1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
//===--- BasicBlockOptUtils.cpp - SILOptimizer basic block utilities ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SIL/LoopInfo.h"
using namespace swift;
/// Invoke \p visitor for each reachable block in \p f in worklist order (at
/// least one predecessor has been visited).
bool ReachableBlocks::visit(function_ref<bool(SILBasicBlock *)> visitor) {
// Walk over the CFG, starting at the entry block, until all reachable blocks
// are visited.
SILBasicBlock *entryBB = visited.getFunction()->getEntryBlock();
SmallVector<SILBasicBlock *, 8> worklist = {entryBB};
visited.insert(entryBB);
while (!worklist.empty()) {
SILBasicBlock *bb = worklist.pop_back_val();
if (!visitor(bb))
return false;
for (auto &succ : bb->getSuccessors()) {
if (visited.insert(succ))
worklist.push_back(succ);
}
}
return true;
}
ReachingReturnBlocks::ReachingReturnBlocks(SILFunction *function)
: worklist(function) {
for (SILBasicBlock &block : *function) {
if (isa<ReturnInst>(block.getTerminator()))
worklist.push(&block);
}
while (SILBasicBlock *block = worklist.pop()) {
for (SILBasicBlock *pred : block->getPredecessorBlocks()) {
worklist.pushIfNotVisited(pred);
}
}
}
NonErrorHandlingBlocks::NonErrorHandlingBlocks(SILFunction *function)
: worklist(function->getEntryBlock()) {
while (SILBasicBlock *block = worklist.pop()) {
if (auto ta = dyn_cast<TryApplyInst>(block->getTerminator())) {
worklist.pushIfNotVisited(ta->getNormalBB());
} else {
for (SILBasicBlock *succ : block->getSuccessorBlocks()) {
worklist.pushIfNotVisited(succ);
}
}
}
}
/// Remove all instructions in the body of \p bb in safe manner by using
/// undef.
void swift::clearBlockBody(SILBasicBlock *bb) {
for (SILArgument *arg : bb->getArguments()) {
arg->replaceAllUsesWithUndef();
// To appease the ownership verifier, just set to None.
arg->setOwnershipKind(OwnershipKind::None);
}
// Instructions in the dead block may be used by other dead blocks. Replace
// any uses of them with undef values.
while (!bb->empty()) {
// Grab the last instruction in the bb.
auto *inst = &bb->back();
// Replace any still-remaining uses with undef values and erase.
inst->replaceAllUsesOfAllResultsWithUndef();
inst->eraseFromParent();
}
}
// Handle the mechanical aspects of removing an unreachable block.
void swift::removeDeadBlock(SILBasicBlock *bb) {
// Clear the body of bb.
clearBlockBody(bb);
// Now that the bb is empty, eliminate it.
bb->eraseFromParent();
}
bool swift::removeUnreachableBlocks(SILFunction &f) {
ReachableBlocks reachable(&f);
// Visit all the blocks without doing any extra work.
reachable.visit([](SILBasicBlock *) { return true; });
// Remove the blocks we never reached. Assume the entry block is visited.
// Reachable's visited set contains dangling pointers during this loop.
bool changed = false;
for (auto ii = std::next(f.begin()), end = f.end(); ii != end;) {
auto *bb = &*ii++;
if (!reachable.isVisited(bb)) {
removeDeadBlock(bb);
changed = true;
}
}
return changed;
}
//===----------------------------------------------------------------------===//
// BasicBlock Cloning
//===----------------------------------------------------------------------===//
// Return true if a guaranteed terminator result can be borrowed such that the
// nested borrow scope covers all its uses.
static bool canBorrowGuaranteedResult(SILValue guaranteedResult) {
if (guaranteedResult->getOwnershipKind() != OwnershipKind::Guaranteed) {
// Either this terminator forwards an owned value, or it is some legal
// conversion to a non-guaranteed value. Either way, not interesting.
return true;
}
return findInnerTransitiveGuaranteedUses(guaranteedResult);
}
bool swift::canCloneTerminator(TermInst *termInst) {
// TODO: this is an awkward way to check for guaranteed terminator results.
for (Operand &oper : termInst->getAllOperands()) {
if (oper.getOperandOwnership() != OperandOwnership::GuaranteedForwarding)
continue;
if (!ForwardingOperand(&oper).visitForwardedValues(
[&](SILValue termResult) {
return canBorrowGuaranteedResult(termResult);
})) {
return false;
}
}
return true;
}
void BasicBlockCloner::updateSSAAfterCloning() {
SmallVector<SILPhiArgument *, 4> updateSSAPhis;
// All instructions should have been checked by canCloneInstruction. But we
// still need to check the arguments.
for (auto arg : origBB->getArguments()) {
if ((needsSSAUpdate |= isUsedOutsideOfBlock(arg))) {
break;
}
}
if (!needsSSAUpdate)
return;
SILSSAUpdater ssaUpdater(&updateSSAPhis);
for (auto availValPair : availVals) {
auto inst = availValPair.first;
if (inst->use_empty())
continue;
SILValue newResult(availValPair.second);
SmallVector<UseWrapper, 16> useList;
// Collect the uses of the value.
for (auto *use : inst->getUses())
useList.push_back(UseWrapper(use));
ssaUpdater.initialize(inst->getFunction(), inst->getType(),
inst->getOwnershipKind());
ssaUpdater.addAvailableValue(origBB, inst);
ssaUpdater.addAvailableValue(getNewBB(), newResult);
if (useList.empty())
continue;
// Update all the uses.
for (auto useWrapper : useList) {
Operand *use = useWrapper; // unwrap
SILInstruction *user = use->getUser();
assert(user && "Missing user");
// Ignore uses in the same basic block.
if (user->getParent() == origBB)
continue;
ssaUpdater.rewriteUse(*use);
}
}
}
void BasicBlockCloner::sinkAddressProjections() {
// Because the address projections chains will be disjoint (an instruction
// in one chain cannot use the result of an instruction in another chain),
// the order they are sunk does not matter.
InstructionDeleter deleter;
for (auto ii = origBB->begin(), ie = origBB->end(); ii != ie;) {
bool canSink = sinkProj.analyzeAddressProjections(&*ii);
(void)canSink;
assert(canSink && "canCloneInstruction should catch this.");
sinkProj.cloneProjections();
assert((sinkProj.getInBlockDefs().empty() || needsSSAUpdate)
&& "canCloneInstruction should catch this.");
auto nextII = std::next(ii);
deleter.trackIfDead(&*ii);
ii = nextII;
}
deleter.cleanupDeadInstructions();
}
// Populate 'projections' with the chain of address projections leading
// to and including 'inst'.
//
// Populate 'inBlockDefs' with all the non-address value definitions in
// the block that will be used outside this block after projection sinking.
//
// Return true on success, even if projections is empty.
bool SinkAddressProjections::analyzeAddressProjections(SILInstruction *inst) {
oldProjections.clear();
inBlockDefs.clear();
SILBasicBlock *bb = inst->getParent();
auto pushOperandVal = [&](SILValue def) {
if (def->getParentBlock() != bb)
return true;
if (!def->getType().isAddress()) {
inBlockDefs.insert(def);
return true;
}
if (auto *addressProj = dyn_cast<SingleValueInstruction>(def)) {
if (addressProj->isPure()) {
oldProjections.push_back(addressProj);
return true;
}
}
// Can't handle a multi-value or unclonable address producer.
return false;
};
// Check the given instruction for any address-type results.
for (auto result : inst->getResults()) {
if (!isUsedOutsideOfBlock(result))
continue;
if (!pushOperandVal(result))
return false;
}
// Recurse upward through address projections.
for (unsigned idx = 0; idx < oldProjections.size(); ++idx) {
// Only one address result/operand can be handled per instruction.
if (oldProjections.size() != idx + 1)
return false;
for (SILValue operandVal : oldProjections[idx]->getOperandValues())
if (!pushOperandVal(operandVal))
return false;
}
return true;
}
// Clone the projections gathered by 'analyzeAddressProjections' at
// their use site outside this block.
bool SinkAddressProjections::cloneProjections() {
if (oldProjections.empty())
return false;
SILBasicBlock *bb = oldProjections.front()->getParent();
// Clone projections in last-to-first order.
for (unsigned idx = 0; idx < oldProjections.size(); ++idx) {
auto *oldProj = oldProjections[idx];
assert(oldProj->getParent() == bb);
// Reset transient per-projection sets.
usesToReplace.clear();
firstBlockUse.clear();
// Gather uses.
for (Operand *use : oldProj->getUses()) {
auto *useBB = use->getUser()->getParent();
if (useBB != bb) {
firstBlockUse.try_emplace(useBB, use);
usesToReplace.push_back(use);
}
}
// Replace uses. Uses must be handled in the same order they were discovered
// above.
//
// Avoid cloning a projection multiple times per block. This avoids extra
// projections, but also prevents the removal of DebugValue. If a
// projection's only remaining is DebugValue, then it is deleted along with
// the DebugValue.
for (Operand *use : usesToReplace) {
auto *useBB = use->getUser()->getParent();
auto *firstUse = firstBlockUse.lookup(useBB);
SingleValueInstruction *newProj;
if (use == firstUse) {
newProj = cast<SingleValueInstruction>(oldProj->clone(use->getUser()));
if (newProjections) {
newProjections->push_back(newProj);
}
} else {
newProj = cast<SingleValueInstruction>(firstUse->get());
assert(newProj->getParent() == useBB);
newProj->moveFront(useBB);
}
use->set(newProj);
}
}
return true;
}
|