1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
//===--- CFGOptUtils.cpp - SIL CFG edge utilities -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Demangling/ManglingMacros.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/TinyPtrVector.h"
using namespace swift;
TermInst *swift::addNewEdgeValueToBranch(TermInst *branch, SILBasicBlock *dest,
SILValue val,
InstructionDeleter &deleter) {
SILBuilderWithScope builder(branch);
TermInst *newBr = nullptr;
if (auto *cbi = dyn_cast<CondBranchInst>(branch)) {
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
for (auto arg : cbi->getTrueArgs())
trueArgs.push_back(arg);
for (auto arg : cbi->getFalseArgs())
falseArgs.push_back(arg);
if (dest == cbi->getTrueBB()) {
trueArgs.push_back(val);
assert(trueArgs.size() == dest->getNumArguments());
}
if (dest == cbi->getFalseBB()) {
falseArgs.push_back(val);
assert(falseArgs.size() == dest->getNumArguments());
}
newBr = builder.createCondBranch(
cbi->getLoc(), cbi->getCondition(), cbi->getTrueBB(), trueArgs,
cbi->getFalseBB(), falseArgs, cbi->getTrueBBCount(),
cbi->getFalseBBCount());
deleter.getCallbacks().createdNewInst(newBr);
} else if (auto *bi = dyn_cast<BranchInst>(branch)) {
SmallVector<SILValue, 8> args;
for (auto arg : bi->getArgs())
args.push_back(arg);
args.push_back(val);
assert(args.size() == dest->getNumArguments());
newBr = builder.createBranch(bi->getLoc(), bi->getDestBB(), args);
deleter.getCallbacks().createdNewInst(newBr);
} else {
// At the moment we can only add arguments to br and cond_br.
llvm_unreachable("Can't add argument to terminator");
}
deleter.forceDelete(branch);
return newBr;
}
static void deleteTriviallyDeadOperandsOfDeadArgument(
MutableArrayRef<Operand> termOperands, unsigned deadArgIndex,
InstModCallbacks callbacks = InstModCallbacks()) {
Operand &op = termOperands[deadArgIndex];
auto *i = op.get()->getDefiningInstruction();
if (!i)
return;
op.set(SILUndef::get(op.get()));
eliminateDeadInstruction(i, callbacks);
}
// Our implementation assumes that our caller is attempting to remove a dead
// SILPhiArgument from a SILBasicBlock and has already RAUWed the argument.
TermInst *swift::deleteEdgeValue(TermInst *branch, SILBasicBlock *destBlock,
size_t argIndex, bool cleanupDeadPhiOps,
InstModCallbacks callbacks) {
if (auto *cbi = dyn_cast<CondBranchInst>(branch)) {
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
llvm::copy(cbi->getTrueArgs(), std::back_inserter(trueArgs));
llvm::copy(cbi->getFalseArgs(), std::back_inserter(falseArgs));
if (destBlock == cbi->getTrueBB()) {
if (cleanupDeadPhiOps) {
deleteTriviallyDeadOperandsOfDeadArgument(cbi->getTrueOperands(),
argIndex, callbacks);
}
trueArgs.erase(trueArgs.begin() + argIndex);
}
if (destBlock == cbi->getFalseBB()) {
if (cleanupDeadPhiOps) {
deleteTriviallyDeadOperandsOfDeadArgument(cbi->getFalseOperands(),
argIndex, callbacks);
}
falseArgs.erase(falseArgs.begin() + argIndex);
}
SILBuilderWithScope builder(cbi);
auto *result = builder.createCondBranch(
cbi->getLoc(), cbi->getCondition(), cbi->getTrueBB(), trueArgs,
cbi->getFalseBB(), falseArgs, cbi->getTrueBBCount(),
cbi->getFalseBBCount());
branch->eraseFromParent();
return result;
}
if (auto *bi = dyn_cast<BranchInst>(branch)) {
SmallVector<SILValue, 8> args;
llvm::copy(bi->getArgs(), std::back_inserter(args));
if (cleanupDeadPhiOps) {
deleteTriviallyDeadOperandsOfDeadArgument(bi->getAllOperands(), argIndex,
callbacks);
}
args.erase(args.begin() + argIndex);
auto *result = SILBuilderWithScope(bi).createBranch(bi->getLoc(),
bi->getDestBB(), args);
branch->eraseFromParent();
return result;
}
llvm_unreachable("unsupported terminator");
}
void swift::erasePhiArgument(SILBasicBlock *block, unsigned argIndex,
bool cleanupDeadPhiOps,
InstModCallbacks callbacks) {
assert(block->getArgument(argIndex)->isPhi()
&& "Only should be used on phi arguments");
block->eraseArgument(argIndex);
// Determine the set of predecessors in case any predecessor has
// two edges to this block (e.g. a conditional branch where both
// sides reach this block).
//
// NOTE: This needs to be a SmallSetVector since we need both uniqueness /and/
// insertion order. Otherwise non-determinism can result.
BasicBlockSetVector predBlocks(block->getParent());
for (auto *pred : block->getPredecessorBlocks())
predBlocks.insert(pred);
for (auto *pred : predBlocks)
deleteEdgeValue(pred->getTerminator(), block, argIndex, cleanupDeadPhiOps,
callbacks);
}
/// Changes the edge value between a branch and destination basic block
/// at the specified index. Changes all edges from \p branch to \p dest to carry
/// the value.
///
/// \param branch The branch to modify.
/// \param dest The destination of the edge.
/// \param idx The index of the argument to modify.
/// \param Val The new value to use.
/// \return The new branch. Deletes the old one.
/// Changes the edge value between a branch and destination basic block at the
/// specified index.
TermInst *swift::changeEdgeValue(TermInst *branch, SILBasicBlock *dest,
size_t idx, SILValue Val) {
SILBuilderWithScope builder(branch);
if (auto *cbi = dyn_cast<CondBranchInst>(branch)) {
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
OperandValueArrayRef oldTrueArgs = cbi->getTrueArgs();
bool branchOnTrue = cbi->getTrueBB() == dest;
assert((!branchOnTrue || idx < oldTrueArgs.size()) && "Not enough edges");
// Copy the edge values overwriting the edge at idx.
for (unsigned i = 0, e = oldTrueArgs.size(); i != e; ++i) {
if (branchOnTrue && idx == i)
trueArgs.push_back(Val);
else
trueArgs.push_back(oldTrueArgs[i]);
}
assert(trueArgs.size() == cbi->getTrueBB()->getNumArguments()
&& "Destination block's number of arguments must match");
OperandValueArrayRef oldFalseArgs = cbi->getFalseArgs();
bool branchOnFalse = cbi->getFalseBB() == dest;
assert((!branchOnFalse || idx < oldFalseArgs.size()) && "Not enough edges");
// Copy the edge values overwriting the edge at idx.
for (unsigned i = 0, e = oldFalseArgs.size(); i != e; ++i) {
if (branchOnFalse && idx == i)
falseArgs.push_back(Val);
else
falseArgs.push_back(oldFalseArgs[i]);
}
assert(falseArgs.size() == cbi->getFalseBB()->getNumArguments()
&& "Destination block's number of arguments must match");
cbi = builder.createCondBranch(
cbi->getLoc(), cbi->getCondition(), cbi->getTrueBB(), trueArgs,
cbi->getFalseBB(), falseArgs, cbi->getTrueBBCount(),
cbi->getFalseBBCount());
branch->dropAllReferences();
branch->eraseFromParent();
return cbi;
}
if (auto *bi = dyn_cast<BranchInst>(branch)) {
SmallVector<SILValue, 8> args;
assert(idx < bi->getNumArgs() && "Not enough edges");
OperandValueArrayRef oldArgs = bi->getArgs();
// Copy the edge values overwriting the edge at idx.
for (unsigned i = 0, e = oldArgs.size(); i != e; ++i) {
if (idx == i)
args.push_back(Val);
else
args.push_back(oldArgs[i]);
}
assert(args.size() == dest->getNumArguments());
bi = builder.createBranch(bi->getLoc(), bi->getDestBB(), args);
branch->dropAllReferences();
branch->eraseFromParent();
return bi;
}
llvm_unreachable("Unhandled terminator leading to merge block");
}
/// Check if the edge from the terminator is critical.
bool swift::isCriticalEdge(TermInst *t, unsigned edgeIdx) {
assert(t->getSuccessors().size() > edgeIdx && "Not enough successors");
auto srcSuccs = t->getSuccessors();
if (srcSuccs.size() <= 1 &&
// Also consider non-branch instructions with a single successor for
// critical edges, for example: a switch_enum of a single-case enum.
(isa<BranchInst>(t) || isa<CondBranchInst>(t)))
return false;
SILBasicBlock *destBB = srcSuccs[edgeIdx];
assert(!destBB->pred_empty() && "There should be a predecessor");
if (destBB->getSinglePredecessorBlock())
return false;
return true;
}
SILBasicBlock *swift::createSplitBranchTarget(SILBasicBlock *targetBlock,
SILBuilder &builder,
SILLocation loc) {
auto *function = targetBlock->getParent();
auto *edgeBB = function->createBasicBlockBefore(targetBlock);
SILBuilderWithScope(edgeBB, builder.getBuilderContext(),
builder.getCurrentDebugScope())
.createBranch(loc, targetBlock);
return edgeBB;
}
/// Splits the basic block at the iterator with an unconditional branch and
/// updates the dominator tree and loop info.
SILBasicBlock *swift::splitBasicBlockAndBranch(SILBuilder &builder,
SILInstruction *splitBeforeInst,
DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
auto *origBB = splitBeforeInst->getParent();
auto *newBB = origBB->split(splitBeforeInst->getIterator());
builder.setInsertionPoint(origBB);
builder.createBranch(splitBeforeInst->getLoc(), newBB);
// Update the dominator tree.
if (domInfo) {
auto origBBDTNode = domInfo->getNode(origBB);
if (origBBDTNode) {
// Change the immediate dominators of the children of the block we
// splitted to the splitted block.
SmallVector<DominanceInfoNode *, 16> Adoptees(origBBDTNode->begin(),
origBBDTNode->end());
auto newBBDTNode = domInfo->addNewBlock(newBB, origBB);
for (auto *adoptee : Adoptees)
domInfo->changeImmediateDominator(adoptee, newBBDTNode);
}
}
// Update loop info.
if (loopInfo)
if (auto *origBBLoop = loopInfo->getLoopFor(origBB)) {
origBBLoop->addBasicBlockToLoop(newBB, loopInfo->getBase());
}
return newBB;
}
/// Split every edge between two basic blocks.
void swift::splitEdgesFromTo(SILBasicBlock *From, SILBasicBlock *To,
DominanceInfo *domInfo, SILLoopInfo *loopInfo) {
for (unsigned edgeIndex = 0, E = From->getSuccessors().size(); edgeIndex != E;
++edgeIndex) {
SILBasicBlock *succBB = From->getSuccessors()[edgeIndex];
if (succBB != To)
continue;
splitEdge(From->getTerminator(), edgeIndex, domInfo, loopInfo);
}
}
/// Splits the n-th critical edge from the terminator and updates dominance and
/// loop info if set.
/// Returns the newly created basic block on success or nullptr otherwise (if
/// the edge was not critical.
SILBasicBlock *swift::splitCriticalEdge(TermInst *t, unsigned edgeIdx,
DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
if (!isCriticalEdge(t, edgeIdx))
return nullptr;
return splitEdge(t, edgeIdx, domInfo, loopInfo);
}
bool swift::splitCriticalEdgesFrom(SILBasicBlock *fromBB,
DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
bool changed = false;
for (unsigned idx = 0, e = fromBB->getSuccessors().size(); idx != e; ++idx) {
auto *newBB =
splitCriticalEdge(fromBB->getTerminator(), idx, domInfo, loopInfo);
changed |= (newBB != nullptr);
}
return changed;
}
bool swift::splitCriticalEdgesTo(SILBasicBlock *toBB, DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
bool changed = false;
unsigned numPreds = std::distance(toBB->pred_begin(), toBB->pred_end());
for (unsigned idx = 0; idx != numPreds; ++idx) {
SILBasicBlock *fromBB = *std::next(toBB->pred_begin(), idx);
auto *newBB = splitIfCriticalEdge(fromBB, toBB);
changed |= (newBB != nullptr);
}
return changed;
}
bool swift::hasCriticalEdges(SILFunction &f, bool onlyNonCondBr) {
for (SILBasicBlock &bb : f) {
// Only consider critical edges for terminators that don't support block
// arguments.
if (onlyNonCondBr && isa<CondBranchInst>(bb.getTerminator()))
continue;
if (isa<BranchInst>(bb.getTerminator()))
continue;
for (SILBasicBlock *succBB : bb.getSuccessorBlocks()) {
if (!isNonCriticalEdge(&bb, succBB))
return true;
}
}
return false;
}
/// Split all critical edges in the function updating the dominator tree and
/// loop information (if they are not set to null).
bool swift::splitAllCriticalEdges(SILFunction &f, DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
bool changed = false;
for (SILBasicBlock &bb : f) {
if (isa<BranchInst>(bb.getTerminator()))
continue;
for (unsigned idx = 0, e = bb.getSuccessors().size(); idx != e; ++idx) {
auto *newBB =
splitCriticalEdge(bb.getTerminator(), idx, domInfo, loopInfo);
assert(!newBB
|| isa<CondBranchInst>(bb.getTerminator())
&& "Only cond_br may have a critical edge.");
changed |= (newBB != nullptr);
}
}
return changed;
}
/// Merge the basic block with its successor if possible. If dominance
/// information or loop info is non null update it. Return true if block was
/// merged.
bool swift::mergeBasicBlockWithSuccessor(SILBasicBlock *bb,
DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
auto *branch = dyn_cast<BranchInst>(bb->getTerminator());
if (!branch)
return false;
auto *succBB = branch->getDestBB();
if (bb == succBB || !succBB->getSinglePredecessorBlock())
return false;
if (domInfo)
if (auto *succBBNode = domInfo->getNode(succBB)) {
// Change the immediate dominator for children of the successor to be the
// current block.
auto *bbNode = domInfo->getNode(bb);
SmallVector<DominanceInfoNode *, 8> Children(succBBNode->begin(),
succBBNode->end());
for (auto *ChildNode : Children)
domInfo->changeImmediateDominator(ChildNode, bbNode);
domInfo->eraseNode(succBB);
}
if (loopInfo)
loopInfo->removeBlock(succBB);
mergeBasicBlockWithSingleSuccessor(bb, succBB);
return true;
}
bool swift::mergeBasicBlocks(SILFunction *f) {
bool merged = false;
for (auto bbIter = f->begin(); bbIter != f->end();) {
if (mergeBasicBlockWithSuccessor(&*bbIter, /*domInfo*/ nullptr,
/*loopInfo*/ nullptr)) {
merged = true;
// Continue to merge the current block without advancing.
continue;
}
++bbIter;
}
return merged;
}
/// Splits the critical edges between from and to. This code assumes there is
/// only one edge between the two basic blocks.
SILBasicBlock *swift::splitIfCriticalEdge(SILBasicBlock *from,
SILBasicBlock *to,
DominanceInfo *domInfo,
SILLoopInfo *loopInfo) {
auto *t = from->getTerminator();
for (unsigned i = 0, e = t->getSuccessors().size(); i != e; ++i) {
if (t->getSuccessors()[i] == to)
return splitCriticalEdge(t, i, domInfo, loopInfo);
}
llvm_unreachable("Destination block not found");
}
bool swift::splitAllCondBrCriticalEdgesWithNonTrivialArgs(
SILFunction &fn, DominanceInfo *domInfo, SILLoopInfo *loopInfo) {
// Find our targets.
llvm::SmallVector<std::pair<SILBasicBlock *, unsigned>, 8> targets;
for (auto &block : fn) {
auto *cbi = dyn_cast<CondBranchInst>(block.getTerminator());
if (!cbi)
continue;
// See if our true index is a critical edge. If so, add block to the list
// and continue. If the false edge is also critical, we will handle it at
// the same time.
if (isCriticalEdge(cbi, CondBranchInst::TrueIdx)) {
targets.emplace_back(&block, CondBranchInst::TrueIdx);
}
if (!isCriticalEdge(cbi, CondBranchInst::FalseIdx)) {
continue;
}
targets.emplace_back(&block, CondBranchInst::FalseIdx);
}
if (targets.empty())
return false;
for (auto p : targets) {
SILBasicBlock *block = p.first;
unsigned index = p.second;
auto *result =
splitCriticalEdge(block->getTerminator(), index, domInfo, loopInfo);
(void)result;
assert(result);
}
return true;
}
static bool isSafeNonExitTerminator(TermInst *ti) {
switch (ti->getTermKind()) {
case TermKind::BranchInst:
case TermKind::CondBranchInst:
case TermKind::SwitchValueInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::DynamicMethodBranchInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastAddrBranchInst:
return true;
case TermKind::UnreachableInst:
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::UnwindInst:
return false;
// yield is special because it can do arbitrary,
// potentially-process-terminating things.
case TermKind::YieldInst:
case TermKind::AwaitAsyncContinuationInst:
return false;
case TermKind::TryApplyInst:
return true;
}
llvm_unreachable("Unhandled TermKind in switch.");
}
static bool isTrapNoReturnFunction(ApplyInst *ai) {
const char *fatalName = MANGLE_AS_STRING(
MANGLE_SYM(s18_fatalErrorMessageyys12StaticStringV_AcCSutF));
auto *fn = ai->getReferencedFunctionOrNull();
// We use endswith here since if we specialize fatal error we will always
// prepend the specialization records to fatalName.
if (!fn || !fn->getName().endswith(fatalName))
return false;
return true;
}
bool swift::findAllNonFailureExitBBs(
SILFunction *f, llvm::TinyPtrVector<SILBasicBlock *> &bbs) {
for (SILBasicBlock &bb : *f) {
TermInst *ti = bb.getTerminator();
// If we know that this terminator is not an exit terminator, continue.
if (isSafeNonExitTerminator(ti))
continue;
// A return inst is always a non-failure exit bb.
if (ti->isFunctionExiting()) {
bbs.push_back(&bb);
continue;
}
// If we don't have an unreachable inst at this point, this is a terminator
// we don't understand. Be conservative and return false.
if (!isa<UnreachableInst>(ti))
return false;
// Ok, at this point we know we have a terminator. If it is the only
// instruction in our bb, it is a failure bb. continue...
if (ti == &*bb.begin())
continue;
// If the unreachable is preceded by a no-return apply inst, then it is a
// non-failure exit bb. Add it to our list and continue.
auto prevIter = std::prev(SILBasicBlock::iterator(ti));
if (auto *ai = dyn_cast<ApplyInst>(&*prevIter)) {
if (ai->isCalleeNoReturn() && !isTrapNoReturnFunction(ai)) {
bbs.push_back(&bb);
continue;
}
}
// Otherwise, it must be a failure bb where we leak, continue.
continue;
}
// We understood all terminators, return true.
return true;
}
|