {
commonDest = std::move(trampolineDest);
} else if (trampolineDest != commonDest) {
return false;
}
}
if (!commonDest) {
return false;
}
TermInst *Term = BB->getTerminator();
LLVM_DEBUG(llvm::dbgs() << "replace term with identical dests: " << *Term);
SILBuilderWithScope(Term).createBranch(Term->getLoc(), commonDest.destBB,
commonDest.newSourceBranchArgs);
Term->eraseFromParent();
addToWorklist(BB);
addToWorklist(commonDest.destBB);
return true;
}
namespace swift::test {
/// Arguments:
/// - SILBasicBlock - the block whose terminator's destinations are all the same
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGSimplifyTermWithIdenticalDestBlocks(
"simplify-cfg-simplify-term-with-identical-dest-blocks",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.simplifyTermWithIdenticalDestBlocks(arguments.takeBlock());
});
} // end namespace swift::test
/// Checks if the block contains a cond_fail as first side-effect instruction
/// and tries to move it to the predecessors (if beneficial). A sequence
///
/// bb1:
/// br bb3(%c)
/// bb2:
/// %i = integer_literal
/// br bb3(%i) // at least one input argument must be constant
/// bb3(%a) // = BB
/// cond_fail %a // %a must not have other uses
///
/// is replaced with
///
/// bb1:
/// cond_fail %c
/// br bb3(%c)
/// bb2:
/// %i = integer_literal
/// cond_fail %i
/// br bb3(%i)
/// bb3(%a) // %a is dead
///
static bool tryMoveCondFailToPreds(SILBasicBlock *BB) {
CondFailInst *CFI = getFirstCondFail(BB);
if (!CFI)
return false;
// Find the underlying condition value of the cond_fail.
// We only accept single uses. This is not a correctness check, but we only
// want to the optimization if the condition gets dead after moving the
// cond_fail.
bool inverted = false;
SILValue cond = skipInvert(CFI->getOperand(), inverted, true);
if (!cond)
return false;
// Check if the condition is a single-used argument in the current block.
auto *condArg = dyn_cast<SILArgument>(cond);
if (!condArg || !condArg->hasOneUse())
return false;
if (condArg->getParent() != BB)
return false;
// Check if some of the predecessor blocks provide a constant for the
// cond_fail condition. So that the optimization has a positive effect.
bool somePredsAreConst = false;
for (auto *Pred : BB->getPredecessorBlocks()) {
// The cond_fail must post-dominate the predecessor block. We may not
// execute the cond_fail speculatively.
if (!Pred->getSingleSuccessorBlock())
return false;
// If we already found a constant pred, we do not need to check the incoming
// value to see if it is constant. We are already going to perform the
// optimization.
if (somePredsAreConst)
continue;
SILValue incoming = condArg->getIncomingPhiValue(Pred);
somePredsAreConst |= isa<IntegerLiteralInst>(incoming);
}
if (!somePredsAreConst)
return false;
LLVM_DEBUG(llvm::dbgs() << "move to predecessors: " << *CFI);
// Move the cond_fail to the predecessor blocks.
for (auto *Pred : BB->getPredecessorBlocks()) {
SILValue incoming = condArg->getIncomingPhiValue(Pred);
SILBuilderWithScope Builder(Pred->getTerminator());
createCondFail(CFI, incoming, CFI->getMessage(), inverted, Builder);
}
// cond_fail takes a trivial Int1. No cleanup is needed.
CFI->eraseFromParent();
return true;
}
bool SimplifyCFG::simplifyBlocks() {
bool Changed = false;
// Add all of the blocks to the function.
for (auto &BB : Fn)
addToWorklist(&BB);
// Iteratively simplify while there is still work to do.
while (SILBasicBlock *BB = popWorklist()) {
// If the block is dead, remove it.
if (removeIfDead(BB)) {
Changed = true;
continue;
}
// Otherwise, try to simplify the terminator.
TermInst *TI = BB->getTerminator();
if (!transform.continueWithNextSubpassRun(TI))
return Changed;
switch (TI->getTermKind()) {
case TermKind::BranchInst:
if (simplifyBranchBlock(cast<BranchInst>(TI))) {
Changed = true;
continue;
}
// If this unconditional branch has BBArgs, check to see if duplicating
// the destination would allow it to be simplified. This is a simple form
// of jump threading.
if (!isVeryLargeFunction && tryJumpThreading(cast<BranchInst>(TI))) {
Changed = true;
continue;
}
break;
case TermKind::CondBranchInst:
Changed |= simplifyCondBrBlock(cast<CondBranchInst>(TI));
break;
case TermKind::SwitchValueInst:
// FIXME: Optimize for known switch values.
Changed |= simplifySwitchValueBlock(cast<SwitchValueInst>(TI));
break;
case TermKind::SwitchEnumInst: {
auto *SEI = cast<SwitchEnumInst>(TI);
if (simplifySwitchEnumBlock(SEI)) {
Changed = true;
} else if (simplifySwitchEnumOnObjcClassOptional(SEI)) {
Changed = true;
} else {
Changed |= simplifySwitchEnumUnreachableBlocks(SEI);
}
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
break;
}
case TermKind::UnreachableInst:
Changed |= simplifyUnreachableBlock(cast<UnreachableInst>(TI));
break;
case TermKind::CheckedCastBranchInst:
Changed |= simplifyCheckedCastBranchBlock(cast<CheckedCastBranchInst>(TI));
break;
case TermKind::CheckedCastAddrBranchInst:
Changed |= simplifyCheckedCastAddrBranchBlock(cast<CheckedCastAddrBranchInst>(TI));
break;
case TermKind::TryApplyInst:
Changed |= simplifyTryApplyBlock(cast<TryApplyInst>(TI));
break;
case TermKind::SwitchEnumAddrInst:
Changed |= simplifyTermWithIdenticalDestBlocks(BB);
break;
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::DynamicMethodBranchInst:
case TermKind::ReturnInst:
case TermKind::UnwindInst:
case TermKind::YieldInst:
break;
case TermKind::AwaitAsyncContinuationInst:
// TODO(async): Simplify AwaitAsyncContinuationInst
break;
}
// If the block has a cond_fail, try to move it to the predecessors.
Changed |= tryMoveCondFailToPreds(BB);
// Simplify the block argument list.
Changed |= simplifyArgs(BB);
// Simplify the program termination block.
Changed |= simplifyProgramTerminationBlock(BB);
}
if (Changed) {
// Simplifying other blocks might have resulted in unreachable
// loops.
removeUnreachableBlocks(Fn);
}
return Changed;
}
/// Canonicalize all switch_enum and switch_enum_addr instructions.
/// If possible, replace the default with the corresponding unique case.
bool SimplifyCFG::canonicalizeSwitchEnums() {
bool Changed = false;
for (auto &BB : Fn) {
TermInst *TI = BB.getTerminator();
if (!transform.continueWithNextSubpassRun(TI))
return Changed;
SwitchEnumTermInst SWI(TI);
if (!SWI)
continue;
if (!SWI.hasDefault())
continue;
NullablePtr<EnumElementDecl> defaultDecl = SWI.getUniqueCaseForDefault();
if (!defaultDecl)
continue;
LLVM_DEBUG(llvm::dbgs() << "simplify canonical switch_enum\n");
// Construct a new instruction by copying all the case entries.
SmallVector<std::pair<EnumElementDecl*, SILBasicBlock*>, 4> CaseBBs;
for (int idx = 0, numIdcs = SWI.getNumCases(); idx < numIdcs; ++idx) {
CaseBBs.push_back(SWI.getCase(idx));
}
// Add the default-entry of the original instruction as case-entry.
auto *defaultBB = SWI.getDefaultBB();
CaseBBs.push_back(std::make_pair(defaultDecl.get(), defaultBB));
if (isa<SwitchEnumInst>(*SWI)) {
SILBuilderWithScope(SWI).createSwitchEnum(SWI->getLoc(), SWI.getOperand(),
nullptr, CaseBBs);
} else {
assert(isa<SwitchEnumAddrInst>(*SWI) &&
"unknown switch_enum instruction");
SILBuilderWithScope(SWI).createSwitchEnumAddr(
SWI->getLoc(), SWI.getOperand(), nullptr, CaseBBs);
}
SWI->eraseFromParent();
Changed = true;
}
return Changed;
}
namespace swift::test {
/// Arguments:
/// - none
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGCanonicalizeSwitchEnum(
"simplify-cfg-canonicalize-switch-enum",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.canonicalizeSwitchEnums();
});
} // end namespace swift::test
static SILBasicBlock *isObjCMethodCallBlock(SILBasicBlock &Block) {
auto *Branch = dyn_cast<BranchInst>(Block.getTerminator());
if (!Branch)
return nullptr;
for (auto &Inst : Block) {
// Look for an objc method call.
auto *Apply = dyn_cast<ApplyInst>(&Inst);
if (!Apply)
continue;
auto *Callee = dyn_cast<ObjCMethodInst>(Apply->getCallee());
if (!Callee)
continue;
return Branch->getDestBB();
}
return nullptr;
}
/// We want to duplicate small blocks that contain a least on release and have
/// multiple predecessor.
static bool shouldTailDuplicate(SILBasicBlock &Block) {
unsigned Cost = 0;
bool SawRelease = false;
if (Block.getTerminator()->isFunctionExiting())
return false;
if (Block.getSinglePredecessorBlock())
return false;
for (auto &Inst : Block) {
if (!Inst.isTriviallyDuplicatable())
return false;
if (FullApplySite::isa(&Inst))
return false;
if (isa<ReleaseValueInst>(&Inst) ||
isa<StrongReleaseInst>(&Inst))
SawRelease = true;
if (instructionInlineCost(Inst) != InlineCost::Free)
if (++Cost == 12)
return false;
}
return SawRelease;
}
/// Tail duplicate successor blocks of blocks that perform an objc method call
/// and who contain releases. Cloning such blocks can allow ARC to sink retain
/// releases onto the ObjC path.
bool SimplifyCFG::tailDuplicateObjCMethodCallSuccessorBlocks() {
SmallVector<SILBasicBlock *, 16> ObjCBlocks;
if (Fn.hasOwnership()) {
// TODO: This needs additional support in ossa.
return false;
}
// Collect blocks to tail duplicate.
for (auto &BB : Fn) {
SILBasicBlock *DestBB;
if ((DestBB = isObjCMethodCallBlock(BB)) && !LoopHeaders.count(DestBB) &&
shouldTailDuplicate(*DestBB))
ObjCBlocks.push_back(&BB);
}
bool Changed = false;
for (auto *BB : ObjCBlocks) {
auto *Branch = cast<BranchInst>(BB->getTerminator());
auto *DestBB = Branch->getDestBB();
// Okay, it looks like we want to do this and we can. Duplicate the
// destination block into this one, rewriting uses of the BBArgs to use the
// branch arguments as we go.
BasicBlockCloner Cloner(DestBB);
if (!Cloner.canCloneBlock())
continue;
Cloner.cloneBranchTarget(Branch);
Cloner.updateSSAAfterCloning();
Changed = true;
// Simplify the cloned block and continue tail duplicating through its new
// successors edges.
addToWorklistAfterSplittingEdges(Cloner.getNewBB());
}
return Changed;
}
namespace {
class ArgumentSplitter {
/// The argument we are splitting.
SILArgument *Arg;
/// The worklist of arguments that we still need to visit. We
/// simplify each argument recursively one step at a time.
std::vector<SILArgument *> &Worklist;
/// The values incoming into Arg.
llvm::SmallVector<std::pair<SILBasicBlock *, SILValue>, 8> IncomingValues;
/// The list of first level projections that Arg can be split into.
llvm::SmallVector<Projection, 4> Projections;
std::optional<int> FirstNewArgIndex;
public:
ArgumentSplitter(SILArgument *A, std::vector<SILArgument *> &W)
: Arg(A), Worklist(W), IncomingValues() {}
bool split();
private:
bool createNewArguments();
void replaceIncomingArgs(SILBuilder &B, BranchInst *BI,
llvm::SmallVectorImpl<SILValue> &NewIncomingValues);
void replaceIncomingArgs(SILBuilder &B, CondBranchInst *CBI,
llvm::SmallVectorImpl<SILValue> &NewIncomingValues);
};
} // end anonymous namespace
void ArgumentSplitter::replaceIncomingArgs(
SILBuilder &B, BranchInst *BI,
llvm::SmallVectorImpl<SILValue> &NewIncomingValues) {
unsigned ArgIndex = Arg->getIndex();
for (unsigned i : llvm::reverse(indices(BI->getAllOperands()))) {
// Skip this argument.
if (i == ArgIndex)
continue;
NewIncomingValues.push_back(BI->getArg(i));
}
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
B.createBranch(BI->getLoc(), BI->getDestBB(), NewIncomingValues);
}
void ArgumentSplitter::replaceIncomingArgs(
SILBuilder &B, CondBranchInst *CBI,
llvm::SmallVectorImpl<SILValue> &NewIncomingValues) {
llvm::SmallVector<SILValue, 4> OldIncomingValues;
ArrayRef<SILValue> NewTrueValues, NewFalseValues;
unsigned ArgIndex = Arg->getIndex();
if (Arg->getParent() == CBI->getTrueBB()) {
ArrayRef<Operand> TrueArgs = CBI->getTrueOperands();
for (unsigned i : llvm::reverse(indices(TrueArgs))) {
// Skip this argument.
if (i == ArgIndex)
continue;
NewIncomingValues.push_back(TrueArgs[i].get());
}
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
for (SILValue V : CBI->getFalseArgs())
OldIncomingValues.push_back(V);
NewTrueValues = NewIncomingValues;
NewFalseValues = OldIncomingValues;
} else {
ArrayRef<Operand> FalseArgs = CBI->getFalseOperands();
for (unsigned i : llvm::reverse(indices(FalseArgs))) {
// Skip this argument.
if (i == ArgIndex)
continue;
NewIncomingValues.push_back(FalseArgs[i].get());
}
std::reverse(NewIncomingValues.begin(), NewIncomingValues.end());
for (SILValue V : CBI->getTrueArgs())
OldIncomingValues.push_back(V);
NewTrueValues = OldIncomingValues;
NewFalseValues = NewIncomingValues;
}
B.createCondBranch(CBI->getLoc(), CBI->getCondition(), CBI->getTrueBB(),
NewTrueValues, CBI->getFalseBB(), NewFalseValues,
CBI->getTrueBBCount(), CBI->getFalseBBCount());
}
bool ArgumentSplitter::createNewArguments() {
auto *F = Arg->getFunction();
SILModule &Mod = F->getModule();
SILBasicBlock *ParentBB = Arg->getParent();
// Grab the incoming values. Return false if we can't find them.
if (!Arg->getIncomingPhiValues(IncomingValues))
return false;
// Only handle struct and tuple type.
SILType Ty = Arg->getType();
if (!Ty.getStructOrBoundGenericStruct() && !Ty.is<TupleType>())
return false;
// Get the first level projection for the struct or tuple type.
Projection::getFirstLevelProjections(Arg->getType(), Mod,
TypeExpansionContext(*F), Projections);
// We do not want to split arguments with less than 2 projections.
if (Projections.size() < 2)
return false;
// We do not want to split arguments that have less than 2 non-trivial
// projections.
if (count_if(Projections, [&](const Projection &P) {
return !P.getType(Ty, Mod, TypeExpansionContext(*F)).isTrivial(*F);
}) < 2)
return false;
// We subtract one since this will be the number of the first new argument
// *AFTER* we remove the old argument.
FirstNewArgIndex = ParentBB->getNumArguments() - 1;
// For now for simplicity, we put all new arguments on the end and delete the
// old one.
llvm::SmallVector<SILValue, 4> NewArgumentValues;
for (auto &P : Projections) {
auto *NewArg = ParentBB->createPhiArgument(
P.getType(Ty, Mod, TypeExpansionContext(*F)), OwnershipKind::Owned);
// This is unfortunate, but it feels wrong to put in an API into SILBuilder
// that only takes in arguments.
//
// TODO: We really need some sort of entry point that is more flexible in
// these apis than a ArrayRef<SILValue>.
NewArgumentValues.push_back(NewArg);
}
SingleValueInstruction *Agg;
{
SILBuilder B(ParentBB->begin());
B.setCurrentDebugScope(ParentBB->getParent()->getDebugScope());
// Reform the original structure
//
// TODO: What is the right location to use here.
auto Loc = RegularLocation::getAutoGeneratedLocation();
Agg = Projection::createAggFromFirstLevelProjections(
B, Loc, Arg->getType(), NewArgumentValues).get();
}
Arg->replaceAllUsesWith(Agg);
// Replace any references to Arg in IncomingValues with Agg. These
// references are used in generating new instructions that extract
// from the aggregate.
for (auto &P : IncomingValues)
if (P.second == Arg)
P.second = Agg;
// Look at all users of agg and see if we can simplify any of them. This will
// eliminate struct_extracts/tuple_extracts from the newly created aggregate
// and have them point directly at the argument.
simplifyUsers(Agg);
// If we only had such users of Agg and Agg is dead now (ignoring debug
// instructions), remove it.
if (onlyHaveDebugUses(Agg))
eraseFromParentWithDebugInsts(Agg);
return true;
}
static llvm::cl::opt<bool>
RemoveDeadArgsWhenSplitting("sroa-args-remove-dead-args-after",
llvm::cl::init(true));
bool ArgumentSplitter::split() {
if (Arg->getFunction()->hasOwnership()) {
// TODO: Additional work is needed to create non-trivial projections in ossa
if (!Arg->getType().isTrivial(*Arg->getFunction()))
return false;
}
SILBasicBlock *ParentBB = Arg->getParent();
if (!createNewArguments())
return false;
LLVM_DEBUG(llvm::dbgs() << "split argument " << *Arg);
unsigned ArgIndex = Arg->getIndex();
llvm::SmallVector<SILValue, 4> NewIncomingValues;
// Then for each incoming value, fixup the branch, cond_branch instructions.
for (auto P : IncomingValues) {
SILBasicBlock *Pred = P.first;
SILValue Base = P.second;
auto *OldTerm = Pred->getTerminator();
SILBuilderWithScope B(OldTerm->getParent(), OldTerm);
auto Loc = RegularLocation::getAutoGeneratedLocation();
assert(NewIncomingValues.empty() && "NewIncomingValues was not cleared?");
for (auto &P : llvm::reverse(Projections)) {
auto *ProjInst = P.createProjection(B, Loc, Base).get();
NewIncomingValues.push_back(ProjInst);
}
if (auto *Br = dyn_cast<BranchInst>(OldTerm)) {
replaceIncomingArgs(B, Br, NewIncomingValues);
} else {
auto *CondBr = cast<CondBranchInst>(OldTerm);
replaceIncomingArgs(B, CondBr, NewIncomingValues);
}
OldTerm->eraseFromParent();
NewIncomingValues.clear();
}
// Delete the old argument. We need to do this before trying to remove any
// dead arguments that we added since otherwise the number of incoming values
// to the phi nodes will differ from the number of values coming
ParentBB->eraseArgument(ArgIndex);
++NumSROAArguments;
// This is here for testing purposes via sil-opt
if (!RemoveDeadArgsWhenSplitting)
return true;
// Perform some cleanups such as:
//
// 1. Removing any newly inserted arguments that are actually dead.
// 2. As a result of removing these arguments, remove any newly dead object
// projections.
// Do a quick pass over the new arguments to see if any of them are dead. We
// can do this unconditionally in a safe way since we are only dealing with
// cond_br, br.
for (int i = ParentBB->getNumArguments() - 1, e = *FirstNewArgIndex; i >= e;
--i) {
SILArgument *A = ParentBB->getArgument(i);
if (!A->use_empty()) {
// We know that the argument is not dead, so add it to the worklist for
// recursive processing.
Worklist.push_back(A);
continue;
}
erasePhiArgument(ParentBB, i);
++NumDeadArguments;
}
return true;
}
/// This currently invalidates the CFG since parts of PHI nodes are stored in
/// branch instructions and we replace the branch instructions as part of this
/// operation. If/when PHI nodes can be updated without invalidating the CFG,
/// this should be moved to the SROA pass.
static bool splitBBArguments(SILFunction &Fn) {
bool Changed = false;
std::vector<SILArgument *> Worklist;
// We know that we have at least one BB, so this is safe since in such a case
// std::next(Fn->begin()) == Fn->end(), the exit case of iteration on a range.
for (auto &BB : make_range(std::next(Fn.begin()), Fn.end())) {
for (auto *Arg : BB.getArguments()) {
SILType ArgTy = Arg->getType();
if (!ArgTy.isObject() ||
(!ArgTy.is<TupleType>() && !ArgTy.getStructOrBoundGenericStruct())) {
continue;
}
// Make sure that all predecessors of our BB have either a br or cond_br
// terminator. We only handle those cases.
if (std::any_of(BB.pred_begin(), BB.pred_end(),
[](SILBasicBlock *Pred) -> bool {
auto *TI = Pred->getTerminator();
return !isa<BranchInst>(TI) && !isa<CondBranchInst>(TI);
})) {
continue;
}
Worklist.push_back(Arg);
}
}
while (!Worklist.empty()) {
SILArgument *Arg = Worklist.back();
Worklist.pop_back();
Changed |= ArgumentSplitter(Arg, Worklist).split();
}
return Changed;
}
bool SimplifyCFG::run() {
LLVM_DEBUG(llvm::dbgs() << "### Run SimplifyCFG on " << Fn.getName() << '\n');
// Disable some expensive optimizations if the function is huge.
isVeryLargeFunction = (Fn.size() > 10000);
if (!transform.continueWithNextSubpassRun())
return false;
// First remove any block not reachable from the entry.
bool Changed = removeUnreachableBlocks(Fn);
DeadEndBlocksAnalysis *deBlocksAnalysis =
PM->getAnalysis<DeadEndBlocksAnalysis>();
if (Changed) {
// Eliminate unreachable blocks from deBlocks. This isn't strictly necessary
// but avoids excess dangling pointers in deBlocks.
deBlocksAnalysis->invalidate(&Fn,
SILAnalysis::InvalidationKind::FunctionBody);
}
deBlocks = deBlocksAnalysis->get(&Fn);
// Find the set of loop headers. We don't want to jump-thread through headers.
findLoopHeaders();
DT = nullptr;
if (!transform.continueWithNextSubpassRun())
return Changed;
// Perform SROA on BB arguments.
Changed |= splitBBArguments(Fn);
Changed |= simplifyBlocks();
if (!transform.continueWithNextSubpassRun())
return Changed;
// Do simplifications that require the dominator tree to be accurate.
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
if (Changed) {
// Force dominator recomputation since we modified the cfg.
DA->invalidate(&Fn, SILAnalysis::InvalidationKind::FunctionBody);
// Eliminate unreachable blocks from deBlocks. This isn't strictly necessary
// but avoids excess dangling pointers in deBlocks.
deBlocksAnalysis->invalidate(&Fn,
SILAnalysis::InvalidationKind::FunctionBody);
}
deBlocks = deBlocksAnalysis->get(&Fn);
Changed |= dominatorBasedSimplify(DA);
if (!transform.continueWithNextSubpassRun())
return Changed;
DT = nullptr;
// Now attempt to simplify the remaining blocks.
Changed |= simplifyBlocks();
if (!transform.continueWithNextSubpassRun())
return Changed;
if (tailDuplicateObjCMethodCallSuccessorBlocks()) {
Changed = true;
simplifyBlocks();
}
if (!transform.continueWithNextSubpassRun())
return Changed;
if (Fn.getModule().getOptions().VerifyAll)
Fn.verifyCriticalEdges();
// Canonicalize switch_enum instructions.
Changed |= canonicalizeSwitchEnums();
return Changed;
}
/// Is an argument from this terminator considered mandatory?
static bool hasMandatoryArgument(TermInst *term) {
// It's more maintainable to just explicitly list the instructions that
// *do* have mandatory arguments.
return (!isa<BranchInst>(term) && !isa<CondBranchInst>(term));
}
// Get the element of Aggregate corresponding to the one extracted by
// Extract.
static SILValue getInsertedValue(SILInstruction *Aggregate,
SILInstruction *Extract) {
if (auto *Struct = dyn_cast<StructInst>(Aggregate)) {
auto *SEI = cast<StructExtractInst>(Extract);
return Struct->getFieldValue(SEI->getField());
}
if (auto *Enum = dyn_cast<EnumInst>(Aggregate)) {
assert(Enum->getElement() ==
cast<UncheckedEnumDataInst>(Extract)->getElement());
return Enum->getOperand();
}
auto *Tuple = cast<TupleInst>(Aggregate);
auto *TEI = cast<TupleExtractInst>(Extract);
return Tuple->getElement(TEI->getFieldIndex());
}
/// Find a parent SwitchEnumInst of the block \p BB. The block \p BB is a
/// predecessor of the merge-block \p PostBB which should post-dominate the
/// switch_enum. Any successors of the switch_enum which reach \p BB (and are
/// post-dominated by \p BB) are added to \p Blocks.
static SwitchEnumInst *
getSwitchEnumPred(SILBasicBlock *BB, SILBasicBlock *PostBB,
SmallVectorImpl<SILBasicBlock *> &Blocks) {
if (BB->pred_empty())
return nullptr;
// Check that this block only produces the value, but does not
// have any side effects.
auto First = BB->begin();
auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (!BI)
return nullptr;
assert(BI->getDestBB() == PostBB && "BB not a predecessor of PostBB");
if (BI != &*First) {
// There may be only one instruction before the branch.
if (BI != &*std::next(First))
return nullptr;
// There are some instructions besides the branch.
// It should be only an integer literal instruction.
// Handle only integer values for now.
auto *ILI = dyn_cast<IntegerLiteralInst>(First);
if (!ILI)
return nullptr;
// Check that this literal is only used by the terminator.
for (auto U : ILI->getUses())
if (U->getUser() != BI)
return nullptr;
}
// Check if BB is reachable from a single enum case, which means that the
// immediate predecessor of BB is the switch_enum itself.
if (SILBasicBlock *PredBB = BB->getSinglePredecessorBlock()) {
// Check if a predecessor BB terminates with a switch_enum instruction
if (auto *SEI = dyn_cast<SwitchEnumInst>(PredBB->getTerminator())) {
Blocks.push_back(BB);
return SEI;
}
}
// Check if BB is reachable from multiple enum cases. This means that there is
// a single-branch block for each enum case which branch to BB.
// Usually in this case BB has no arguments. If there are any arguments, bail,
// because the argument may be used by other instructions.
if (BB->getNumArguments() != 0)
return nullptr;
SILBasicBlock *CommonPredPredBB = nullptr;
for (auto PredBB : BB->getPredecessorBlocks()) {
TermInst *PredTerm = PredBB->getTerminator();
if (!isa<BranchInst>(PredTerm) || PredTerm != &*PredBB->begin())
return nullptr;
auto *PredPredBB = PredBB->getSinglePredecessorBlock();
if (!PredPredBB)
return nullptr;
// Check if all predecessors of BB have a single common predecessor (which
// should be the block with the switch_enum).
if (CommonPredPredBB && PredPredBB != CommonPredPredBB)
return nullptr;
CommonPredPredBB = PredPredBB;
Blocks.push_back(PredBB);
}
// Check if the common predecessor block has a switch_enum.
return dyn_cast<SwitchEnumInst>(CommonPredPredBB->getTerminator());
}
/// Helper function to produce a SILValue from a result value
/// produced by a basic block responsible for handling a
/// specific enum tag.
static SILValue
getSILValueFromCaseResult(SILBuilder &B, SILLocation Loc,
SILType Type, IntegerLiteralInst *ValInst) {
auto Value = ValInst->getValue();
if (Value.getBitWidth() != 1)
return B.createIntegerLiteral(Loc, Type, Value);
else
// This is a boolean value
return B.createIntegerLiteral(Loc, Type, Value.getBoolValue());
}
/// Given an integer argument, see if it is ultimately matching whether
/// a given enum is of a given tag. If so, create a new select_enum instruction
/// This is used to simplify arbitrary simple switch_enum diamonds into
/// select_enums.
static bool simplifySwitchEnumToSelectEnum(SILBasicBlock *BB, unsigned ArgNum,
SILArgument *IntArg) {
// Don't know which values should be passed if there is more
// than one basic block argument.
if (BB->args_size() > 1)
return false;
// Mapping from case values to the results corresponding to this case value.
SmallVector<std::pair<EnumElementDecl *, SILValue>, 8> CaseToValue;
// Mapping from BB responsible for a specific case value to the result it
// produces.
llvm::DenseMap<SILBasicBlock *, IntegerLiteralInst *> BBToValue;
// switch_enum instruction to be replaced.
SwitchEnumInst *SEI = nullptr;
// Iterate over all immediate predecessors of the target basic block.
// - Check that each one stems directly or indirectly from the same
// switch_enum instruction.
// - Remember for each case tag of the switch_enum instruction which
// integer value it produces.
// - Check that each block handling a given case tag of a switch_enum
// only produces an integer value and does not have any side-effects.
// Predecessors which do not satisfy these conditions are not included in the
// BBToValue map (but we don't bail in this case).
for (auto P : BB->getPredecessorBlocks()) {
// Only handle branch instructions.
auto *TI = P->getTerminator();
if (!isa<BranchInst>(TI))
return false;
// Find the Nth argument passed to BB.
auto Arg = TI->getOperand(ArgNum);
// Only handle integer values
auto *IntLit = dyn_cast<IntegerLiteralInst>(Arg);
if (!IntLit)
continue;
// Set of blocks that branch to/reach this basic block P and are immediate
// successors of a switch_enum instruction.
SmallVector<SILBasicBlock *, 8> Blocks;
// Try to find a parent SwitchEnumInst for the current predecessor of BB.
auto *PredSEI = getSwitchEnumPred(P, BB, Blocks);
// Check if the predecessor is not produced by a switch_enum instruction.
if (!PredSEI)
continue;
// Check if all predecessors stem from the same switch_enum instruction.
if (SEI && SEI != PredSEI)
continue;
SEI = PredSEI;
// Remember the result value used to branch to this instruction.
for (auto B : Blocks)
BBToValue[B] = IntLit;
}
if (!SEI)
return false;
// Check if all enum cases and the default case go to one of our collected
// blocks. This check ensures that the target block BB post-dominates the
// switch_enum block.
for (SILBasicBlock *Succ : SEI->getSuccessors()) {
if (!BBToValue.count(Succ))
return false;
}
// Insert the new enum_select instruction right after enum_switch
SILBuilder B(SEI);
// Form a set of case_tag:result pairs for select_enum
for (unsigned i = 0, e = SEI->getNumCases(); i != e; ++i) {
std::pair<EnumElementDecl *, SILBasicBlock *> Pair = SEI->getCase(i);
auto CaseValue = BBToValue[Pair.second];
auto CaseSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
IntArg->getType(),
CaseValue);
CaseToValue.push_back(std::make_pair(Pair.first, CaseSILValue));
}
// Default value for select_enum.
SILValue DefaultSILValue = SILValue();
if (SEI->hasDefault()) {
// Try to define a default case for enum_select based
// on the default case of enum_switch.
auto DefaultValue = BBToValue[SEI->getDefaultBB()];
DefaultSILValue = getSILValueFromCaseResult(B, SEI->getLoc(),
IntArg->getType(),
DefaultValue);
} else {
// Try to see if enum_switch covers all possible cases.
// If it does, then pick one of those cases as a default.
// Count the number of possible case tags for a given enum type
auto *Enum = SEI->getOperand()->getType().getEnumOrBoundGenericEnum();
unsigned ElemCount = 0;
for (auto E : Enum->getAllElements()) {
if (E)
++ElemCount;
}
// Check if all possible cases are covered.
if (ElemCount == SEI->getNumCases()) {
// This enum_switch instruction is exhaustive.
// Make the last case a default.
auto Pair = CaseToValue.pop_back_val();
DefaultSILValue = Pair.second;
}
}
// We don't need to have explicit cases for any case tags which produce the
// same result as the default branch.
if (DefaultSILValue != SILValue()) {
auto DefaultValue = DefaultSILValue;
auto *DefaultSI = dyn_cast<IntegerLiteralInst>(DefaultValue);
for (auto I = CaseToValue.begin(); I != CaseToValue.end();) {
auto CaseValue = I->second;
if (CaseValue == DefaultValue) {
I = CaseToValue.erase(I);
continue;
}
if (DefaultSI) {
if (auto CaseSI = dyn_cast<IntegerLiteralInst>(CaseValue)) {
if (DefaultSI->getValue() == CaseSI->getValue()) {
I = CaseToValue.erase(I);
continue;
}
}
}
++I;
}
}
LLVM_DEBUG(llvm::dbgs() << "convert to select_enum: " << *SEI);
// Create a new select_enum instruction
auto SelectInst = B.createSelectEnum(SEI->getLoc(), SEI->getOperand(),
IntArg->getType(),
DefaultSILValue, CaseToValue);
// Do not replace the bbarg
SmallVector<SILValue, 4> Args;
Args.push_back(SelectInst);
B.setInsertionPoint(&*std::next(SelectInst->getIterator()));
B.createBranch(SEI->getLoc(), BB, Args);
// Remove switch_enum instruction
SEI->getParent()->getTerminator()->eraseFromParent();
return true;
}
/// Collected information for a select_value case or default case.
bool SimplifyCFG::simplifyBlockArgs() {
auto *DA = PM->getAnalysis<DominanceAnalysis>();
DT = DA->get(&Fn);
bool Changed = false;
for (SILBasicBlock &BB : Fn) {
Changed |= simplifyArgs(&BB);
}
DT = nullptr;
return Changed;
}
namespace swift::test {
/// Arguments:
/// - none
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGSimplifyBlockArgs(
"simplify-cfg-simplify-block-args",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.simplifyBlockArgs();
});
} // end namespace swift::test
// Attempt to simplify the ith argument of BB. We simplify cases
// where there is a single use of the argument that is an extract from
// a struct, tuple or enum and where the predecessors all build the struct,
// tuple or enum and pass it directly.
bool SimplifyCFG::simplifyArgument(SILBasicBlock *BB, unsigned i) {
auto *A = BB->getArgument(i);
// If we are reading an i1, then check to see if it comes from
// a switch_enum. If so, we may be able to lower this sequence to
// a select_enum.
if (!DT && A->getType().is<BuiltinIntegerType>())
return simplifySwitchEnumToSelectEnum(BB, i, A);
// For now, just focus on cases where there is a single use.
if (!A->hasOneUse())
return false;
auto *Use = *A->use_begin();
auto *User = Use->getUser();
auto disableInOSSA = [](SingleValueInstruction *inst) {
assert(isa<StructInst>(inst) || isa<TupleInst>(inst) ||
isa<EnumInst>(inst));
if (!inst->getFunction()->hasOwnership()) {
return false;
}
if (inst->getOwnershipKind() == OwnershipKind::Owned)
return !inst->getSingleUse();
if (BorrowedValue borrow = BorrowedValue(inst->getOperand(0)))
return borrow.isLocalScope();
return false;
};
// Handle projections.
if (!isa<StructExtractInst>(User) &&
!isa<TupleExtractInst>(User) &&
!isa<UncheckedEnumDataInst>(User))
return false;
auto proj = cast<SingleValueInstruction>(User);
// For now, just handle the case where all predecessors are
// unconditional branches.
for (auto *Pred : BB->getPredecessorBlocks()) {
if (!isa<BranchInst>(Pred->getTerminator()))
return false;
auto *Branch = cast<BranchInst>(Pred->getTerminator());
SILValue BranchArg = Branch->getArg(i);
if (!isa<StructInst>(BranchArg) && !isa<TupleInst>(BranchArg) &&
!isa<EnumInst>(BranchArg)) {
return false;
}
if (auto *EI = dyn_cast<EnumInst>(BranchArg)) {
if (EI->getElement() != cast<UncheckedEnumDataInst>(proj)->getElement())
return false;
}
if (disableInOSSA(cast<SingleValueInstruction>(BranchArg))) {
return false;
}
}
// Okay, we'll replace the BB arg with one with the right type, replace
// the uses in this block, and then rewrite the branch operands.
LLVM_DEBUG(llvm::dbgs() << "unwrap argument:" << *A);
A->replaceAllUsesWith(SILUndef::get(A));
auto *NewArg = BB->replacePhiArgument(i, proj->getType(),
BB->getArgument(i)->getOwnershipKind());
proj->replaceAllUsesWith(NewArg);
// Rewrite the branch operand for each incoming branch.
for (auto *Pred : BB->getPredecessorBlocks()) {
if (auto *Branch = cast<BranchInst>(Pred->getTerminator())) {
auto *BranchOpValue = cast<SingleValueInstruction>(Branch->getOperand(i));
auto V = getInsertedValue(cast<SingleValueInstruction>(Branch->getArg(i)),
proj);
Branch->setOperand(i, V);
if (isInstructionTriviallyDead(BranchOpValue)) {
BranchOpValue->replaceAllUsesWithUndef();
BranchOpValue->eraseFromParent();
}
addToWorklist(Pred);
}
}
proj->eraseFromParent();
return true;
}
namespace swift::test {
/// Arguments
/// - block - the block whose argument is to be simplified
/// - index - the index of the argument to be simplified
/// Dumps:
/// - nothing
static FunctionTest SimplifyCFGSimplifyArgument(
"simplify-cfg-simplify-argument",
[](auto &function, auto &arguments, auto &test) {
auto *passToRun = cast<SILFunctionTransform>(createSimplifyCFG());
passToRun->injectPassManager(test.getPassManager());
passToRun->injectFunction(&function);
auto *block = arguments.takeBlock();
auto index = arguments.takeUInt();
SimplifyCFG(function, *passToRun, /*VerifyAll=*/false,
/*EnableJumpThread=*/false)
.simplifyArgument(block, index);
});
} // end namespace swift::test
// OWNERSHIP NOTE: This is always safe for guaranteed and owned arguments since
// in both cases the phi will consume its input.
static void tryToReplaceArgWithIncomingValue(SILBasicBlock *BB, unsigned i,
DominanceInfo *DT) {
auto *A = BB->getArgument(i);
SmallVector<SILValue, 4> Incoming;
if (!A->getIncomingPhiValues(Incoming) || Incoming.empty())
return;
SILValue V = Incoming[0];
for (size_t Idx = 1, Size = Incoming.size(); Idx < Size; ++Idx) {
if (Incoming[Idx] != V)
return;
}
// If the incoming values of all predecessors are equal usually this means
// that the common incoming value dominates the BB. But: this might be not
// the case if BB is unreachable. Therefore we still have to check it.
if (!DT->dominates(V->getParentBlock(), BB))
return;
// An argument has one result value. We need to replace this with the *value*
// of the incoming block(s).
LLVM_DEBUG(llvm::dbgs() << "replace arg with incoming value:" << *A);
A->replaceAllUsesWith(V);
}
bool SimplifyCFG::simplifyArgs(SILBasicBlock *BB) {
// Ignore blocks with no arguments.
if (BB->args_empty())
return false;
// Ignore the entry block.
if (BB->pred_empty())
return false;
// Ignore blocks that are successors of terminators with mandatory args.
for (SILBasicBlock *pred : BB->getPredecessorBlocks()) {
if (hasMandatoryArgument(pred->getTerminator()))
return false;
}
bool Changed = false;
for (int i = BB->getNumArguments() - 1; i >= 0; --i) {
SILArgument *A = BB->getArgument(i);
// Replace a block argument if all incoming values are equal. If this
// succeeds, argument A will have no uses afterwards.
if (DT)
tryToReplaceArgWithIncomingValue(BB, i, DT);
// Try to simplify the argument
if (!A->use_empty()) {
if (simplifyArgument(BB, i))
Changed = true;
continue;
}
erasePhiArgument(BB, i);
++NumDeadArguments;
Changed = true;
}
return Changed;
}
bool SimplifyCFG::simplifyProgramTerminationBlock(SILBasicBlock *BB) {
// If this is not ARC-inert, do not do anything to it.
//
// TODO: should we use ProgramTerminationAnalysis ?. The reason we do not
// use the analysis is because the CFG is likely to be invalidated right
// after this pass, that's why we do not really get the benefit of reusing the
// computation for the next iteration of the pass.
if (!isARCInertTrapBB(BB))
return false;
// This is going to be the last basic block this program is going to execute
// and this block is inert from the ARC's prospective,so there's no point to do any
// releases at this point.
bool Changed = false;
llvm::SmallPtrSet<SILInstruction *, 4> InstsToRemove;
for (auto &I : *BB) {
// We can only remove the instructions below from the ARC-inert BB
// We *can't* replace copy_addr with move instructions:
// If the copy_addr was [take] [initialization]:
// * previous passes would have replaced it with moves
// If the copy_addr contains [initialization]:
// * nothing we can do - the target address is invalid
// Else, i.e. the copy_addr was [take] assignment, it is not always safe:
// The type being operated on might contain weak references,
// or other side references - We'll corrupt the weak reference table
// if we fail to release the old value.
switch (I.getKind()) {
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
case SILInstructionKind::Name##ReleaseInst:
#include "swift/AST/ReferenceStorage.def"
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::ReleaseValueInst:
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::DestroyAddrInst:
break;
default:
continue;
}
LLVM_DEBUG(llvm::dbgs() << "remove dead-end destroy " << I);
InstsToRemove.insert(&I);
}
// Remove the instructions.
for (auto I : InstsToRemove) {
I->eraseFromParent();
Changed = true;
}
if (Changed)
++NumTermBlockSimplified;
return Changed;
}
namespace {
class SimplifyCFGPass : public SILFunctionTransform {
public:
void run() override {
if (SimplifyCFG(*getFunction(), *this, getOptions().VerifyAll,
/*EnableJumpThread=*/false)
.run())
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
};
} // end anonymous namespace
SILTransform *swift::createSimplifyCFG() {
return new SimplifyCFGPass();
}
namespace {
class JumpThreadSimplifyCFGPass : public SILFunctionTransform {
public:
void run() override {
if (SimplifyCFG(*getFunction(), *this, getOptions().VerifyAll,
/*EnableJumpThread=*/true)
.run())
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
};
} // end anonymous namespace
SILTransform *swift::createJumpThreadSimplifyCFG() {
return new JumpThreadSimplifyCFGPass();
}
//===----------------------------------------------------------------------===//
// Passes only for Testing
//===----------------------------------------------------------------------===//
namespace {
// Used to test critical edge splitting with sil-opt.
class SplitCriticalEdges : public SILFunctionTransform {
bool OnlyNonCondBrEdges;
public:
SplitCriticalEdges(bool SplitOnlyNonCondBrEdges)
: OnlyNonCondBrEdges(SplitOnlyNonCondBrEdges) {}
void run() override {
auto &Fn = *getFunction();
if (OnlyNonCondBrEdges && Fn.getModule().getOptions().VerifyAll)
Fn.verifyCriticalEdges();
// Split all critical edges from all or non only cond_br terminators.
bool Changed = splitAllCriticalEdges(Fn, nullptr, nullptr);
if (Changed) {
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
}
}
};
// Used to test SimplifyCFG::simplifyArgs with sil-opt.
class SimplifyBBArgs : public SILFunctionTransform {
public:
SimplifyBBArgs() {}
/// The entry point to the transformation.
void run() override {
if (SimplifyCFG(*getFunction(), *this, getOptions().VerifyAll, false)
.simplifyBlockArgs()) {
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
}
}
};
// Used to test splitBBArguments with sil-opt
class SROABBArgs : public SILFunctionTransform {
public:
SROABBArgs() {}
void run() override {
if (splitBBArguments(*getFunction())) {
invalidateAnalysis(SILAnalysis::InvalidationKind::BranchesAndInstructions);
}
}
};
// Used to test tryMoveCondFailToPreds with sil-opt
class MoveCondFailToPreds : public SILFunctionTransform {
public:
MoveCondFailToPreds() {}
void run() override {
for (auto &BB : *getFunction()) {
if (tryMoveCondFailToPreds(&BB)) {
invalidateAnalysis(
SILAnalysis::InvalidationKind::BranchesAndInstructions);
}
}
}
};
} // end anonymous namespace
/// Splits all critical edges in a function.
SILTransform *swift::createSplitAllCriticalEdges() {
return new SplitCriticalEdges(false);
}
/// Splits all critical edges from non cond_br terminators in a function.
SILTransform *swift::createSplitNonCondBrCriticalEdges() {
return new SplitCriticalEdges(true);
}
// Simplifies basic block arguments.
SILTransform *swift::createSROABBArgs() { return new SROABBArgs(); }
// Simplifies basic block arguments.
SILTransform *swift::createSimplifyBBArgs() {
return new SimplifyBBArgs();
}
// Moves cond_fail instructions to predecessors.
SILTransform *swift::createMoveCondFailToPreds() {
return new MoveCondFailToPreds();
}
|