1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
//===--- CheckedCastBrJumpThreading.cpp -----------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-simplify-cfg"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
using namespace swift;
namespace {
/// This is a class implementing a dominator-based jump-threading
/// for checked_cast_br [exact].
class CheckedCastBrJumpThreading {
// Basic block of the current checked_cast_br instruction.
SILBasicBlock *BB;
// Condition used by the current checked_cast_br instruction.
SILValue Condition;
SILBasicBlock *ArgBB;
// The current function to be optimized.
SILFunction *Fn;
// Dominator information to be used.
DominanceInfo *DT;
// DeadEndBlocks is used by OwnershipRAUW and incrementally updated within
// CheckedCastBrJumpThreading.
//
// TODO: incrementally update dead-end blocks during SimplifyCFG so it doesn't
// need to be recomputed each time tryCheckedCastBrJumpThreading is called.
DeadEndBlocks *deBlocks;
// Enable non-trivial terminator rewriting in OSSA.
bool EnableOSSARewriteTerminator;
InstModCallbacks callbacks;
// Shared data structures across OwnershipRAUWHelper instances.
OwnershipFixupContext rauwContext;
// List of predecessors.
typedef SmallVector<SILBasicBlock *, 8> PredList;
// Predecessors reached only via a path along the
// success branch of the dominating checked_cast_br.
PredList SuccessPreds;
// Predecessors reached only via a path along the
// failure branch of the dominating checked_cast_br.
PredList FailurePreds;
// All other predecessors, where the outcome of the
// checked_cast_br along the path is not known.
unsigned numUnknownPreds = 0;
// Basic blocks to be added to for reprocessing
// after jump-threading is done.
SmallVectorImpl<SILBasicBlock *> &BlocksForWorklist;
// Information for transforming a single checked_cast_br.
// This is the output of the optimization's analysis phase.
struct Edit {
// The block containing the checked_cast_br.
SILBasicBlock *CCBBlock;
// Copy of CheckedCastBrJumpThreading::SuccessPreds.
PredList SuccessPreds;
// Copy of CheckedCastBrJumpThreading::FailurePreds.
PredList FailurePreds;
// The argument of the dominating checked_cast_br's successor block.
SILPhiArgument *SuccessArg;
// True if the dominating check is inverted AND all the predecessors are on
// the dominating check's success path.
bool InvertSuccess;
// True if CheckedCastBrJumpThreading::numUnknownPreds is not 0.
bool hasUnknownPreds;
Edit(SILBasicBlock *CCBBlock, bool InvertSuccess,
const PredList &SuccessPreds,
const PredList &FailurePreds,
bool hasUnknownPreds, SILPhiArgument *SuccessArg) :
CCBBlock(CCBBlock), SuccessPreds(SuccessPreds), FailurePreds(FailurePreds),
SuccessArg(SuccessArg), InvertSuccess(InvertSuccess),
hasUnknownPreds(hasUnknownPreds) { }
bool canRAUW(OwnershipFixupContext &rauwContext);
void modifyCFGForFailurePreds(BasicBlockCloner &Cloner);
void modifyCFGForSuccessPreds(BasicBlockCloner &Cloner,
OwnershipFixupContext &rauwContext);
};
// Contains an entry for each checked_cast_br to be optimized.
llvm::SmallVector<Edit *, 8> Edits;
llvm::SpecificBumpPtrAllocator<Edit> EditAllocator;
// Keeps track of what blocks we change the terminator instruction.
BasicBlockSet BlocksToEdit;
// Keeps track of what blocks we clone.
BasicBlockSet BlocksToClone;
bool areEquivalentConditionsAlongPaths(CheckedCastBranchInst *DomCCBI);
bool areEquivalentConditionsAlongSomePaths(CheckedCastBranchInst *DomCCBI,
SILValue DomCondition);
bool handleArgBBIsEntryBlock(SILBasicBlock *ArgBB,
CheckedCastBranchInst *DomCCBI);
bool checkCloningConstraints();
void classifyPredecessor(SILBasicBlock *Pred, bool SuccessDominates,
bool FailureDominates);
SILValue isArgValueEquivalentToCondition(SILValue Value,
SILBasicBlock *DomBB,
SILValue DomValue,
DominanceInfo *DT);
bool trySimplify(CheckedCastBranchInst *CCBI);
public:
CheckedCastBrJumpThreading(
SILFunction *Fn, DominanceInfo *DT, DeadEndBlocks *deBlocks,
SmallVectorImpl<SILBasicBlock *> &BlocksForWorklist,
bool EnableOSSARewriteTerminator)
: Fn(Fn), DT(DT), deBlocks(deBlocks),
EnableOSSARewriteTerminator(EnableOSSARewriteTerminator),
rauwContext(callbacks, *deBlocks),
BlocksForWorklist(BlocksForWorklist), BlocksToEdit(Fn),
BlocksToClone(Fn) {}
void optimizeFunction();
};
} // end anonymous namespace
/// Estimate the cost of inlining a given basic block.
static unsigned basicBlockInlineCost(SILBasicBlock *BB, unsigned Cutoff) {
unsigned Cost = 0;
for (auto &I : *BB) {
auto ICost = instructionInlineCost(I);
Cost += unsigned(ICost);
if (Cost > Cutoff)
return Cost;
}
return Cost;
}
/// We cannot duplicate blocks with AllocStack instructions (they need to be
/// FIFO). Other instructions can be duplicated.
static bool canDuplicateBlock(SILBasicBlock *BB) {
for (auto &I : *BB) {
if (!I.isTriviallyDuplicatable())
return false;
}
return true;
}
/// Classify a predecessor of a BB containing checked_cast_br as being
/// reachable via success or failure branches of a dominating checked_cast_br
/// or as unknown if it can be reached via success or failure branches
/// at the same time.
void CheckedCastBrJumpThreading::classifyPredecessor(
SILBasicBlock *Pred, bool SuccessDominates, bool FailureDominates) {
if (SuccessDominates == FailureDominates) {
++numUnknownPreds;
return;
}
if (SuccessDominates) {
SuccessPreds.push_back(Pred);
return;
}
assert(FailureDominates && "success and failure should be mutual exclusive");
FailurePreds.push_back(Pred);
}
/// Check if the root value for Value that comes
/// along the path from DomBB is equivalent to the
/// DomCondition.
SILValue CheckedCastBrJumpThreading::isArgValueEquivalentToCondition(
SILValue Value, SILBasicBlock *DomBB, SILValue DomValue,
DominanceInfo *DT) {
SmallPtrSet<ValueBase *, 16> SeenValues;
DomValue = stripClassCasts(DomValue);
while (true) {
Value = stripClassCasts(Value);
if (Value == DomValue)
return Value;
// We know how to propagate through phi arguments only.
auto *V = dyn_cast<SILPhiArgument>(Value);
if (!V)
return SILValue();
// Have we visited this BB already?
if (!SeenValues.insert(Value).second)
return SILValue();
if (SeenValues.size() > 10)
return SILValue();
SmallVector<SILValue, 4> IncomingValues;
if (!V->getSingleTerminatorOperands(IncomingValues)
|| IncomingValues.empty())
return SILValue();
ValueBase *Def = nullptr;
for (auto IncomingValue : IncomingValues) {
// Each incoming value should be either from a block
// dominated by DomBB or it should be the value used in
// condition in DomBB
Value = stripClassCasts(IncomingValue);
if (Value == DomValue)
continue;
// Values should be the same
if (!Def)
Def = Value;
if (Def != Value)
return SILValue();
if (!DT->dominates(DomBB, Value->getParentBlock()))
return SILValue();
// OK, this value is a potential candidate
}
Value = IncomingValues[0];
}
}
// Return false if an ownership RAUW is necessary but cannot be performed.
bool CheckedCastBrJumpThreading::Edit::
canRAUW(OwnershipFixupContext &rauwContext) {
if (InvertSuccess || (SuccessPreds.empty() && !hasUnknownPreds))
return true;
auto *ccbi = cast<CheckedCastBranchInst>(CCBBlock->getTerminator());
auto *oldSuccessArg = ccbi->getSuccessBB()->getArgument(0);
// Check the ownership validity of the RAUW transformation that will replace
// oldSuccessArg with SuccessArg. This is valid iff it will be valid to
// replace the new checked_cast_br. The new checked_cast_br will be in a
// cloned block reachable from a subset of the original block's predecessors,
// it will have equivalent operands. Checking the current uses is unnecessary,
// because after cloning, the only use of the cloned checked_cast_br will be
// a phi in the successor. It is always valid to replace a phi use, because
// phi itself already guarantees that lifetime extends over its own uses.
return OwnershipRAUWHelper::hasValidNonLexicalRAUWOwnership(oldSuccessArg,
SuccessArg);
}
// Erase the checked_cast_br that terminates this block. The caller must replace
// and erase the successful cast result.
//
// The checked_cast_br failure result's uses are replaced with the cast's
// operand, and the block argument representing that result is deleted. Since
// the checked_cast's uses now use its forwarded operand, they are still in
// valid OSSA form, so this can be done before updateOSSAAfterCloning, which
// doesn't need to know about the erased checked_cast.
static void eraseCheckedCastBr(
CheckedCastBranchInst *checkedCastBr,
CheckedCastBranchInst::SuccessorPath successorIdx) {
SILBuilderWithScope Builder(checkedCastBr);
Builder.createBranch(checkedCastBr->getLoc(),
checkedCastBr->getSuccessors()[successorIdx]);
auto *successBB = checkedCastBr->getSuccessBB();
assert(successBB->getNumArguments() == 1);
assert(successBB->getArgument(0)->use_empty());
successBB->eraseArgument(0);
if (checkedCastBr->getFunction()->hasOwnership()) {
auto *failureBB = checkedCastBr->getFailureBB();
assert(failureBB->getNumArguments() == 1);
failureBB->getArgument(0)->replaceAllUsesWith(checkedCastBr->getOperand());
failureBB->eraseArgument(0);
}
checkedCastBr->eraseFromParent();
}
void CheckedCastBrJumpThreading::Edit::modifyCFGForFailurePreds(
BasicBlockCloner &Cloner) {
if (FailurePreds.empty())
return;
assert(!Cloner.wasCloned());
Cloner.cloneBlock();
SILBasicBlock *TargetFailureBB = Cloner.getNewBB();
// This cloned block branches to the FailureBB, so just delete the cast and
// ignore the success target which will keep it's original predecessor.
auto *clonedCCBI =
cast<CheckedCastBranchInst>(TargetFailureBB->getTerminator());
auto *clonedSuccessArg = clonedCCBI->getSuccessBB()->getArgument(0);
clonedSuccessArg->replaceAllUsesWithUndef();
eraseCheckedCastBr(clonedCCBI, CheckedCastBranchInst::FailIdx);
// Redirect all FailurePreds to the copy of BB.
for (auto *Pred : FailurePreds) {
TermInst *TI = Pred->getTerminator();
// Replace branch to BB by branch to TargetFailureBB.
TI->replaceBranchTarget(CCBBlock, TargetFailureBB);
}
Cloner.updateSSAAfterCloning();
}
/// Create a copy of the BB or reuse BB as a landing basic block for all
/// FailurePreds.
///
/// Note: must be called after modifyCFGForFailurePreds and
/// before modifyCFGForUnknownPreds.
void CheckedCastBrJumpThreading::Edit::modifyCFGForSuccessPreds(
BasicBlockCloner &Cloner, OwnershipFixupContext &rauwContext) {
auto *checkedCastBr = cast<CheckedCastBranchInst>(CCBBlock->getTerminator());
auto *oldSuccessArg = checkedCastBr->getSuccessBB()->getArgument(0);
if (InvertSuccess || (SuccessPreds.empty() && !hasUnknownPreds)) {
assert(!hasUnknownPreds && "is not handled, should have been checked");
// This success path is unused, so undef its uses and delete the cast.
oldSuccessArg->replaceAllUsesWithUndef();
eraseCheckedCastBr(checkedCastBr, CheckedCastBranchInst::FailIdx);
return;
}
if (!hasUnknownPreds) {
// All predecessors are dominated by a successful cast. So the current BB
// can be re-used instead as their target.
//
// NOTE: Assumes that failure predecessors have already been processed and
// removed from the current block's predecessors.
// Replace uses with SuccessArg from the dominating BB. Do this while it is
// still a valid terminator result, before erasing the cast.
OwnershipRAUWHelper rauwTransform(rauwContext, oldSuccessArg, SuccessArg);
assert(rauwTransform.isValid() && "sufficiently checked by canRAUW");
rauwTransform.perform();
eraseCheckedCastBr(checkedCastBr, CheckedCastBranchInst::SuccessIdx);
return;
}
// Only clone if there are preds on the success path.
if (SuccessPreds.empty())
return;
// Create a copy of the BB as a landing BB.
// for all SuccessPreds.
assert(!Cloner.wasCloned());
Cloner.cloneBlock();
SILBasicBlock *clonedCCBBlock = Cloner.getNewBB();
// Redirect all SuccessPreds to the copy of BB.
for (auto *Pred : SuccessPreds) {
TermInst *TI = Pred->getTerminator();
// Replace branch to BB by branch to TargetSuccessBB.
TI->replaceBranchTarget(CCBBlock, clonedCCBBlock);
}
// Remove the unreachable checked_cast_br target.
auto *clonedCCBI =
cast<CheckedCastBranchInst>(clonedCCBBlock->getTerminator());
auto *successBB = clonedCCBI->getSuccessBB();
// This cloned block branches to the successBB.
// The checked_cast_br uses are replaced with SuccessArg.
if (!CCBBlock->getParent()->hasOwnership()) {
SILBuilderWithScope Builder(clonedCCBI);
Builder.createBranch(clonedCCBI->getLoc(), successBB, {SuccessArg});
clonedCCBI->eraseFromParent();
Cloner.updateSSAAfterCloning();
return;
}
// Remove all uses from the failure path so RAUW can erase the
// terminator after replacing the successor argument.
auto *failureBB = clonedCCBI->getFailureBB();
assert(failureBB->getNumArguments() == 1 && "expecting term result");
failureBB->getArgument(0)->replaceAllUsesWithUndef();
// Create nested borrow scopes for new phis either created for the
// checked_cast's results or during SSA update. This puts the SIL in
// valid OSSA form before calling OwnershipRAUWHelper.
Cloner.updateSSAAfterCloning();
auto *clonedSuccessArg = successBB->getArgument(0);
OwnershipRAUWHelper rauwUtil(rauwContext, clonedSuccessArg, SuccessArg);
assert(rauwUtil.isValid() && "sufficiently checked by canRAUW");
rauwUtil.perform();
eraseCheckedCastBr(clonedCCBI, CheckedCastBranchInst::SuccessIdx);
}
/// Handle a special case, where ArgBB is the entry block.
bool CheckedCastBrJumpThreading::handleArgBBIsEntryBlock(
SILBasicBlock *ArgBB, CheckedCastBranchInst *DomCCBI) {
if (!ArgBB->pred_empty())
return false;
// It must be the entry block
//
// TODO: Is this a correct assumption? Do we know that at this point that
// ArgBB can not be unreachable?
//
// See if it is reached over Success or Failure path.
bool SuccessDominates = DomCCBI->getSuccessBB() == BB;
bool FailureDominates = DomCCBI->getFailureBB() == BB;
if (BlocksToEdit.contains(ArgBB))
return false;
classifyPredecessor(ArgBB, SuccessDominates, FailureDominates);
return true;
}
// Returns false if cloning required by jump threading cannot
// be performed, because some of the constraints are violated.
//
// This does not check the constraint on address projections with out-of-block
// uses. Those are rare enough that they don't need to be checked first for
// efficiency, but they need to be gathered later, just before cloning, anyway
// in order to sink the projections.
bool CheckedCastBrJumpThreading::checkCloningConstraints() {
// Check some cloning related constraints.
// If this argument from a different BB, then jump-threading
// may require too much code duplication.
if (ArgBB && ArgBB != BB)
return false;
// Bail out if current BB cannot be duplicated.
if (!canDuplicateBlock(BB))
return false;
// Check if code-bloat would be too big when this BB
// is jump-threaded.
// TODO: Make InlineCostCutoff parameter configurable?
// Dec 1, 2014:
// We looked at the inline costs of BBs from our benchmark suite
// and found that currently the highest inline cost for the
// whole benchmark suite is 12. In 95% of all cases it is <=3.
const unsigned InlineCostCutoff = 20;
if (basicBlockInlineCost(BB, InlineCostCutoff) >= InlineCostCutoff)
return false;
return true;
}
/// If conditions are not equivalent along all paths, try harder
/// to check if they are actually equivalent along a subset of paths.
/// To do it, try to back-propagate the Condition
/// backwards and see if it is actually equivalent to DomCondition.
/// along some of the paths.
bool CheckedCastBrJumpThreading::
areEquivalentConditionsAlongSomePaths(CheckedCastBranchInst *DomCCBI,
SILValue DomCondition) {
auto *Arg = dyn_cast<SILPhiArgument>(Condition);
if (!Arg)
return false;
ArgBB = Arg->getParent();
SILBasicBlock *DomBB = DomCCBI->getParent();
if (!DT->dominates(DomBB, ArgBB))
return false;
// Incoming values for the BBArg.
SmallVector<SILValue, 4> IncomingValues;
if (ArgBB->getIterator() != ArgBB->getParent()->begin()
&& (!Arg->getSingleTerminatorOperands(IncomingValues)
|| IncomingValues.empty()))
return false;
// Check for each predecessor, if the incoming value coming from it
// is equivalent to the DomCondition. If this is the case, it is
// possible to try jump-threading along this path.
if (!handleArgBBIsEntryBlock(ArgBB, DomCCBI)) {
// ArgBB is not the entry block and has predecessors.
unsigned idx = 0;
for (auto *PredBB : ArgBB->getPredecessorBlocks()) {
// We must avoid that we are going to change a block twice.
if (BlocksToEdit.contains(PredBB))
return false;
auto IncomingValue = IncomingValues[idx];
SILValue ReachingValue = isArgValueEquivalentToCondition(
IncomingValue, DomBB, DomCondition, DT);
if (ReachingValue == SILValue()) {
++numUnknownPreds;
++idx;
continue;
}
// Condition is the same if BB is reached over a pass through Pred.
LLVM_DEBUG(llvm::dbgs() << "Condition is the same if reached over ");
LLVM_DEBUG(PredBB->print(llvm::dbgs()));
// See if it is reached over Success or Failure path.
SILBasicBlock *DomSuccessBB = DomCCBI->getSuccessBB();
bool SuccessDominates = DT->dominates(DomSuccessBB, PredBB) ||
DT->dominates(DomSuccessBB, BB) ||
DomSuccessBB == BB;
SILBasicBlock *DomFailureBB = DomCCBI->getFailureBB();
bool FailureDominates = DT->dominates(DomFailureBB, PredBB) ||
DT->dominates(DomFailureBB, BB) ||
DomFailureBB == BB;
classifyPredecessor(
PredBB, SuccessDominates, FailureDominates);
++idx;
}
} else {
// ArgBB is the entry block. Check that conditions are the equivalent in this
// case as well.
if (!isArgValueEquivalentToCondition(Condition, DomBB, DomCondition, DT))
return false;
}
// At this point we know for each predecessor of ArgBB if its reached
// over the success, failure or unknown path from DomBB.
// Now we can generate a new BB for preds reaching BB over the success
// path and a new BB for preds reaching BB over the failure path.
// Then we redirect those preds to those new basic blocks.
return true;
}
/// Check if conditions of CCBI and DomCCBI are equivalent along
/// all or at least some paths.
bool CheckedCastBrJumpThreading::
areEquivalentConditionsAlongPaths(CheckedCastBranchInst *DomCCBI) {
// Are conditions equivalent along all paths?
SILValue DomCondition = stripClassCasts(DomCCBI->getOperand());
if (DomCondition == Condition) {
// Conditions are exactly the same, without any restrictions.
// They are equivalent along all paths.
// Figure out for each predecessor which branch of
// the dominating checked_cast_br is used to reach it.
for (auto *PredBB : BB->getPredecessorBlocks()) {
// All predecessors should either unconditionally branch
// to the current BB or be another checked_cast_br instruction.
if (!isa<CheckedCastBranchInst>(PredBB->getTerminator()) &&
!isa<BranchInst>(PredBB->getTerminator()))
return false;
// We must avoid that we are going to change a block twice.
if (BlocksToEdit.contains(PredBB))
return false;
// Don't allow critical edges from PredBB to BB. This ensures that
// splitAllCriticalEdges() will not invalidate our predecessor lists.
if (!BB->getSinglePredecessorBlock() &&
!PredBB->getSingleSuccessorBlock())
return false;
SILBasicBlock *DomSuccessBB = DomCCBI->getSuccessBB();
bool SuccessDominates =
DT->dominates(DomSuccessBB, PredBB) || DomSuccessBB == BB;
SILBasicBlock *DomFailureBB = DomCCBI->getFailureBB();
bool FailureDominates =
DT->dominates(DomFailureBB, PredBB) || DomFailureBB == BB;
classifyPredecessor(PredBB, SuccessDominates, FailureDominates);
}
return true;
}
// Check if conditions are equivalent along a subset of reaching paths.
return areEquivalentConditionsAlongSomePaths(DomCCBI, DomCondition);
}
/// Try performing a dominator-based jump-threading for
/// checked_cast_br instructions.
bool CheckedCastBrJumpThreading::trySimplify(CheckedCastBranchInst *CCBI) {
if (!EnableOSSARewriteTerminator && Fn->hasOwnership()
&& !CCBI->getOperand()->getType().isTrivial(*Fn)) {
return false;
}
// Init information about the checked_cast_br we try to
// jump-thread.
BB = CCBI->getParent();
if (BlocksToEdit.contains(BB))
return false;
Condition = stripClassCasts(CCBI->getOperand());
// Find a dominating checked_cast_br, which performs the same check.
for (auto *Node = DT->getNode(BB)->getIDom(); Node; Node = Node->getIDom()) {
// Get current dominating block.
SILBasicBlock *DomBB = Node->getBlock();
auto *DomTerm = DomBB->getTerminator();
if (!DomTerm->getNumOperands())
continue;
// Check that it is a dominating checked_cast_br.
auto *DomCCBI = dyn_cast<CheckedCastBranchInst>(DomTerm);
if (!DomCCBI)
continue;
// We need to verify that the result type is the same in the
// dominating checked_cast_br, but only for non-exact casts.
// For exact casts, we are interested only in the
// fact that the source operand is the same for
// both instructions.
if (!CCBI->isExact() && !DomCCBI->isExact()) {
if (DomCCBI->getTargetFormalType() != CCBI->getTargetFormalType())
continue;
}
// Conservatively check that both checked_cast_br instructions
// are either exact or non-exact. This is very conservative,
// but safe.
//
// TODO:
// If the dominating checked_cast_br is non-exact, then
// it is in general not safe to assume that current exact cast
// would have the same outcome. But if the dominating non-exact
// checked_cast_br fails, then the current exact cast would
// always fail as well.
//
// If the dominating checked_cast_br is exact then then
// it is in general not safe to assume that the current non-exact
// cast would have the same outcome. But if the dominating exact
// checked_cast_br succeeds, then the current non-exact cast
// would always succeed as well.
//
// TODO: In some specific cases, it is possible to prove that
// success or failure of the dominating cast is equivalent to
// the success or failure of the current cast, even if one
// of them is exact and the other not. This is the case
// e.g. if the class has no subclasses.
if (DomCCBI->isExact() != CCBI->isExact())
continue;
// We need the block argument of the DomSuccessBB. If we are going to
// clone it for a previous checked_cast_br the argument will not dominate
// the blocks which it's used to dominate anymore.
if (BlocksToClone.contains(DomCCBI->getSuccessBB()))
continue;
// Init state variables for paths analysis
SuccessPreds.clear();
FailurePreds.clear();
numUnknownPreds = 0;
ArgBB = nullptr;
// Are conditions of CCBI and DomCCBI equivalent along (some) paths?
// If this is the case, classify all incoming paths into SuccessPreds,
// FailurePreds or UnknownPreds depending on how they reach CCBI.
if (!areEquivalentConditionsAlongPaths(DomCCBI))
continue;
// Check if any jump-threading is required and possible.
if (SuccessPreds.empty() && FailurePreds.empty())
return false;
// If this check is reachable via success, failure and unknown
// at the same time, then we don't know the outcome of the
// dominating check. No jump-threading is possible in this case.
if (!SuccessPreds.empty() && !FailurePreds.empty() && numUnknownPreds > 0) {
return false;
}
unsigned TotalPreds =
SuccessPreds.size() + FailurePreds.size() + numUnknownPreds;
// We only need to clone the BB if not all of its
// predecessors are in the same group.
if (TotalPreds != SuccessPreds.size() &&
TotalPreds != numUnknownPreds) {
// Check some cloning related constraints.
if (!checkCloningConstraints())
return false;
}
bool InvertSuccess = false;
if (DomCCBI->isExact() && CCBI->isExact() &&
DomCCBI->getTargetFormalType() != CCBI->getTargetFormalType()) {
if (TotalPreds == SuccessPreds.size()) {
// The dominating exact cast was successful, but it casted to a
// different type. Therefore, the current cast fails for sure.
// Since we are going to change the BB,
// add its successors and predecessors
// for re-processing.
InvertSuccess = true;
} else {
// Otherwise, we don't know if the current cast will succeed or
// fail.
return false;
}
}
// If we have predecessors, where it is not known if they are reached over
// success or failure path, we cannot eliminate a checked_cast_br.
// We have to generate new dedicated BBs as landing BBs for all
// FailurePreds and all SuccessPreds.
// Since we are going to change the BB, add its successors and predecessors
// for re-processing.
for (auto *B : BB->getPredecessorBlocks()) {
BlocksForWorklist.push_back(B);
}
for (auto *B : BB->getSuccessorBlocks()) {
BlocksForWorklist.push_back(B);
}
// Remember the blocks we are going to change. So that we ignore them
// for upcoming checked_cast_br instructions.
BlocksToEdit.insert(BB);
BlocksToClone.insert(BB);
for (auto *B : SuccessPreds)
BlocksToEdit.insert(B);
for (auto *B : FailurePreds)
BlocksToEdit.insert(B);
// Record what we want to change.
Edit *edit = new (EditAllocator.Allocate())
Edit(BB, InvertSuccess, SuccessPreds, FailurePreds,
numUnknownPreds != 0,
cast<SILPhiArgument>(DomCCBI->getSuccessBB()->getArgument(0)));
Edits.push_back(edit);
return true;
}
// Jump-threading was not possible.
return false;
}
/// Optimize the checked_cast_br instructions in a function.
void CheckedCastBrJumpThreading::optimizeFunction() {
// We separate the work in two phases: analyze and transform. This avoids
// re-calculating the dominator tree for each optimized checked_cast_br.
// First phase: analysis.
for (auto &BB : *Fn) {
// Ignore unreachable blocks.
if (!DT->getNode(&BB))
continue;
if (auto *CCBI = dyn_cast<CheckedCastBranchInst>(BB.getTerminator()))
trySimplify(CCBI);
}
assert(BlocksForWorklist.empty() == Edits.empty());
if (Edits.empty())
return;
// Second phase: transformation.
if (Fn->getModule().getOptions().VerifyAll)
Fn->verifyCriticalEdges();
for (Edit *edit : Edits) {
if (edit->SuccessArg->isErased())
continue;
BasicBlockCloner Cloner(edit->CCBBlock, deBlocks);
if (!Cloner.canCloneBlock())
continue;
if (Fn->hasOwnership() && !edit->canRAUW(rauwContext))
continue;
// Create a copy of the BB as a landing BB
// for all FailurePreds.
edit->modifyCFGForFailurePreds(Cloner);
// Create a copy of the BB or reuse BB as
// a landing basic block for all SuccessPreds.
edit->modifyCFGForSuccessPreds(Cloner, rauwContext);
if (Cloner.wasCloned()) {
Cloner.updateSSAAfterCloning();
if (!Cloner.getNewBB()->pred_empty())
BlocksForWorklist.push_back(Cloner.getNewBB());
}
if (!edit->CCBBlock->pred_empty())
BlocksForWorklist.push_back(edit->CCBBlock);
}
}
namespace swift {
bool tryCheckedCastBrJumpThreading(
SILFunction *Fn, DominanceInfo *DT, DeadEndBlocks *deBlocks,
SmallVectorImpl<SILBasicBlock *> &BlocksForWorklist,
bool EnableOSSARewriteTerminator) {
// TODO: Disable for OSSA temporarily
if (Fn->hasOwnership()) {
return false;
}
CheckedCastBrJumpThreading CCBJumpThreading(Fn, DT, deBlocks,
BlocksForWorklist,
EnableOSSARewriteTerminator);
CCBJumpThreading.optimizeFunction();
return !BlocksForWorklist.empty();
}
} // end namespace swift
|