1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
|
//===-- CanonicalizeOSSALifetime.cpp - Canonicalize OSSA value lifetimes --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This top-level API rewrites the extended lifetime of a SILValue:
///
/// bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(SILValue def)
///
/// Each time it's called on a single OSSA value, `def`, it performs four
/// steps:
///
/// 1. Compute "pruned" liveness of def and its copies, ignoring original
/// destroys. Initializes `liveness`.
///
/// 2. Find the "original" boundary of liveness using
/// PrunedLiveness::computeBoundary.
///
/// 3. (Optional) At Onone, extend liveness up to original extent when possible
/// without incurring extra copies.
///
/// 4. Find the "extended" boundary of liveness by walking out from the boundary
/// computed by PrunedLiveness out to destroys which aren't separated from
/// the original destory by "interesting" instructions.
///
/// 5. Initializes `consumes` and inserts new destroy_value instructions.
///
/// 6. Rewrite `def`s original copies and destroys, inserting new copies where
/// needed. Deletes original copies and destroys and inserts new copies.
///
/// See CanonicalizeOSSALifetime.h for examples.
///
/// TODO: Canonicalization currently bails out if any uses of the def has
/// OperandOwnership::PointerEscape. Once project_box is protected by a borrow
/// scope and mark_dependence is associated with an end_dependence, those will
/// no longer be represented as PointerEscapes, and canonicalization will
/// naturally work everywhere as intended. The intention is to keep the
/// canonicalization algorithm as simple and robust, leaving the remaining
/// performance opportunities contingent on fixing the SIL representation.
///
/// TODO: Replace BasicBlock SmallDenseMaps with inlined bits;
/// see BasicBlockDataStructures.h.
///
/// TODO: This algorithm would be extraordinarily simple and cheap except for
/// the following issues:
///
/// 1. Liveness is extended by any overlapping begin/end_access scopes. This
/// avoids calling a destructor within an exclusive access. A simpler
/// alternative would be to model all end_access instructions as deinit
/// barriers, but that may significantly limit optimization.
///
/// 2. Liveness is extended out to original destroys to avoid spurious changes.
///
/// 3. In the Onone mode, liveness is preserved to its previous extent whenever
/// doing so doesn't incur extra copies compared to what is done in the O mode.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "copy-propagation"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeDatastructures.h"
#include "swift/SIL/OSSALifetimeCompletion.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/Reachability.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/Statistic.h"
using namespace swift;
using llvm::SmallSetVector;
llvm::Statistic swift::NumCopiesAndMovesEliminated = {
DEBUG_TYPE, "NumCopiesAndMovesEliminated",
"number of copy_value and move_value instructions removed"};
llvm::Statistic swift::NumCopiesGenerated = {
DEBUG_TYPE, "NumCopiesGenerated",
"number of copy_value instructions created"};
STATISTIC(NumDestroysEliminated,
"number of destroy_value instructions removed");
STATISTIC(NumDestroysGenerated, "number of destroy_value instructions created");
//===----------------------------------------------------------------------===//
// MARK: General utilities
//===----------------------------------------------------------------------===//
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
/// Is \p instruction a destroy_value whose operand is \p def, or its
/// transitive copy.
static bool isDestroyOfCopyOf(SILInstruction *instruction, SILValue def) {
auto *destroy = dyn_cast<DestroyValueInst>(instruction);
if (!destroy)
return false;
auto destroyed = destroy->getOperand();
while (true) {
if (destroyed == def)
return true;
auto *copy = dyn_cast<CopyValueInst>(destroyed);
if (!copy)
break;
destroyed = copy->getOperand();
}
return false;
}
//===----------------------------------------------------------------------===//
// MARK: Step 1. Compute pruned liveness
//===----------------------------------------------------------------------===//
bool CanonicalizeOSSALifetime::computeCanonicalLiveness() {
LLVM_DEBUG(llvm::dbgs() << "Computing canonical liveness from:\n";
getCurrentDef()->print(llvm::dbgs()));
defUseWorklist.initialize(getCurrentDef());
// Only the first level of reborrows need to be consider. All nested inner
// adjacent reborrows and phis are encapsulated within their lifetimes.
SILPhiArgument *arg;
if ((arg = dyn_cast<SILPhiArgument>(getCurrentDef())) && arg->isPhi()) {
visitInnerAdjacentPhis(arg, [&](SILArgument *reborrow) {
defUseWorklist.insert(reborrow);
return true;
});
}
while (SILValue value = defUseWorklist.pop()) {
LLVM_DEBUG(llvm::dbgs() << " Uses of value:\n";
value->print(llvm::dbgs()));
for (Operand *use : value->getUses()) {
LLVM_DEBUG(llvm::dbgs() << " Use:\n";
use->getUser()->print(llvm::dbgs()));
auto *user = use->getUser();
// Recurse through copies.
if (auto *copy = dyn_cast<CopyValueInst>(user)) {
defUseWorklist.insert(copy);
continue;
}
// Handle debug_value instructions separately.
if (pruneDebugMode) {
if (auto *dvi = dyn_cast<DebugValueInst>(user)) {
// Only instructions potentially outside current pruned liveness are
// interesting.
if (liveness->getBlockLiveness(dvi->getParent())
!= PrunedLiveBlocks::LiveOut) {
recordDebugValue(dvi);
}
continue;
}
}
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
break;
case OperandOwnership::TrivialUse:
llvm_unreachable("this operand cannot handle ownership");
// Conservatively treat a conversion to an unowned value as a pointer
// escape. Is it legal to canonicalize ForwardingUnowned?
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
LLVM_DEBUG(llvm::dbgs() << " Value escaped! Giving up\n");
return false;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
liveness->updateForUse(user, /*lifetimeEnding*/ false);
break;
case OperandOwnership::ForwardingConsume:
recordConsumingUse(use);
liveness->updateForUse(user, /*lifetimeEnding*/ true);
break;
case OperandOwnership::DestroyingConsume:
if (isDestroyOfCopyOf(user, getCurrentDef())) {
destroys.insert(user);
} else {
// destroy_value of a transitive copy of the currentDef does not
// force pruned liveness (but store etc. does).
// Even though this instruction is a DestroyingConsume of its operand,
// if it's a destroy_value whose operand is not a transitive copy of
// currentDef, then it's just ending an implicit borrow of currentDef,
// not consuming it.
auto lifetimeEnding = !isa<DestroyValueInst>(user);
liveness->updateForUse(user, lifetimeEnding);
}
recordConsumingUse(use);
break;
case OperandOwnership::Borrow:
if (liveness->updateForBorrowingOperand(use)
!= InnerBorrowKind::Contained) {
LLVM_DEBUG(llvm::dbgs() << " Inner borrow can't be contained! Giving up\n");
return false;
}
break;
case OperandOwnership::InteriorPointer:
case OperandOwnership::GuaranteedForwarding:
case OperandOwnership::EndBorrow:
// Guaranteed values are exposed by inner adjacent reborrows. If user is
// a guaranteed phi (GuaranteedForwarding), then the owned lifetime
// either dominates it or its lifetime ends at an outer adjacent
// reborrow. Only instructions that end the reborrow lifetime should
// actually affect liveness of the outer owned value.
liveness->updateForUse(user, /*lifetimeEnding*/ false);
break;
case OperandOwnership::Reborrow:
BranchInst *branch = cast<BranchInst>(user);
// This is a cheap variation on visitEnclosingDef. We already know that
// getCurrentDef() is the enclosing def for this use. If the reborrow's
// has a enclosing def is an outer adjacent phi then this branch must
// consume getCurrentDef() as the outer phi operand.
if (is_contained(branch->getOperandValues(), getCurrentDef())) {
// An adjacent phi consumes the value being reborrowed. Although this
// use doesn't end the lifetime, this branch does end the lifetime by
// consuming the owned value.
liveness->updateForUse(branch, /*lifetimeEnding*/ true);
break;
}
// No adjacent phi consumes the value. This use is not lifetime ending.
liveness->updateForUse(branch, /*lifetimeEnding*/ false);
// This branch reborrows a guaranteed phi whose lifetime is dependent on
// currentDef. Uses of the reborrowing phi extend liveness.
auto *reborrow = PhiOperand(use).getValue();
defUseWorklist.insert(reborrow);
break;
}
}
}
return true;
}
void CanonicalizeOSSALifetime::findDestroysOutsideBoundary(
SmallVectorImpl<SILInstruction *> &outsideDestroys) {
for (auto destroy : destroys) {
if (liveness->isWithinBoundary(destroy))
continue;
outsideDestroys.push_back(destroy);
}
}
void CanonicalizeOSSALifetime::extendLivenessToDeinitBarriers() {
SmallVector<SILInstruction *, 4> outsideDestroys;
findDestroysOutsideBoundary(outsideDestroys);
// OSSALifetimeCompletion: With complete lifetimes, creating completeLiveness
// and using it to visiti unreachable lifetime ends should be deleted.
SmallVector<SILBasicBlock *, 32> discoveredBlocks(this->discoveredBlocks);
SSAPrunedLiveness completeLiveness(*liveness, &discoveredBlocks);
for (auto *end : outsideDestroys) {
completeLiveness.updateForUse(end, /*lifetimeEnding*/ true);
}
OSSALifetimeCompletion::visitUnreachableLifetimeEnds(
getCurrentDef(), completeLiveness, [&](auto *unreachable) {
recordUnreachableLifetimeEnd(unreachable);
unreachable->visitPriorInstructions([&](auto *inst) {
liveness->extendToNonUse(inst);
return true;
});
});
ArrayRef<SILInstruction *> ends = {};
SmallVector<SILInstruction *, 8> lexicalEnds;
if (currentLexicalLifetimeEnds.size() > 0) {
visitExtendedUnconsumedBoundary(
currentLexicalLifetimeEnds,
[&lexicalEnds](auto *instruction, auto lifetimeEnding) {
instruction->visitSubsequentInstructions([&](auto *next) {
lexicalEnds.push_back(next);
return true;
});
});
ends = lexicalEnds;
} else {
ends = outsideDestroys;
}
auto *def = getCurrentDef()->getDefiningInstruction();
using InitialBlocks = ArrayRef<SILBasicBlock *>;
auto *defBlock = getCurrentDef()->getParentBlock();
auto initialBlocks = defBlock ? InitialBlocks(defBlock) : InitialBlocks();
ReachableBarriers barriers;
findBarriersBackward(ends, initialBlocks, *getCurrentDef()->getFunction(),
barriers, [&](auto *inst) {
if (inst == def)
return true;
if (!isDeinitBarrier(inst, calleeAnalysis))
return false;
// For the most part, instructions that are deinit
// barriers in the abstract are also deinit barriers
// for the purposes of canonicalizing def's lifetime.
//
// There is an important exception: transferring an
// owned lexical lifetime into a callee. If the
// instruction is a full apply which consumes def,
// then it isn't a deinit barrier. Keep looking for
// barriers above it.
auto apply = FullApplySite::isa(inst);
if (!apply)
return true;
return liveness->isInterestingUser(inst) !=
PrunedLiveness::IsInterestingUser::
LifetimeEndingUse;
});
for (auto *barrier : barriers.instructions) {
liveness->extendToNonUse(barrier);
}
for (auto *barrier : barriers.phis) {
for (auto *predecessor : barrier->getPredecessorBlocks()) {
liveness->extendToNonUse(predecessor->getTerminator());
}
}
for (auto *edge : barriers.edges) {
auto *predecessor = edge->getSinglePredecessorBlock();
assert(predecessor);
liveness->extendToNonUse(&predecessor->back());
}
// Ignore barriers.initialBlocks. If the collection is non-empty, it
// contains the def-block. Its presence means that no barriers were found
// between lifetime ends and def. In that case, no new instructions need to
// be added to liveness.
}
// Return true if \p inst is an end_access whose access scope overlaps the end
// of the pruned live range. This means that a hoisted destroy might execute
// within the access scope which previously executed outside the access scope.
//
// Not overlapping (ignored):
//
// %def
// use %def // pruned liveness ends here
// begin_access // access scope unrelated to def
// end_access
//
// Overlapping (must extend pruned liveness):
//
// %def
// begin_access // access scope unrelated to def
// use %def // pruned liveness ends here
// end_access
//
// Overlapping (must extend pruned liveness):
//
// begin_access // access scope unrelated to def
// %def
// use %def // pruned liveness ends here
// end_access
//
bool CanonicalizeOSSALifetime::
endsAccessOverlappingPrunedBoundary(SILInstruction *inst) {
if (isa<EndUnpairedAccessInst>(inst)) {
return true;
}
auto *endAccess = dyn_cast<EndAccessInst>(inst);
if (!endAccess) {
return false;
}
auto *beginAccess = endAccess->getBeginAccess();
SILBasicBlock *beginBB = beginAccess->getParent();
switch (liveness->getBlockLiveness(beginBB)) {
case PrunedLiveBlocks::LiveOut:
// Found partial overlap of the form:
// currentDef
// beginAccess
// br...
// bb...
// use
// endAccess
return true;
case PrunedLiveBlocks::LiveWithin:
// Check for partial overlap of this form where beginAccess and the last use
// are in the same block:
// currentDef
// beginAccess
// use
// endAccess
if (std::find_if(std::next(beginAccess->getIterator()), beginBB->end(),
[this](SILInstruction &nextInst) {
return liveness->isInterestingUser(&nextInst)
!= PrunedLiveness::NonUser;
})
!= beginBB->end()) {
// An interesting use after the beginAccess means overlap.
return true;
}
return false;
case PrunedLiveBlocks::Dead:
// Check for partial overlap of this form where beginAccess and currentDef
// are in different blocks:
// beginAccess
// br...
// bb...
// currentDef
// endAccess
//
// Since beginAccess is not within the canonical live range, its access
// scope overlaps only if there is a path from beginAccess to currentDef
// that does not pass through endAccess. endAccess is dominated by
// both currentDef and begin_access. Therefore, such a path only exists if
// beginAccess dominates currentDef.
return domTree->properlyDominates(beginAccess->getParent(),
getCurrentDef()->getParentBlock());
}
llvm_unreachable("covered switch");
}
// Find all overlapping access scopes and extend pruned liveness to cover them:
//
// This may also unnecessarily, but conservatively extend liveness over some
// originally overlapping access, such as:
//
// begin_access // access scope unrelated to def
// %def
// use %def
// destroy %def
// end_access
//
// Or:
//
// %def
// begin_access // access scope unrelated to def
// use %def
// destroy %def
// end_access
//
// To minimize unnecessary lifetime extension, only search for end_access
// within dead blocks that are backward reachable from an original destroy.
//
// Note that lifetime extension is iterative because adding a new liveness use
// may create new overlapping access scopes. This can happen because there is no
// guarantee of strict stack discipline across unrelated access. For example:
//
// %def
// begin_access A
// use %def // Initial pruned lifetime boundary
// begin_access B
// end_access A // Lifetime boundary after first extension
// end_access B // Lifetime boundary after second extension
// destroy %def
//
// If the lifetime extension did not iterate, then def would be destroyed within
// B's access scope when originally it was destroyed outside that scope.
void CanonicalizeOSSALifetime::extendLivenessThroughOverlappingAccess() {
this->accessBlocks = accessBlockAnalysis->get(getCurrentDef()->getFunction());
// Visit each original consuming use or destroy as the starting point for a
// backward CFG traversal. This traversal must only visit blocks within the
// original extended lifetime.
bool changed = true;
while (changed) {
changed = false;
// The blocks in which we may have to extend liveness over access scopes.
//
// It must be populated first so that we can test membership during the loop
// (see findLastConsume).
BasicBlockSetVector blocksToVisit(getCurrentDef()->getFunction());
for (auto *block : consumingBlocks) {
blocksToVisit.insert(block);
}
for (auto iterator = blocksToVisit.begin(); iterator != blocksToVisit.end();
++iterator) {
auto *bb = *iterator;
// If the block isn't dead, then we won't need to extend liveness within
// any of its predecessors (though we may within it).
if (liveness->getBlockLiveness(bb) != PrunedLiveBlocks::Dead)
continue;
// Continue searching upward to find the pruned liveness boundary.
for (auto *predBB : bb->getPredecessorBlocks()) {
blocksToVisit.insert(predBB);
}
}
for (auto *bb : blocksToVisit) {
auto blockLiveness = liveness->getBlockLiveness(bb);
// Ignore blocks within pruned liveness.
if (blockLiveness == PrunedLiveBlocks::LiveOut) {
continue;
}
if (blockLiveness == PrunedLiveBlocks::Dead) {
// Otherwise, ignore dead blocks with no nonlocal end_access.
if (!accessBlocks->containsNonLocalEndAccess(bb)) {
continue;
}
}
bool blockHasUse = (blockLiveness == PrunedLiveBlocks::LiveWithin);
// Find the latest partially overlapping access scope, if one exists:
// use %def // pruned liveness ends here
// end_access
// Whether to look for the last consume in the block.
//
// We need to avoid extending liveness over end_accesses that occur after
// original liveness ended.
bool findLastConsume =
consumingBlocks.contains(bb)
&& llvm::none_of(bb->getSuccessorBlocks(), [&](auto *successor) {
return blocksToVisit.contains(successor)
&& liveness->getBlockLiveness(successor)
== PrunedLiveBlocks::Dead;
});
for (auto &inst : llvm::reverse(*bb)) {
if (findLastConsume) {
findLastConsume = !destroys.contains(&inst);
continue;
}
// Stop at the latest use. An earlier end_access does not overlap.
if (blockHasUse
&& liveness->isInterestingUser(&inst) != PrunedLiveness::NonUser) {
break;
}
if (endsAccessOverlappingPrunedBoundary(&inst)) {
liveness->extendToNonUse(&inst);
changed = true;
break;
}
}
// If liveness changed, might as well restart CFG traversal.
if (changed) {
break;
}
}
}
}
//===----------------------------------------------------------------------===//
// MARK: Step 2. Find the "original" (unextended) boundary determined by the
// liveness built up in step 1.
//===----------------------------------------------------------------------===//
void CanonicalizeOSSALifetime::findOriginalBoundary(
PrunedLivenessBoundary &boundary) {
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
boundary.deadDefs.size() == 0);
liveness->computeBoundary(boundary, consumingBlocks.getArrayRef());
}
//===----------------------------------------------------------------------===//
// MARK: Step 3. (Optional) Maximize lifetimes.
//===----------------------------------------------------------------------===//
/// At -Onone, there are some conflicting goals:
/// On the one hand: good debugging experience.
/// (1) do not shorten value's lifetime
/// On the other: demonstrate semantics.
/// (2) consume value at same places it will be consumed at -O
/// (3) ensure there are no more copies than there would be at -O
///
/// (2) and (3) are equivalent--extra (compared to -O) copies arise from failing
/// to end lifetimes at consuming uses (which then need their own copies).
///
/// We achieve (2) and (3) always. We achieve (1) where possible.
///
/// Conceptually, the strategy is the following:
/// - Collect the blocks in which the value was live before canonicalization.
/// These are the "original" live blocks (originalLiveBlocks).
/// [Color these blocks green.]
/// - From within that collection, collect the blocks which contain a _final_
/// consuming, non-destroy use, and their iterative successors.
/// These are the "consumed" blocks (consumedAtExitBlocks).
/// [Color these blocks red.]
/// - Extend liveness down to the boundary between originalLiveBlocks and
/// consumedAtExitBlocks blocks.
/// [Extend liveness down to the boundary between green blocks and red.]
/// - In particular, in regions of originalLiveBlocks which have no boundary
/// with consumedAtExitBlocks, liveness should be extended to its original
/// extent.
/// [Extend liveness down to the boundary between green blocks and uncolored.]
void CanonicalizeOSSALifetime::visitExtendedUnconsumedBoundary(
ArrayRef<SILInstruction *> consumes,
llvm::function_ref<void(SILInstruction *, PrunedLiveness::LifetimeEnding)>
visitor) {
auto currentDef = getCurrentDef();
#ifndef NDEBUG
for (auto *consume : consumes) {
assert(!liveness->isWithinBoundary(consume));
}
#endif
// First, collect the blocks that were _originally_ live. We can't use
// liveness here because it doesn't include blocks that occur before a
// destroy_value.
BasicBlockSet originalLiveBlocks(currentDef->getFunction());
{
// Some of the work here was already done by computeCanonicalLiveness.
// Specifically, it already discovered all blocks containing (transitive)
// uses and blocks that appear between them and the def.
//
// Seed the set with what it already discovered.
for (auto *discoveredBlock : liveness->getDiscoveredBlocks())
originalLiveBlocks.insert(discoveredBlock);
// Start the walk from the consuming blocks (which includes destroys as well
// as the other consuming uses).
BasicBlockWorklist worklist(currentDef->getFunction());
for (auto *consumingBlock : consumingBlocks) {
worklist.push(consumingBlock);
}
// Walk backwards from consuming blocks.
while (auto *block = worklist.pop()) {
if (!originalLiveBlocks.insert(block))
continue;
for (auto *predecessor : block->getPredecessorBlocks()) {
// If the block was discovered by liveness, we already added it to the
// set.
if (originalLiveBlocks.contains(predecessor))
continue;
worklist.pushIfNotVisited(predecessor);
}
}
}
// Second, collect the blocks which contain a _final_ consuming use and their
// iterative successors within the originalLiveBlocks.
BasicBlockSet consumedAtExitBlocks(currentDef->getFunction());
// The subset of consumedAtExitBlocks which do not contain a _final_ consuming
// use, i.e. the subset that is dead.
StackList<SILBasicBlock *> consumedAtEntryBlocks(currentDef->getFunction());
{
// Start the forward walk from blocks which contain _final_ non-destroy
// consumes. These are just the instructions on the boundary which aren't
// destroys.
BasicBlockWorklist worklist(currentDef->getFunction());
for (auto *instruction : consumes) {
if (destroys.contains(instruction))
continue;
if (liveness->isInterestingUser(instruction)
!= PrunedLiveness::IsInterestingUser::LifetimeEndingUse)
continue;
worklist.push(instruction->getParent());
}
while (auto *block = worklist.pop()) {
consumedAtExitBlocks.insert(block);
for (auto *successor : block->getSuccessorBlocks()) {
if (!originalLiveBlocks.contains(successor))
continue;
worklist.pushIfNotVisited(successor);
consumedAtEntryBlocks.push_back(successor);
}
}
}
// Third, find the blocks on the boundary between the originalLiveBlocks
// blocks and the consumedAtEntryBlocks blocks. Extend liveness "to the end"
// of these blocks.
for (auto *block : consumedAtEntryBlocks) {
for (auto *predecessor : block->getPredecessorBlocks()) {
if (consumedAtExitBlocks.contains(predecessor))
continue;
// Add "the instruction(s) before the terminator" of the predecessor to
// liveness.
predecessor->getTerminator()->visitPriorInstructions([&](auto *inst) {
visitor(inst, PrunedLiveness::LifetimeEnding::NonUse());
return true;
});
}
}
// Finally, preserve the destroys which weren't in the consumed region in
// place: hoisting such destroys would not avoid copies.
for (auto *destroy : destroys) {
auto *block = destroy->getParent();
// If the destroy is in a consumed block or a final consuming block,
// hoisting it would avoid a copy.
if (consumedAtExitBlocks.contains(block))
continue;
visitor(destroy, PrunedLiveness::LifetimeEnding::Ending());
}
}
void CanonicalizeOSSALifetime::extendUnconsumedLiveness(
PrunedLivenessBoundary const &boundary) {
visitExtendedUnconsumedBoundary(
boundary.lastUsers, [&](auto *instruction, auto lifetimeEnding) {
liveness->updateForUse(instruction, lifetimeEnding);
});
}
//===----------------------------------------------------------------------===//
// MARK: Step 4. Extend the "original" boundary from step 2 up to destroys that
// aren't separated from it by "interesting" instructions.
//===----------------------------------------------------------------------===//
namespace {
/// Extends the boundary from PrunedLiveness down to preexisting destroys of the
/// def which aren't separated from the original boundary by "interesting"
/// instructions.
///
/// The motivation for extending the boundary is to avoid "churning" when
/// iterating to a fixed point by canonicalizing the lifetimes of several
/// values with overlapping live ranges and failing to find a fixed point
/// because their destroys are repeatedly hoisted over one another.
class ExtendBoundaryToDestroys final {
using InstructionPredicate = llvm::function_ref<bool(SILInstruction *)>;
SSAPrunedLiveness &liveness;
PrunedLivenessBoundary const &originalBoundary;
SILValue currentDef;
BasicBlockSet seenMergePoints;
InstructionPredicate isDestroy;
public:
ExtendBoundaryToDestroys(SSAPrunedLiveness &liveness,
PrunedLivenessBoundary const &originalBoundary,
SILValue currentDef, InstructionPredicate isDestroy)
: liveness(liveness), originalBoundary(originalBoundary),
currentDef(currentDef), seenMergePoints(currentDef->getFunction()),
isDestroy(isDestroy){};
ExtendBoundaryToDestroys(ExtendBoundaryToDestroys const &) = delete;
ExtendBoundaryToDestroys &
operator=(ExtendBoundaryToDestroys const &) = delete;
/// Compute the extended boundary by walking out from the original boundary
/// (from PrunedLiveness::computeBoundary) down to any destroys that appear
/// later but which aren't separated from the original boundary by
/// "interesting" users.
void extend(PrunedLivenessBoundary &boundary) {
for (auto *def : originalBoundary.deadDefs) {
extendBoundaryFromDef(def, boundary);
}
for (auto *destination : originalBoundary.boundaryEdges) {
extendBoundaryFromBoundaryEdge(destination, boundary);
}
for (auto *user : originalBoundary.lastUsers) {
extendBoundaryFromUser(user, boundary);
}
}
/// Look past ignoreable instructions to find the _last_ destroy after the
/// specified instruction that destroys \p def.
static DestroyValueInst *findDestroyAfter(SILInstruction *previous,
SILValue def,
InstructionPredicate isDestroy) {
DestroyValueInst *retval = nullptr;
for (auto *instruction = previous->getNextInstruction(); instruction;
instruction = instruction->getNextInstruction()) {
if (!CanonicalizeOSSALifetime::ignoredByDestroyHoisting(
instruction->getKind()))
break;
if (isDestroy(instruction))
retval = cast<DestroyValueInst>(instruction);
}
return retval;
}
/// Look past ignoreable instructions to find the _last_ destroy at or after
/// the specified instruction that destroys \p def.
static DestroyValueInst *
findDestroyAtOrAfter(SILInstruction *start, SILValue def,
InstructionPredicate isDestroy) {
if (isDestroy(start))
return cast<DestroyValueInst>(start);
return findDestroyAfter(start, def, isDestroy);
}
/// Look past ignoreable instructions to find the _first_ destroy in \p
/// destination that destroys \p def and isn't separated from the beginning
/// by "interesting" instructions.
static DestroyValueInst *
findDestroyFromBlockBegin(SILBasicBlock *destination, SILValue def,
InstructionPredicate isDestroy) {
return findDestroyAtOrAfter(&*destination->begin(), def, isDestroy);
}
private:
/// Compute the points on the extended boundary found by walking forward from
/// the dead def (starting either with the top of the block in the case of a
/// dead arg or the next instruction in the case of an instruction) down to
/// any destroys that appear later but which aren't separated from the
/// original boundary by "interesting" users.
///
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
/// stays in place and \p def remains a dead def.
void extendBoundaryFromDef(SILNode *def, PrunedLivenessBoundary &boundary) {
if (auto *arg = dyn_cast<SILArgument>(def)) {
if (auto *dvi = findDestroyFromBlockBegin(arg->getParent(), currentDef,
isDestroy)) {
boundary.lastUsers.push_back(dvi);
return;
}
} else {
if (auto *dvi = findDestroyAfter(cast<SILInstruction>(def), currentDef,
isDestroy)) {
boundary.lastUsers.push_back(dvi);
return;
}
}
boundary.deadDefs.push_back(def);
}
/// Compute the points on the extended boundary found by walking down from the
/// boundary edge in the original boundary (uniquely determined by the
/// specified destination edge) down to any destroys that appear later but
/// which aren't separated from the original boundary by "interesting" users.
///
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
/// stays in place and \p destination remains a boundary edge.
void extendBoundaryFromBoundaryEdge(SILBasicBlock *destination,
PrunedLivenessBoundary &boundary) {
if (auto *dvi =
findDestroyFromBlockBegin(destination, currentDef, isDestroy)) {
boundary.lastUsers.push_back(dvi);
} else {
boundary.boundaryEdges.push_back(destination);
}
}
/// Compute the points on the extended boundary found by walking down from the
/// specified instruction in the original boundary down to any destroys that
/// appear later but which aren't separated from the original boundary by
/// "interesting" users.
///
/// If the user is consuming, the boundary remains in place.
///
/// If the user is a terminator, see extendBoundaryFromTerminator.
///
/// If a destroy is found after the (non-consuming, non-terminator) \p user,
/// it becomes a last user. Otherwise, the boundary stays in place and \p
/// user remains a last user.
void extendBoundaryFromUser(SILInstruction *user,
PrunedLivenessBoundary &boundary) {
if (isDestroy(user)) {
auto *dvi = cast<DestroyValueInst>(user);
auto *existingDestroy = findDestroyAtOrAfter(dvi, currentDef, isDestroy);
assert(existingDestroy && "couldn't find a destroy at or after one!?");
boundary.lastUsers.push_back(existingDestroy);
return;
}
switch (liveness.isInterestingUser(user)) {
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
// Even if we saw a destroy after this consuming use, we don't want to
// add it to the boundary. We will rewrite copies so that this user is
// the final consuming user on this path.
boundary.lastUsers.push_back(user);
return;
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
case PrunedLiveness::IsInterestingUser::NonUser:
if (auto *terminator = dyn_cast<TermInst>(user)) {
extendBoundaryFromTerminator(terminator, boundary);
return;
}
if (auto *existingDestroy =
findDestroyAfter(user, currentDef, isDestroy)) {
boundary.lastUsers.push_back(existingDestroy);
return;
}
boundary.lastUsers.push_back(user);
}
}
/// Compute the points on the extended boundary by walking into \p user's
/// parent's successors and looking for destroys.
///
/// If any destroys are found, they become last users and all other successors
/// (which lack destroys) become boundary edges. If no destroys are found,
/// the boundary stays in place and \p user remains a last user.
void extendBoundaryFromTerminator(TermInst *user,
PrunedLivenessBoundary &boundary) {
auto *block = user->getParent();
// Record the successors at the beginning of which we didn't find destroys.
// If we found a destroy at the beginning of any other successor, then all
// the other edges become boundary edges.
SmallVector<SILBasicBlock *, 4> successorsWithoutDestroys;
bool foundDestroy = false;
for (auto *successor : block->getSuccessorBlocks()) {
// If multiple terminators were live and had the same successor, only
// record the boundary corresponding to that destination block once.
if (!seenMergePoints.insert(successor)) {
// Thanks to the lack of critical edges, having seen this successor
// before means it has multiple predecessors, so this must be \p block's
// unique successor.
assert(block->getSingleSuccessorBlock() == successor);
// When this merge point was encountered the first time, a
// destroy_value was sought from its top. If one was found, it was
// added to the boundary. If no destroy_value was found, _that_ user
// (i.e. the one on behalf of which extendBoundaryFromTerminator was
// called which inserted successor into seenMergePoints) was added to
// the boundary.
//
// This time, if a destroy was found, it's already in the boundary. If
// no destroy was found, though, _this_ user must be added to the
// boundary.
foundDestroy =
findDestroyFromBlockBegin(successor, currentDef, isDestroy);
continue;
}
if (auto *dvi =
findDestroyFromBlockBegin(successor, currentDef, isDestroy)) {
boundary.lastUsers.push_back(dvi);
foundDestroy = true;
} else {
successorsWithoutDestroys.push_back(successor);
}
}
if (foundDestroy) {
// If we found a destroy in any successor, then every block at the
// beginning of which we didn't find a destroy becomes a boundary edge.
for (auto *successor : successorsWithoutDestroys) {
boundary.boundaryEdges.push_back(successor);
}
} else {
boundary.lastUsers.push_back(user);
}
}
};
} // anonymous namespace
void CanonicalizeOSSALifetime::findExtendedBoundary(
PrunedLivenessBoundary const &originalBoundary,
PrunedLivenessBoundary &boundary) {
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
boundary.deadDefs.size() == 0);
auto isDestroy = [&](auto *inst) { return destroys.contains(inst); };
ExtendBoundaryToDestroys extender(*liveness, originalBoundary,
getCurrentDef(), isDestroy);
extender.extend(boundary);
}
//===----------------------------------------------------------------------===//
// MARK: Step 5. Insert destroys onto the boundary found in step 3 where needed.
//===----------------------------------------------------------------------===//
/// Create a new destroy_value instruction before the specified instruction and
/// record it as a final consume.
static void insertDestroyBeforeInstruction(SILInstruction *nextInstruction,
SILValue currentDef,
CanonicalOSSAConsumeInfo &consumes,
InstModCallbacks &callbacks) {
// OSSALifetimeCompletion: This conditional clause can be deleted with
// complete lifetimes.
if (consumes.isUnreachableLifetimeEnd(nextInstruction)) {
// Don't create a destroy_value if the next instruction is an unreachable
// (or a terminator on the availability boundary of the dead-end region
// starting from the non-lifetime-ending boundary of `currentDef`).
//
// If there was a destroy here already, it would be reused. Avoids
// creating an explicit destroy of a value which might have an unclosed
// borrow scope. Doing so would result in
//
// somewhere:
// %def
// %borrow = begin_borrow ...
//
// die:
// destroy_value %def
// unreachable
//
// which is invalid (although the verifier doesn't catch
// it--rdar://115850528) because there must be an `end_borrow %borrow`
// before the destroy_value.
return;
}
SILBuilderWithScope builder(nextInstruction);
auto loc =
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
auto *dvi = builder.createDestroyValue(loc, currentDef);
callbacks.createdNewInst(dvi);
consumes.recordFinalConsume(dvi);
++NumDestroysGenerated;
}
/// Inserts destroys along the boundary where needed and records all final
/// consuming uses.
///
/// Observations:
/// - currentDef must be postdominated by some subset of its
/// consuming uses, including destroys on all return paths.
/// - The postdominating consumes cannot be within nested loops.
/// - Any blocks in nested loops are now marked LiveOut.
void CanonicalizeOSSALifetime::insertDestroysOnBoundary(
PrunedLivenessBoundary const &boundary) {
BasicBlockSet seenMergePoints(getCurrentDef()->getFunction());
for (auto *instruction : boundary.lastUsers) {
if (destroys.contains(instruction)) {
consumes.recordFinalConsume(instruction);
continue;
}
switch (liveness->isInterestingUser(instruction)) {
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
consumes.recordFinalConsume(instruction);
continue;
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
case PrunedLiveness::IsInterestingUser::NonUser:
if (isa<TermInst>(instruction)) {
auto *block = instruction->getParent();
for (auto *successor : block->getSuccessorBlocks()) {
if (!seenMergePoints.insert(successor)) {
assert(block->getSingleSuccessorBlock() == successor);
continue;
}
auto *insertionPoint = &*successor->begin();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
consumes, getCallbacks());
LLVM_DEBUG(llvm::dbgs() << " Destroy after terminator "
<< *instruction << " at beginning of ";
successor->printID(llvm::dbgs(), false);
llvm::dbgs() << "\n";);
}
continue;
}
auto *insertionPoint = instruction->getNextInstruction();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
getCallbacks());
LLVM_DEBUG(llvm::dbgs()
<< " Destroy at last use " << insertionPoint << "\n");
continue;
}
}
for (auto *edgeDestination : boundary.boundaryEdges) {
auto *insertionPoint = &*edgeDestination->begin();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
getCallbacks());
LLVM_DEBUG(llvm::dbgs() << " Destroy on edge " << edgeDestination << "\n");
}
for (auto *def : boundary.deadDefs) {
if (auto *arg = dyn_cast<SILArgument>(def)) {
auto *insertionPoint = &*arg->getParent()->begin();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
getCallbacks());
LLVM_DEBUG(llvm::dbgs()
<< " Destroy after dead def arg " << arg << "\n");
} else {
auto *instruction = cast<SILInstruction>(def);
auto *insertionPoint = instruction->getNextInstruction();
assert(insertionPoint && "def instruction was a terminator?!");
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(), consumes,
getCallbacks());
LLVM_DEBUG(llvm::dbgs()
<< " Destroy after dead def inst " << instruction << "\n");
}
}
}
//===----------------------------------------------------------------------===//
// MARK: Step 6. Rewrite copies and destroys
//===----------------------------------------------------------------------===//
/// The lifetime extends beyond given consuming use. Copy the value.
///
/// This can set the operand value, but cannot invalidate the use iterator.
void swift::copyLiveUse(Operand *use, InstModCallbacks &instModCallbacks) {
SILInstruction *user = use->getUser();
SILBuilderWithScope builder(user->getIterator());
auto loc = RegularLocation::getAutoGeneratedLocation(user->getLoc());
auto *copy = builder.createCopyValue(loc, use->get());
instModCallbacks.createdNewInst(copy);
use->set(copy);
++NumCopiesGenerated;
LLVM_DEBUG(llvm::dbgs() << " Copying at last use " << *copy);
}
/// Revisit the def-use chain of currentDef. Mark unneeded original
/// copies and destroys for deletion. Insert new copies for interior uses that
/// require ownership of the used operand.
void CanonicalizeOSSALifetime::rewriteCopies() {
assert(getCurrentDef()->getOwnershipKind() == OwnershipKind::Owned);
InstructionSetVector instsToDelete(getCurrentDef()->getFunction());
defUseWorklist.clear();
// Visit each operand in the def-use chain.
//
// Return true if the operand can use the current definition. Return false if
// it requires a copy.
auto visitUse = [&](Operand *use) {
auto *user = use->getUser();
// Recurse through copies.
if (auto *copy = dyn_cast<CopyValueInst>(user)) {
defUseWorklist.insert(copy);
return true;
}
if (destroys.contains(user)) {
auto *destroy = cast<DestroyValueInst>(user);
// If this destroy was marked as a final destroy, ignore it; otherwise,
// delete it.
if (!consumes.claimConsume(destroy)) {
instsToDelete.insert(destroy);
LLVM_DEBUG(llvm::dbgs() << " Removing " << *destroy);
++NumDestroysEliminated;
} else if (pruneDebugMode) {
// If this destroy was marked as a final destroy, add it to liveness so
// that we don't delete any debug instructions that occur before it.
// (Only relevant in pruneDebugMode).
liveness->updateForUse(destroy, /*lifetimeEnding*/ true);
}
return true;
}
// Nonconsuming uses do not need copies and cannot be marked as destroys.
// A lifetime-ending use here must be a consume because EndBorrow/Reborrow
// uses have been filtered out.
if (!use->isLifetimeEnding())
return true;
// If this use was not marked as a final destroy *or* this is not the first
// consumed operand we visited, then it needs a copy.
if (!consumes.claimConsume(user)) {
return false;
}
return true;
};
// Perform a def-use traversal, visiting each use operand.
for (auto useIter = getCurrentDef()->use_begin(),
endIter = getCurrentDef()->use_end(); useIter != endIter;) {
Operand *use = *useIter++;
if (!visitUse(use)) {
copyLiveUse(use, getCallbacks());
}
}
while (SILValue value = defUseWorklist.pop()) {
CopyValueInst *srcCopy = cast<CopyValueInst>(value);
// Recurse through copies while replacing their uses.
Operand *reusedCopyOp = nullptr;
for (auto useIter = srcCopy->use_begin(); useIter != srcCopy->use_end();) {
Operand *use = *useIter++;
if (!visitUse(use)) {
if (!reusedCopyOp && srcCopy->getParent() == use->getParentBlock()) {
reusedCopyOp = use;
} else {
copyLiveUse(use, getCallbacks());
}
}
}
if (!(reusedCopyOp && srcCopy->hasOneUse())) {
getCallbacks().replaceValueUsesWith(srcCopy, srcCopy->getOperand());
if (reusedCopyOp) {
reusedCopyOp->set(srcCopy);
} else {
if (instsToDelete.insert(srcCopy)) {
LLVM_DEBUG(llvm::dbgs() << " Removing " << *srcCopy);
++NumCopiesAndMovesEliminated;
}
}
}
}
assert(!consumes.hasUnclaimedConsumes());
if (pruneDebugMode) {
for (auto *dvi : debugValues) {
if (!liveness->isWithinBoundary(dvi)) {
LLVM_DEBUG(llvm::dbgs() << " Removing debug_value: " << *dvi);
deleter.forceDelete(dvi);
}
}
}
// Remove the leftover copy_value and destroy_value instructions.
for (auto iter = instsToDelete.begin(), end = instsToDelete.end();
iter != end; ++iter) {
deleter.forceDelete(*iter);
}
}
//===----------------------------------------------------------------------===//
// MARK: Top-Level API
//===----------------------------------------------------------------------===//
bool CanonicalizeOSSALifetime::computeLiveness() {
LLVM_DEBUG(llvm::dbgs() << " Canonicalizing: " << currentDef);
if (currentDef->getOwnershipKind() != OwnershipKind::Owned) {
LLVM_DEBUG(llvm::dbgs() << " not owned, never mind\n");
return false;
}
// Note: There is no need to register callbacks with this utility. 'onDelete'
// is the only one in use to handle dangling pointers, which could be done
// instead be registering a temporary handler with the pass. Canonicalization
// is only allowed to create and delete instructions that are associated with
// this canonical def (copies and destroys). Each canonical def has a disjoint
// extended lifetime. Any pass calling this utility should work at the level
// canonical defs, not individual instructions.
//
// NotifyWillBeDeleted will not work because copy rewriting removes operands
// before deleting instructions. Also prohibit setUse callbacks just because
// that would simply be unsound.
assert(!getCallbacks().notifyWillBeDeletedFunc
&& !getCallbacks().setUseValueFunc && "unsupported");
// Step 1: compute liveness
if (!computeCanonicalLiveness()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute canonical liveness?!\n");
clear();
return false;
}
if (respectsDeinitBarriers()) {
extendLivenessToDeinitBarriers();
}
if (accessBlockAnalysis) {
extendLivenessThroughOverlappingAccess();
}
return true;
}
void CanonicalizeOSSALifetime::rewriteLifetimes() {
// Step 2: compute original boundary
PrunedLivenessBoundary originalBoundary;
findOriginalBoundary(originalBoundary);
PrunedLivenessBoundary extendedBoundary;
if (maximizeLifetime) {
// Step 3. (optional) maximize lifetimes
extendUnconsumedLiveness(originalBoundary);
originalBoundary.clear();
// Step 2: (again) recompute the original boundary since we've extended
// liveness
findOriginalBoundary(originalBoundary);
// Step 4: extend boundary to destroys
findExtendedBoundary(originalBoundary, extendedBoundary);
} else {
// Step 3: (skipped)
// Step 4: extend boundary to destroys
findExtendedBoundary(originalBoundary, extendedBoundary);
}
// Step 5: insert destroys and record consumes
insertDestroysOnBoundary(extendedBoundary);
// Step 6: rewrite copies and delete extra destroys
rewriteCopies();
clear();
consumes.clear();
}
/// Canonicalize a single extended owned lifetime.
bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(
SILValue def, ArrayRef<SILInstruction *> lexicalLifetimeEnds) {
LivenessState livenessState(*this, def, lexicalLifetimeEnds);
// Don't canonicalize the lifetimes of values of move-only type. According to
// language rules, they are fixed.
if (def->getType().isMoveOnly()) {
return false;
}
// Step 1: Compute liveness.
if (!computeLiveness()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute liveness boundary!\n");
return false;
}
// Steps 2-6. \see rewriteUses for explanation of steps 2-6.
rewriteLifetimes();
return true;
}
namespace swift::test {
// Arguments:
// - bool: pruneDebug
// - bool: maximizeLifetimes
// - bool: "respectAccessScopes", whether to contract lifetimes to end within
// access scopes which they previously enclosed but can't be hoisted
// before
// - SILValue: value to canonicalize
// - [SILInstruction]: the lexicalLifetimeEnds to recognize
// Dumps:
// - function after value canonicalization
static FunctionTest CanonicalizeOSSALifetimeTest(
"canonicalize-ossa-lifetime",
[](auto &function, auto &arguments, auto &test) {
auto *accessBlockAnalysis =
test.template getAnalysis<NonLocalAccessBlockAnalysis>();
auto *dominanceAnalysis = test.template getAnalysis<DominanceAnalysis>();
DominanceInfo *domTree = dominanceAnalysis->get(&function);
auto *calleeAnalysis = test.template getAnalysis<BasicCalleeAnalysis>();
auto pruneDebug = PruneDebugInsts_t(arguments.takeBool());
auto maximizeLifetimes = MaximizeLifetime_t(arguments.takeBool());
auto respectAccessScopes = arguments.takeBool();
InstructionDeleter deleter;
CanonicalizeOSSALifetime canonicalizer(
pruneDebug, maximizeLifetimes, &function,
respectAccessScopes ? accessBlockAnalysis : nullptr, domTree,
calleeAnalysis, deleter);
auto value = arguments.takeValue();
SmallVector<SILInstruction *, 4> lexicalLifetimeEnds;
while (arguments.hasUntaken()) {
lexicalLifetimeEnds.push_back(arguments.takeInstruction());
}
canonicalizer.canonicalizeValueLifetime(value, lexicalLifetimeEnds);
function.print(llvm::outs());
});
} // end namespace swift::test
//===----------------------------------------------------------------------===//
// MARK: Debugging
//===----------------------------------------------------------------------===//
SWIFT_ASSERT_ONLY_DECL(
void CanonicalOSSAConsumeInfo::dump() const {
llvm::dbgs() << "Consumes:";
for (auto &blockAndInst : finalBlockConsumes) {
llvm::dbgs() << " " << *blockAndInst.getSecond();
}
})
|