1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
//===--- CanonicalizeInstruction.cpp - canonical SIL peepholes ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// SSA-peephole transformations that yield a more canonical SIL representation.
///
/// A superset of simplifyInstruction.
///
//===----------------------------------------------------------------------===//
// CanonicalizeInstruction defines a default DEBUG_TYPE: "sil-canonicalize"
#include "swift/SILOptimizer/Utils/CanonicalizeInstruction.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// Tracing within the implementation can also be activated by the pass.
#define DEBUG_TYPE pass.debugType
// Vtable anchor.
CanonicalizeInstruction::~CanonicalizeInstruction() {}
// Helper to delete an instruction, or mark it for deletion.
//
// Return an iterator to the next non-deleted instruction. The incoming iterator
// may already have advanced beyond 'inst'.
static SILBasicBlock::iterator killInstruction(SILInstruction *inst,
SILBasicBlock::iterator nextII,
CanonicalizeInstruction &pass) {
if (nextII == inst->getIterator())
++nextII;
pass.killInstruction(inst);
return nextII;
}
// Helper to delete, or mark for deletion, an instruction with potential debug
// or end of scope uses. All "real" uses must already be removed.
//
// fix_lifetime uses are not currently handled here. They are generally
// (incorrectly) treated as "incidental" uses, but no canonicalizations need
// them yet.
static SILBasicBlock::iterator
killInstAndIncidentalUses(SingleValueInstruction *inst,
SILBasicBlock::iterator nextII,
CanonicalizeInstruction &pass) {
while (!inst->use_empty()) {
auto *user = inst->use_begin()->getUser();
assert(user->isDebugInstruction() || isEndOfScopeMarker(user));
nextII = killInstruction(user, nextII, pass);
}
return killInstruction(inst, nextII, pass);
}
//===----------------------------------------------------------------------===//
// Instruction Simplification
//===----------------------------------------------------------------------===//
// If simplification is successful, return a valid iterator to the next
// instruction that wasn't erased.
static std::optional<SILBasicBlock::iterator>
simplifyAndReplace(SILInstruction *inst, CanonicalizeInstruction &pass) {
// Erase the simplified instruction and any instructions that end its
// scope. Nothing needs to be added to the worklist except for Result,
// because the instruction and all non-replaced users will be deleted.
pass.callbacks.resetHadCallbackInvocation();
auto result = simplifyAndReplaceAllSimplifiedUsesAndErase(
inst, pass.callbacks, &pass.deadEndBlocks);
if (!pass.callbacks.hadCallbackInvocation())
return std::nullopt;
return result;
}
//===----------------------------------------------------------------------===//
// Canonicalize Memory Operations
//===----------------------------------------------------------------------===//
// Replace all uses of an original struct or tuple extract instruction with the
// given load instruction. The caller ensures that the load only loads the
// extracted field.
//
// \p extract has the form:
// (struct_extract (load %base), #field)
//
// \p loadInst has the form:
// (load (struct_element_addr %base, #field)
static void replaceUsesOfExtract(SingleValueInstruction *extract,
LoadOperation loadInst,
CanonicalizeInstruction &pass) {
assert(extract->getType() == loadInst->getType());
SingleValueInstruction *loadedVal = *loadInst;
if (auto qual = loadInst.getOwnershipQualifier()) {
if (*qual == LoadOwnershipQualifier::Copy) {
// Borrow the load-copied subelement, with precisely the same scope as
// the aggregate borrow.
assert(extract->getNumOperands() == 1);
auto *origBorrow = cast<BeginBorrowInst>(extract->getOperand(0));
auto *newBorrow = SILBuilderWithScope(origBorrow)
.createBeginBorrow(loadInst->getLoc(), *loadInst);
pass.notifyNewInstruction(newBorrow);
assert(extract == origBorrow->getSingleNonEndingUse()->getUser());
for (auto *origEnd : origBorrow->getEndBorrows()) {
auto *endBorrow = SILBuilderWithScope(origEnd).createEndBorrow(
origEnd->getLoc(), newBorrow);
pass.notifyNewInstruction(endBorrow);
}
loadedVal = newBorrow;
}
}
LLVM_DEBUG(llvm::dbgs() << "Replacing " << *extract << " with "
<< *loadedVal << "\n");
extract->replaceAllUsesWith(loadedVal);
}
// Given a load with multiple struct_extracts/tuple_extracts and no other uses,
// canonicalize the load into several (struct_element_addr (load)) pairs.
//
// (struct_extract (load %base))
// ->
// (load (struct_element_addr %base, #field)
static SILBasicBlock::iterator
splitAggregateLoad(LoadOperation loadInst, CanonicalizeInstruction &pass) {
auto *block = loadInst->getParentBlock();
auto *instBeforeLoad = loadInst->getPreviousInstruction();
// Keep track of the next iterator after any newly added or to-be-deleted
// instructions. This must be valid regardless of whether the pass immediately
// deletes the instructions or simply records them for later deletion.
auto nextII = std::next(loadInst->getIterator());
bool needsBorrow;
if (auto qual = loadInst.getOwnershipQualifier()) {
switch (*qual) {
case LoadOwnershipQualifier::Unqualified:
case LoadOwnershipQualifier::Trivial:
needsBorrow = false;
break;
case LoadOwnershipQualifier::Copy:
needsBorrow = true;
break;
case LoadOwnershipQualifier::Take:
// TODO: To handle a "take", we would need to generate additional destroys
// for any fields that aren't already extracted. This would be
// out-of-place for this transform, and I'm not sure if this a case that
// needs to be handled in CanonicalizeInstruction.
return nextII;
}
} else {
// If we don't have a qual, we have a borrow.
needsBorrow = false;
}
struct ProjInstPair {
Projection proj;
SingleValueInstruction *extract;
// When sorting, just look at the projection and ignore the instruction.
// Including the instruction address in the sort key would be
// nondeterministic.
bool operator<(const ProjInstPair &rhs) const { return proj < rhs.proj; }
};
// Add load projections to a projection list.
llvm::SmallVector<ProjInstPair, 8> projections;
llvm::SmallVector<BeginBorrowInst *, 8> borrows;
llvm::SmallVector<SILInstruction *, 8> lifetimeEndingInsts;
for (auto *use : getNonDebugUses(*loadInst)) {
auto *user = use->getUser();
if (needsBorrow) {
if (auto *destroy = dyn_cast<DestroyValueInst>(user)) {
lifetimeEndingInsts.push_back(destroy);
continue;
}
auto *borrow = dyn_cast<BeginBorrowInst>(user);
if (!borrow)
return nextII;
// The transformation below also assumes a single borrow use.
auto *borrowedOper = borrow->getSingleNonEndingUse();
if (!borrowedOper)
return nextII;
borrows.push_back(borrow);
user = borrowedOper->getUser();
} else {
if (isa<EndBorrowInst>(user) &&
!loadInst.getOwnershipQualifier().has_value()) {
lifetimeEndingInsts.push_back(user);
continue;
}
}
// If we have any non SEI, TEI instruction, don't do anything here.
if (!isa<StructExtractInst>(user) && !isa<TupleExtractInst>(user))
return nextII;
auto extract = cast<SingleValueInstruction>(user);
projections.push_back({Projection(extract), extract});
}
// Sort the list so projections with the same value decl and tuples with the
// same indices will be processed together. This makes it easy to reuse the
// load from the first such projection for all subsequent projections on the
// same value decl or index.
std::sort(projections.begin(), projections.end());
// If the original load is dead, then do not delete it before
// diagnostics. Doing so would suppress DefiniteInitialization in cases like:
//
// struct S {
// let a: Int
// init() {
// _ = a // must be diagnosed as use before initialization
// a = 0
// }
// }
//
// However, if the load has any projections, it must be deleted, otherwise
// exclusivity checking is too strict:
//
// extension S {
// mutating func foo() {
// _ = a // Must be diagnosed as a read of self.a only not the whole self.
// }
// }
//
// Also, avoid degrading debug info unless it is necessary for exclusivity
// diagnostics.
//
// TODO: This logic subtly anticipates SILGen behavior. In the future, change
// SILGen to avoid emitting the full load and never delete loads in Raw SIL.
if (projections.empty() && loadInst->getModule().getStage() == SILStage::Raw)
return nextII;
// Create a new address projection instruction and load instruction for each
// unique projection.
Projection *lastProj = nullptr;
std::optional<LoadOperation> lastNewLoad;
for (auto &pair : projections) {
auto &proj = pair.proj;
auto *extract = pair.extract;
// If this projection is the same as the last projection we processed, just
// replace all uses of the projection with the load we created previously.
if (lastProj && proj == *lastProj) {
replaceUsesOfExtract(extract, *lastNewLoad, pass);
nextII = killInstruction(extract, nextII, pass);
continue;
}
// This is a unique projection. Create the new address projection and load.
lastProj = &proj;
// Insert new instructions before the original load.
SILBuilderWithScope LoadBuilder(*loadInst);
auto *projInst =
proj.createAddressProjection(LoadBuilder, loadInst->getLoc(),
loadInst->getOperand(0))
.get();
pass.notifyNewInstruction(projInst);
// When loading a trivial subelement, convert ownership.
std::optional<LoadOwnershipQualifier> loadOwnership =
loadInst.getOwnershipQualifier();
if (loadOwnership.has_value()) {
if (*loadOwnership != LoadOwnershipQualifier::Unqualified &&
projInst->getType().isTrivial(*projInst->getFunction()))
loadOwnership = LoadOwnershipQualifier::Trivial;
} else {
if (projInst->getType().isTrivial(*projInst->getFunction()))
loadOwnership = LoadOwnershipQualifier::Trivial;
}
if (loadOwnership) {
lastNewLoad =
LoadBuilder.createLoad(loadInst->getLoc(), projInst, *loadOwnership);
} else {
lastNewLoad = LoadBuilder.createLoadBorrow(loadInst->getLoc(), projInst);
}
pass.notifyNewInstruction(**lastNewLoad);
if (loadOwnership) {
if (*loadOwnership == LoadOwnershipQualifier::Copy) {
// Destroy the loaded value wherever the aggregate load was destroyed.
assert(loadInst.getOwnershipQualifier() ==
LoadOwnershipQualifier::Copy);
for (SILInstruction *destroy : lifetimeEndingInsts) {
auto *newInst = SILBuilderWithScope(destroy).createDestroyValue(
destroy->getLoc(), lastNewLoad->getLoadInst());
pass.notifyNewInstruction(newInst);
}
}
} else {
for (SILInstruction *destroy : lifetimeEndingInsts) {
auto *newInst = SILBuilderWithScope(destroy).createEndBorrow(
destroy->getLoc(), **lastNewLoad);
pass.notifyNewInstruction(newInst);
}
}
replaceUsesOfExtract(extract, *lastNewLoad, pass);
nextII = killInstruction(extract, nextII, pass);
}
// Preserve the original load's debug information.
if (pass.preserveDebugInfo) {
swift::salvageLoadDebugInfo(loadInst);
}
// Remove the now unused borrows.
for (auto *borrow : borrows)
nextII = killInstAndIncidentalUses(borrow, nextII, pass);
// Erase the old load.
for (auto *destroy : lifetimeEndingInsts)
nextII = killInstruction(destroy, nextII, pass);
// TODO: remove this hack to advance the iterator beyond debug_value and check
// SILInstruction::isDeleted() in the caller instead.
while (nextII != loadInst->getParent()->end()
&& nextII->isDebugInstruction()) {
++nextII;
}
deleteAllDebugUses(*loadInst, pass.getCallbacks());
nextII = killInstAndIncidentalUses(*loadInst, nextII, pass);
/// A change has been made; and the load instruction is deleted. The caller
/// should now process the instruction where the load was before.
///
/// BEFORE TRANSFORM | AFTER TRANSFORM
/// prequel_2 | prequel_2
/// prequel_1 | prequel_1
/// load | +-> ???
/// sequel_1 | | ???
/// sequel_2 | | ???
/// |
/// The instruction the caller should process next.
if (instBeforeLoad)
return instBeforeLoad->getNextInstruction()->getIterator();
else
return block->begin();
}
// Given a store within a single property struct, recursively form the parent
// struct values and promote the store to the outer struct type.
//
// (store (struct_element_addr %base) object)
// ->
// (store %base (struct object))
//
// TODO: supporting enums here would be very easy. The main thing is adding
// support in `createAggFromFirstLevelProjections`.
// Note: we will not be able to support tuples because we cannot have a
// single-element tuple.
static SILBasicBlock::iterator
broadenSingleElementStores(StoreInst *storeInst,
CanonicalizeInstruction &pass) {
// Keep track of the next iterator after any newly added or to-be-deleted
// instructions. This must be valid regardless of whether the pass immediately
// deletes the instructions or simply records them for later deletion.
auto nextII = std::next(storeInst->getIterator());
auto *f = storeInst->getFunction();
ProjectionPath projections(storeInst->getDest()->getType());
SILValue op = storeInst->getDest();
while (isa<StructElementAddrInst>(op)) {
auto *inst = cast<SingleValueInstruction>(op);
SILValue baseAddr = inst->getOperand(0);
SILType baseAddrType = baseAddr->getType();
auto *decl = baseAddrType.getStructOrBoundGenericStruct();
assert(
!decl->isResilient(f->getModule().getSwiftModule(),
f->getResilienceExpansion()) &&
"This code assumes resilient structs can not have fragile fields. If "
"this assert is hit, this has been changed. Please update this code.");
// Bail if the store's destination is not a struct_element_addr or if the
// store's destination (%base) is not a loadable type. If %base is not a
// loadable type, we can't create it as a struct later on.
// If our aggregate has unreferenced storage then we can never prove if it
// actually has a single field.
if (!baseAddrType.isLoadable(*f) ||
baseAddrType.aggregateHasUnreferenceableStorage() ||
decl->getStoredProperties().size() != 1)
break;
// If the struct is a move-only type, even though the single element in
// the struct is trivial, the struct would be non-trivial. In this case, we
// need a much more compelx analysis to determine the store ownership
// qualifier. Such an analysis is not suitable in the canonicalize pass. So,
// bail out.
if (baseAddrType.isMoveOnly()) {
break;
}
projections.push_back(Projection(inst));
op = baseAddr;
}
// If we couldn't create a projection, bail.
if (projections.empty())
return nextII;
// Now work our way back up. At this point we know all operations we are going
// to do succeed (cast<SingleValueInst>, createAggFromFirstLevelProjections,
// etc.) so we can omit null checks. We should not bail at this point (we
// could create a double consume, or worse).
SILBuilderWithScope builder(storeInst);
SILValue result = storeInst->getSrc();
SILValue storeAddr = storeInst->getDest();
for (Projection proj : llvm::reverse(projections)) {
storeAddr = cast<SingleValueInstruction>(storeAddr)->getOperand(0);
result = proj.createAggFromFirstLevelProjections(
builder, storeInst->getLoc(),
storeAddr->getType().getObjectType(), {result})
.get();
}
// Store the new struct-wrapped value into the final base address.
builder.createStore(storeInst->getLoc(), result, storeAddr,
storeInst->getOwnershipQualifier());
// Erase the original store.
return killInstruction(storeInst, nextII, pass);
}
//===----------------------------------------------------------------------===//
// Simple ARC Peepholes
//===----------------------------------------------------------------------===//
/// "dead" copies are removed in OSSA, but this may shorten object lifetimes,
/// changing program semantics in unexpected ways by releasing weak references
/// and running deinitializers early. This copy may be the only thing keeping a
/// variable's reference alive. But just because the copy's current SSA value
/// contains no other uses does not mean that there aren't other uses that still
/// correspond to the original variable whose lifetime is protected by this
/// copy. The only way to guarantee the lifetime of a variable is to use a
/// borrow scope--copy/destroy is insufficient by itself.
///
/// FIXME: This removes debug_value instructions aggressively as part of
/// SILGenCleanup. Instead, debug_values should be canonicalized before copy
/// elimination so that we never see the pattern:
/// %b = begin_borrow
/// %c = copy %b
/// end_borrow %b
/// debug_value %c
///
/// FIXME: Technically this should be guarded by a compiler flag like
/// -enable-copy-propagation until SILGen protects scoped variables by
/// borrow scopes.
static SILBasicBlock::iterator
eliminateSimpleCopies(CopyValueInst *cvi, CanonicalizeInstruction &pass) {
auto next = std::next(cvi->getIterator());
// Eliminate copies that only have destroy_value uses.
SmallVector<DestroyValueInst *, 8> destroys;
for (Operand *use : cvi->getUses()) {
if (auto *dvi = dyn_cast<DestroyValueInst>(use->getUser())) {
destroys.push_back(dvi);
continue;
}
if (!pass.preserveDebugInfo && isa<DebugValueInst>(use->getUser())) {
continue;
}
return next;
}
while (!destroys.empty()) {
next = killInstruction(destroys.pop_back_val(), next, pass);
}
return killInstAndIncidentalUses(cvi, next, pass);
}
/// Unlike dead copy elimination, dead borrows can be safely removed because the
/// semantics of a borrow scope
static SILBasicBlock::iterator
eliminateSimpleBorrows(BeginBorrowInst *bbi, CanonicalizeInstruction &pass) {
auto next = std::next(bbi->getIterator());
// Lexical borrow scopes can only be eliminated under certain circumstances:
// (1) They can never be eliminated if the module is in the raw stage, because
// they may be needed for diagnostic.
// (2) They can never be eliminated if there is no enclosing lexical scope
// which guarantees the lifetime of the value.
if (bbi->isLexical() && (bbi->getModule().getStage() == SILStage::Raw ||
!isNestedLexicalBeginBorrow(bbi)))
return next;
// Fixed borrow scopes can't be eliminated during the raw stage since they
// control move checker behavior.
if (bbi->isFixed() && bbi->getModule().getStage() == SILStage::Raw) {
return next;
}
// Borrow scopes representing a VarDecl can't be eliminated during the raw
// stage because they may be needed for diagnostics.
if (bbi->isFromVarDecl() && bbi->getModule().getStage() == SILStage::Raw) {
return next;
}
// We know that our borrow is completely within the lifetime of its base value
// if the borrow is never reborrowed. We check for reborrows and do not
// optimize such cases. Otherwise, we can eliminate our borrow and instead use
// our operand.
auto base = bbi->getOperand();
auto baseOwnership = base->getOwnershipKind();
SmallVector<EndBorrowInst *, 8> endBorrows;
for (auto *use : getNonDebugUses(bbi)) {
if (auto *ebi = dyn_cast<EndBorrowInst>(use->getUser())) {
endBorrows.push_back(ebi);
continue;
}
// Otherwise, if we have a use that is non-lifetime ending and can accept
// our base ownership, continue.
if (!use->isLifetimeEnding() && use->canAcceptKind(baseOwnership))
continue;
return next;
}
while (!endBorrows.empty()) {
next = killInstruction(endBorrows.pop_back_val(), next, pass);
}
bbi->replaceAllUsesWith(base);
pass.notifyHasNewUsers(base);
return killInstruction(bbi, next, pass);
}
/// Delete any result having forwarding instruction that only has destroy_value
/// and debug_value uses.
static SILBasicBlock::iterator
eliminateUnneededForwardingUnarySingleValueInst(SingleValueInstruction *inst,
CanonicalizeInstruction &pass) {
auto next = std::next(inst->getIterator());
if (isa<DropDeinitInst>(inst))
return next;
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(inst)) {
if (uedi->getOperand()->getType().isValueTypeWithDeinit())
return next;
}
for (auto *use : getNonDebugUses(inst)) {
if (auto *destroy = dyn_cast<DestroyValueInst>(use->getUser())) {
if (destroy->isFullDeinitialization())
continue;
}
return next;
}
deleteAllDebugUses(inst, pass.callbacks);
SILValue op = inst->getOperand(0);
inst->replaceAllUsesWith(op);
pass.notifyHasNewUsers(op);
return killInstruction(inst, next, pass);
}
static std::optional<SILBasicBlock::iterator>
tryEliminateUnneededForwardingInst(SILInstruction *i,
CanonicalizeInstruction &pass) {
assert(ForwardingInstruction::isa(i) &&
"Must be an ownership forwarding inst");
if (auto *svi = dyn_cast<SingleValueInstruction>(i))
if (svi->getNumOperands() == 1)
return eliminateUnneededForwardingUnarySingleValueInst(svi, pass);
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// Top-Level Entry Point
//===----------------------------------------------------------------------===//
SILBasicBlock::iterator
CanonicalizeInstruction::canonicalize(SILInstruction *inst) {
if (auto nextII = simplifyAndReplace(inst, *this))
return nextII.value();
if (auto li = LoadOperation(inst)) {
return splitAggregateLoad(li, *this);
}
if (auto *storeInst = dyn_cast<StoreInst>(inst)) {
return broadenSingleElementStores(storeInst, *this);
}
if (auto *cvi = dyn_cast<CopyValueInst>(inst))
return eliminateSimpleCopies(cvi, *this);
if (auto *bbi = dyn_cast<BeginBorrowInst>(inst))
return eliminateSimpleBorrows(bbi, *this);
// If we have ownership and are not in raw SIL, eliminate unneeded forwarding
// insts. We don't do this in raw SIL as not to disturb the codegen read by
// diagnostics.
//
// TODO: fix tryEliminateUnneededForwardingInst to handle debug uses.
auto *fn = inst->getFunction();
if (!preserveDebugInfo && fn->hasOwnership()
&& fn->getModule().getStage() != SILStage::Raw) {
if (ForwardingInstruction::isa(inst))
if (auto newNext = tryEliminateUnneededForwardingInst(inst, *this))
return *newNext;
}
// Skip ahead.
return std::next(inst->getIterator());
}
|